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ABSTRACT
Tree-structured data formats, such as JSON and Protocol Buffers,
are capable of expressing sophisticated data types, including nested,
repeated, and missing values. While such expressing power con-
tributes to their popularity in real-world applications, it presents
a significant challenge for systems supporting tree-structured data.
Existing systems have focused on general-purpose solutions either
extending RDBMSs or designing native systems. However, the
general-purpose approach often results in sophisticated data struc-
tures and algorithms, which may not reflect and optimize for the
actual structure patterns in the real world.

In this paper, we aim to better understand tree-structured data
types in real uses and optimize for the common patterns. We present
an in-depth study of five types of real-world use cases of tree-
structured data. We find that a majority of the root-to-leaf paths in
the tree structures are simple, containing up to one repeated node.
Given this insight, we design and implement Steed, a native analyt-
ical database system for tree-structured data. Steed implements the
baseline general-purpose support for storing and querying data in
both row and column layouts. Then we enhance the baseline design
with a set of optimizations to simplify and improve the processing
of simple paths. Experimental evaluation shows that our optimiza-
tion improves the baseline by a factor of up to 1.74x. Compared
to three representative state-of-the-art systems (i.e. PostgreSQL,
MongoDB, and Hive+Parquet), Steed achieves orders of magnitude
better performance in both cold cache and hot cache scenarios.

1. INTRODUCTION
Tree-structured data formats, such as JSON [11] and Protocol

Buffers [17], have numerous applications in a wide variety of real
scenarios, including social network data feeds [19], online data ser-
vices [20, 10, 18], communication protocols [1, 2], publicly avail-
able data sets [8, 7], and sensor data [4, 9, 5]. Compared to the
traditional relational data model, tree-structured data formats are
capable of expressing much more sophisticated data types, includ-
ing nested, repeated, and missing values. Data types (e.g., C struct,
C++ class, Java class) used in high-level programming languages
can be easily represented. Such expressing power is one of the main
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reasons for the popularity of tree-structured data formats. However,
the sophisticated data types present a significant challenge for sys-
tems supporting tree-structured data. In this paper, we aim to better
understand tree-structured data types in real uses and optimize al-
gorithms and data structures for processing tree-structured data.

1.1 Tree-Structured Data Model
In general, a tree-structured data model1 can be recursively de-

fined as follows:

Tvalue = Tobject | Tarray | Tprimitive

Tobject = {key1 : Tvalue1 , ..., keyn : Tvaluen}
Tarray = [Tvalue, ..., Tvalue]
Tprimitive = string | number | boolean | null
key = string
Ttree = Tobject

A value type is defined as an object, an array, or a primitive type.
An object contains a list of key-value pairs, while an array consists
of a list of values. The key-value pairs in an object may be missing
or present in specific data records. A primitive type is an atomic
data type. The top-level type is an object. Depending on the actual
tree-structured data formats, an object is also called a message, a
document, or a record, and an array type is also known as a repeated
type. Some formats (e.g., Protocol Buffers) require schema decla-
rations for data, while others (e.g., JSON) are schema-less, where
the schema information is implied by the data.

A tree-structured data type can be viewed as a schema tree. The
top level type is the root of the tree. An object is a non-leaf node. A
primitive value is a leaf node. An array is combined with its child
node to make the child node a repeated node. (An example tree is
shown in Figure 3.)

The tree-structured data model is flexible enough to express so-
phisticated data types used in high-level programming languages,
such as C/C++ and Java. An object can easily represent a struct, a
class, or a map. An array is capable of expressing an array or a list.
In fact, one can describe arbitrarily sophisticated data types with
deep nesting levels and a lot of repeated sub-types. However, such
complexity presents a significant challenge in efficiently supporting
tree-structured data formats.

1.2 Existing Support for Sophisticated Types
Previous work has focused on general-purpose support for tree-

structured formats either (i) by extending RDBMSs or by (ii) de-
signing native systems.
Extending RDBMSs. A tree-structured data record is stored either
as shredded fields, or as a whole in a single attribute, or a combi-
nation of the two in RDBMSs. Chasseur et al. proposed Argo, a
1We follow previous work [22] to call light-weight nested data formats,
such as JSON and Protocol Buffers, tree-structured data formats.



mapping layer that splits a JSON record into a set of (object ID,
key, value) tuples corresponding to the leaf nodes in the tree, and
stores the shredded fields in the RDBMS [25]. In contrast, Liu et
al. proposed to store a JSON record in a varchar/BLOB/CLOB,
and use various functions (e.g., extracting scalar values) to work
with JSON records in SQL queries [31]. This is the approach taken
in the SQL/JSON standard effort and by Oracle [31]. PostgreSQL
also stores an entire JSON record into a text or a binary field, but
designs a different syntax to use JSON in SQL queries [16]. On the
other hand, Tahara et al. proposed a hybrid approach, where a sub-
set of the attributes are materialized as columns and the remainder
is serialized into a single binary column in the RDBMS [36].
Designing Native Systems. NoSQL document stores (e.g., Mon-
goDB [15] and CouchDB [6]) provide native storage and query
support for JSON data. JSON data are stored in row formats. Mon-
goDB defines a binary JSON row format, called BSON, and sup-
ports Javascript based query APIs. Moreover, Melnik et al. [33]
proposed Dremel, a system that supports general-purpose column
data layouts and SQL-like queries for Protocol Buffers data. Col-
umn layouts can significantly improve the performance of data anal-
ysis. Apache Parquet [3] is an open-source Java-based implemen-
tation of Dremel’s columnar design. It can be integrated into the
Hadoop ecosystem (e.g., Hive [37]) as an input/output format. Fur-
thermore, AsterixDB [23] supports a tree-structured data model,
called ADM, and a query language, called AQL, on ADM.
Challenge of General-Purpose Designs. Previous work provides
general-purpose designs for various tree-structured formats. How-
ever, such designs must consider arbitrarily sophisticated types.
Conceptually, trees can range from shallow trees with primitive
leaf nodes, to very deep trees with many nested levels and repeated
fields. Therefore, a general-purpose solution has to support any
kind of tree-structured data, no matter how simple or or complex it
is. For example, functions that work with JSON records in RDBMSs
must be able to parse arbitrarily complex JSON records. The col-
umn design in Dremel must be able to encode and assemble Proto-
col Buffers data with arbitrarily large number of nested levels and
repeated nodes. As a result, these solutions require sophisticated
algorithms and data structures, which may not reflect the actual use
patterns in the real world and thus may be less efficient.

1.3 Our Solution: Steed
We take a different approach in this paper. We perform an in-

depth study of the tree-structured data patterns in the real world by
analyzing the tree structures in representative use cases in social
network data feeds, online data services, communication protocols
in distributed systems, web sites providing downloading services
for publicly available data sets, and sensor data. While the number
of leaf nodes in the tree structures varies greatly, from less than
10 to a few hundred, we find interesting common patterns across
the cases. The heights of the trees are not very large. The highest
tree consists of 8 levels. Trees of 2–3 levels are popular. More
importantly, a majority of the root-to-leaf paths are quite simple,
containing no repeated node or only one repeated node. We call
such paths simple paths. Therefore, we would like to optimize for
the common patterns.

We have designed and implemented an analytical database sys-
tem, called Steed (System for tree-structured data), that provides
native support for tree-structured data. The baseline Steed design
supports general-purpose data storage and query processing of tree-
structured data in both row and column formats. Then, we opti-
mize the column storage, the column assembling process, and in-
memory data layouts for the frequent structure patterns observed
in our use case study. For the column storage, we propose a sim-

plified encoding scheme. For the process to assemble columns, we
propose a flat assemble algorithm that avoids the cost of traversing
state machines and tree structures. For the data layout in memory,
we propose a flat data layout that reduces the overhead for access-
ing nested fields in query processing.

We perform an extensive experimental study to evaluate the per-
formance of our proposed optimizations and compare the overall
performance of Steed with state-of-the-art systems. Experimental
results show that our optimizations can improve the performance of
SQL-like queries by a factor of up to 1.74x compared to the base-
line Steed implementation. We compare Steed with three state-of-
the-art systems: an RDBMS with JSON extension (PostgreSQL),
a native system with a binary row layout (MongoDB), and a native
system that stores data in a binary column format (Hive+Parquet).
In cold cache experiments where data are read from disks, the
best Steed design achieves 4.1–17.8x speedups over Hive+Parquet,
55.9–105.2x improvements over MongoDB, and 33.8–1294x im-
provements over PostgreSQL. When data fits into memory, the best
Steed design achieves 11.9–22.6x speedups over MongoDB, 19.5–
59.3x improvements over Hive+Parquet, and 16.9–392x speedups
over PostgreSQL.

Related Work on XML. There is a large body of work in the lit-
erature on storing and querying XML documents [21, 28]. Column
storage of tree-structured data has already been explored for XML.
In particular, MonetDB/XQuery is an XML database system im-
plemented on top of a columnar relational database system, Mon-
etDB [24]. The properties of real-world DTDs (i.e. XML schemas)
have been studied [26]. However, XML documents are often large
with many entities. A single XML document often contains a great
many repeated tags. Moreover, DTDs can allow recursions and cy-
cles [26]. In contrast, records in JSON-like formats are often much
lighter weight. The size of a JSON-like record is often compara-
ble to that of a record in a relational table. As a result, processing
structures inside a single document often plays a significant role in
XML, while we focus on the case with a large number of relatively
small JSON-like records. As shown in our survey of real-world
data patterns, JSON-like tree-structured records often have simple
structures, which we exploit in the design of Steed.

1.4 Contributions
The contributions of this paper are as follows. First, we present

the first in-depth study to understand real-world data patterns for
tree-structured data formats (Section 2). Using five types of rep-
resentative use cases, we find that simple paths dominate the tree
structures. Second, we propose a set of data structures and algo-
rithms to optimize for the common patterns (Section 4). Third,
we describe the design and implementation of Steed, a native an-
alytical database system for tree-structured data (Section 3 and 4).
Finally, we perform an extensive experimental study to evaluate the
proposed techniques and compare the overall performance of Steed
with three representative state-of-the-art systems (Section 5).

2. ANALYZING TREE-STRUCTURED DATA
IN THE REAL WORLD

In this section, we collect and analyze representative tree-structured
data in the real world. We would like to understand: How are tree-
structured data structures used in the real world? How complex are
the structures in use? Are there any common structure patterns?
Such understanding can guide our design choice for optimizing the
efficiency of tree-structured data processing.

We have observed the following interesting facts in the study:
• Tree-structured data are used widely in practice.



Table 1: Root-to-leaf path analysis for Tweets.
Leaf level No Repeated 1 Repeated ≥2 Repeated Total
Level 1 16 0 0 16
Level 2 61 2 0 63
Level 3 51 21 4 76
Level 4 1 19 4 24
Level 5 0 12 0 12
Level 6 0 12 0 12
Total 129 66 8 203

• The number of leaf nodes in the tree structures varies greatly,
from less than 10 to a few hundred.
• The heights of the trees are not very large. The highest tree

consists of 8 levels. Trees of 2–3 levels are popular.
• A large fraction of the leaf nodes are quite simple. Their paths

to the tree root contain at most one repeated field. We call a
path that contains at most one repeated field a simple path.

In the following, Section 2.1 overviews the representative use cases
in the study. Then, Section 2.2–2.6 each studies a specific type of
real world use case of tree-structured data.

2.1 Representative Use Cases
We analyze five types of real-world use cases that employ tree-

structured data, such as JSON and Protocol Buffers. First, data
feeds in social network services, such as Twitter [19], contain data
in JSON. They are used as an important type of raw data in many
data analysis applications. Second, online data services (e.g., with
RESTful APIs [12]), such as Yahoo web service [20], often pro-
vide query answers in JSON. Third, a large number of popular open
source distributed computing platforms, including Hadoop [1] and
HBase [2], use Protocol Buffers to implement their communication
protocols. Fourth, a number of publicly available data sets, includ-
ing semantic web data sets [8], can be obtained in JSON. Finally,
the latest sensor platforms (e.g., Arduino [4], DragonBoard [9])
provide the capability of generating sensor data in JSON.

2.2 Data Feeds
The tweets in the Twitter data feed [19] are in JSON. Figure 15

depicts the schema tree structure of tweets. Since the full figure
is too large to be clearly presented, we cut the tree into two. The
cutting point is the node highlighted with the blue color. The green
node is the root node. We use red to denote nodes that are repeated
(i.e. arrays in JSON).

Analyzing the tree structure, we see that there are 238 nodes in
the tree, among which 203 nodes are leaf nodes and 35 nodes are
non-leaf nodes. The deepest leaf node appears at the 6th level of
the tree (root is at level 0). Among the 238 nodes, 22 nodes (or
less than 10%) are repeated nodes, i.e. arrays, which may contain
multiple values in instances of tweets.

Table 1 lists the statistics of root-to-leaf paths for the tree struc-
ture. If we consider every distinct path from the root to a leaf node,
then 129 paths of the total 203 paths contain no repeated nodes.
66 paths contain a single repeated node. Only 8 paths contain more
than one repeated nodes. We consider paths with no repeated nodes
or with one repeated node as simple paths. Overall, more than 96%
of the root-to-leaf paths are simple.

Note that the tree structure of tweets is the most complex among
the real-world data sets that we see. However, even in this case,
there are common simple patterns that can be exploited in query
processing. Our experiments in Section 5 will use Twitter data.

2.3 Online Data Services
We study three representative online data services: Yahoo [20],

IMDB [10], and Sina Weibo [18]. JSON is often the preferred for-

Table 2: Analysis of representative online data services.
Online Yahoo Yahoo IMDB Sina Weibo
service Geo Finance Movie Star avg (max)
#Levels 2 5 2 2.2 (4)
#Nodes 11 25 6 29.9 (111)
#Leaves 8 19 4 27.5 (105)
No Repeated 0% 16% 0% 67%
1 Repeated 100% 84% 100% 32%
≥2 Repeated 0% 0% 0% 1%
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Figure 1: Analysis of root-to-leaf paths of JSON results for 104
different Weibo query types.

mat of query results in online services that conform to the REST
architecture. Many (mobile) applications are built on top of on-
line data services to provide useful information and services to end
users. For example, Sina Weibo provides a set of online service
APIs that can be used by mobile apps to integrate the capability of
accessing and managing (tweet-like) Weibo contents.

Table 2 shows the statistics of two types of Yahoo services, one
type of IMDB service, and 104 types of Weibo services. For each
type, we run example queries as specified by the respective tutorials
or manuals, then obtain and analyze the returned JSON results. We
spend most of our effort in understanding the query results of the
104 types of Weibo services.

From the table, we see that the trees contain 2–5 levels (exclud-
ing the root). The most complex trees contain 111 nodes and 105
leaf nodes. Among all the root-to-leaf paths, 100% are simple paths
in Yahoo and IMDB query result trees, and an average of 99% of
the paths are simple in the query results trees of Weibo.

Figure 1 further shows the breakdown of the root-to-leaf paths
for all the 104 types of query results in Weibo. The results are
sorted from left to right in ascending order of percentage of paths
without any repeated nodes. As seen from the figure, simple paths
dominate the majority of query results. Interestingly, in a large
fraction of cases, almost all paths contain no repeated nodes, while
there are other cases where almost all paths contain 1 repeated
nodes. Therefore, both of these patterns are important.

2.4 Communication Protocols
Protocol Buffers simplifies the implementation of communica-

tion protocols and is employed in a number of well-known open
source platforms, include Apache Hadoop [1] and Apache HBase [2].
Protocol buffers data can be recorded and analyzed for understand-
ing system behaviors, detecting anomalies, and debugging.

We take Hadoop as an example, and analyze the tree structures
of its communication protocols. In Hadoop 2.6.0, there are 449
types of Protocol Buffers messages that are not empty2.

We construct syntax trees for the protocol buffers messages. On
average, there are 14.1 nodes, including 9.5 leaf nodes, in the trees.
The most complex tree contains 146 nodes, of which 89 are leaf
nodes. The average height of the trees is 2.4 levels. The highest
tree, which is also the highest seen in all studied cases, has 8 levels.

2There are some messages that do not contain any internal elements.



0%

20%

40%

60%

80%

100%

1 51 101 151 201 251 301 351 401

P
e
rc
e
n
ta
g
e
o
f

R
o
o
t✄

to

✄

Le
a
f
P
a
th
s

Query types

1 repeated no repeated

Figure 2: Analysis of root-to-leaf paths of Protocol Buffers mes-
sages for Apache Hadoop.

Figure 2 considers the breakdown of root-to-leaf paths for the
trees. The trees are sorted in ascending order of the percentage
of paths that contain no repeated nodes. From the figure, we see
that simple paths, i.e. paths with up to 1 repeated nodes, dominate
almost all cases. On average, 78% of the root-to-leaf paths in a tree
contain no repeated nodes, 19% contain 1 repeated nodes, and only
3% in a tree contain 2 or more repeated nodes. In 416 trees out of
the 449 trees, the percentage of simple paths is greater than 90%.

2.5 Publicly Available Data Sets
Many publicly available online data sets provide JSON as one

of their data download formats. For example, DBpedia [8] ex-
tracts structured data from Wikipedia. It is part of the decentral-
ized linked data effort [13]. The DBpedia dataset contains about
1 billion triples, describing over 3 million concepts in 11 different
languages. The full DBpedia data set and portions of the data set
can be downloaded in JSON3. Another representative example is
data.gov [7], which provides public access to open datasets from
the US federal government. In July 2016, there are over 180 thou-
sand datasets available on data.gov, many of which can be down-
loaded in JSON.

We have downloaded a number of data sets from DBpedia and
data.gov. Interestingly, we find that a whole downloaded data set is
a single JSON document, as shown below. It consists of two large
key-value elements. The first element (i.e. properties in the case
of DBpedia and meta in the case of data.gov) contains an array of
metadata descriptions, while the second element (i.e. instances
in the case of DBpedia and data in the case of data.gov) contains
an array of the actual data records.
DBpedia:
{"properties": [{...}, {...}, ...],
"instances": [{...}, {...}, ...]
}

data.gov:
{"meta": [{...}, {...}, ...],
"data": [{...}, {...}, ...]
}

Note that this organization cannot be efficiently processed by most
of existing systems with JSON support. This is because existing
systems expect a data set to contain (a large number of) records of
relatively small sizes rather than a single large record that encapsu-
lates all the data. However, it is easy to develop a tool to preprocess
the downloaded data set into a set of metadata records and a set of
data records. In this way, both the metadata and the data meet the
systems’ expectation.

Then, we analyze the tree structures of the metadata and the
data. In the case of DBpedia, the tree structure of the metadata
consists of a single level with four leaf nodes, propertyType,
3For example, the download link for Thing/Activity/Game is http://web
.informatik.uni-mannheim.de/DBpediaAsTables/json/Game.json.gz.

propertyTypeLabel, propertyLabel, and propertyURI. Ev-
ery key (i.e. DBpedia property) that appears in the data is described
by a metadata record. In the schema tree of the data, the root node
has a single child node (level 1). The level-1 node has many child
nodes (level 2), each of which is a property described in the meta-
data. A property node may either be a leaf node or contain an array
of leaf nodes. (The two varieties appear 78% and 22% in the level-
2 nodes of the Game data set, respectively.) Therefore, there are 3
levels in the tree (excluding the root level). Since the root-to-leaf
paths contain at most 1 repeated node, the paths are all simple.

In the case of data.gov, the structure of a metadata record is more
complex than that of DBpedia’s metadata record. For example,
in the data set titled “Infant and neonatal mortality rates: United
States, 1915-2013”, the structure of the metadata record is a tree
of 5 levels. There are 75 root-to-leaf paths, among which 46 have
no repeated nodes, 21 have 1 repeated nodes, and 8 have 2 or more
repeated nodes. Therefore, 89%of the root-to-leaf paths are simple.
On the other hand, a data record of data.gov is simpler than that of
DBpedia. The schema tree is a flat single-level tree.

In summary, the majority of root-to-leaf paths are simple in the
tree structures of both DBpedia and data.gov.

2.6 Sensor Data
The latest sensor platforms (e.g., Arduino [4], DragonBoard [9],

BeagleBone [5]) provide the capability of generating and process-
ing data in JSON. Since IoT (Internet of Things) is expected to be
one of the largest raw data sources, it is important to handle sensor
data well.

The following shows two examples of JSON outputs from a tem-
perature sensor and a sensor that reports WaveLan signal strength:

{"arduino": [
{"location":"indoor","celsius":22.77},
{"location":"outdoor","celsius":15.55}

]}

{"pk": 52728371, "model": "wifimon.wifimondata",
"fields": {
"typeid": 7, "srcmac": "fc:4d:d4:d1:e2:67",
"timestamp": "2014-08-31T23:00:01Z",
"interval": 1, "dstmac": "ff:ff:ff:ff:ff:ff",
"timestamp_ms": 45163, "frequency": 1,
"deviceid": 33, "rssi": -72

}}

We see that all root-to-leaf paths in the two structures are simple, ei-
ther containing no repeated nodes or containing at most 1 repeated
nodes. A sensor typically manages only a small number of mea-
surements, and has limited power and processing capability. As
a result, JSON structures similar to the above would be common.
Therefore, we expect sensor JSON outputs to contain simple struc-
tures, where most root-to-leaf paths are simple.

3. STEED DESIGN
We have designed and implemented an analytical database sys-

tem, called Steed (System for tree-structured data), that provides
native support for tree-structured data. We describe our baseline
design in this section and propose a set of optimization techniques
for the common patterns in the next section.

3.1 Steed Architecture
Figure 3 shows the architecture of Steed. Presently, it consists of

mainly three parts: (i) the data parser, (ii) the data storage, and (iii)
the query engine. Snippets of two tweet records, shown in Figure 3,
will be used as our running example. For simplicity, we have pre-
served only a subset of the attributes sufficient for the description
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Figure 3: Architecture of Steed. (Two JSON records are used as the running example. The highlighted red nodes are repeated.)

in this section. We randomly modify the id fields to avoid leaking
user information.

3.2 Data Parser
The data parser takes tree-structured data in text formats as in-

put, such as JSON in the example, or Protocol Buffers. It parses
the input and constructs a schema tree. In some cases, such as Pro-
tocol Buffers, a data schema is provided along with the data. Thus,
Steed constructs the schema tree from the provided data schema. In
other cases, such as JSON, there is no explicit data schema. There-
fore, Steed learns the schema while reading the data records, and
constructs the schema tree on the fly. Figure 3 shows the schema
tree for the example tweet records4. There are three levels (ex-
cluding the root) in the tree. We use the dot notation to express a
full path, e.g., retweeted_status.user.lang. The highlighted
red nodes correspond to repeated nodes (i.e. arrays). Every node
in the schema tree is assigned a unique ID, and contains informa-
tion about the corresponding type (e.g., object, array, or primitive
types) and its children. Note that attributes that have the same path
but different types are considered as different attributes and created
as different nodes in the tree5. The schema tree is stored as a file in
the underlying storage.

3.3 Data Storage and Data Layouts
Steed stores binary data and schema as files in the underlying

file system. Steed supports both a binary row format and a binary
column format. Presently, the choice of the storage formats is de-
termined manually by setting an input parameter of the data parser.

The row data layout is shown in Figure 4. An object instance
consists of a size field for the object’s total size in bytes, a num-
ber field recording the number of children, a list of IDs and value
offsets of child node instances that are present, and a list of values.
Note that the offset fields are used to support variable sized values.
An array instance has a similar structure except that node IDs are

4Note that there is a data attribute “indices”. This should not be confused
with an index structure in the system. Presently, we have not yet imple-
mented index support, but it is on our to-do list.
5We assume that elements in an array are of the same type. If this is not the
case, then the array can actually be regarded as a simplified object, where
the (implicit) keys are array indices, “0”, “1”, “2”, etc.

Size NumObject ID0 OFF0
… … IDn-1 OFFn-1 Val0

… … Valn-1

node IDs and value offsets

Size NumArray … … Val0
… … Valn-1

value offsets

OFF0 OFFn-1

Value
� a primitive value
� or a nested object
� or a nested array

Figure 4: Row data layout.

omitted because all children have the same type. A value field can
contain a primitive value or a nested value. A nested value contains
an object instance or an array instance in the value field. MongoDB
provides a binary JSON layout called BSON. However, BSON en-
codes detailed type information in each record. Steed stores only
node IDs in each record, which reference the type information in
the schema tree, thereby avoiding repeatedly storing the type infor-
mation, and reducing space and I/O costs for row data layout.

The column data layout is illustrated in Figure 5. Every leaf
node in the schema tree is stored as a column data file. To sup-
port efficient I/O, the files are divided into multiple CABs (Column
Aligned Blocks). The CABs across different columns are aligned
at the same record boundaries to simplify the column assembling
procedure. As shown in Figure 5, our baseline scheme is based on
Dremel [33]. In general, a root-to-leaf path may contain multiple
repeated nodes. Therefore, it is necessary to distinguish at what
level the repetition occurs and whether a leaf node actually appears
in a particular repeated branch. The two pieces of information are
encoded as a repetition level (rep) and a definition level (def ), re-
spectively. rep shows at what level the repetition occurs, while
def shows how many nodes on the path appear. The CAB stores
a repetition array, a definition array, and a value area. Note that
the number of rep and def entries can be larger than the number
of values. This is because rep and def are also used to encode
missing instances as evidenced by the following example.

For example, consider entities.user_mentions.id in Fig-
ure 5(b). The first row is (0, 1, null). rep = 0 (i.e. the repeti-
tion occurs at the root) means that a new record starts. Since the
first record does not contain entities.user_mentions.id, the
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Figure 5: Storing and assembling column data. (The baseline scheme is based on Dremel.)

value is null6. def = 1 means that only one node on the path ap-
pears (i.e. entities). The second row is (0, 3, 27), corresponding
to the first occurrence in the second record. def = 3 means that all
three nodes on the path appear. The third row is (2, 3, 30), which is
the second occurrence in the second record. Here, rep = 2 because
the repetition occurs at entities.user_mentions.

When reading multiple columns, Steed assembles columns into
row data layout in memory. The baseline assembling algorithm
constructs a finite state machine, as shown in Figure 5(c). The
nodes in the FSM are the leaf nodes in the schema tree, and the
numbers on the transition edges are rep. In essence, the FSM tra-
verses the schema tree from left to right. For a repeated node, it may
jump back and repeatedly visit the node depending on the rep and
def . For a transition in the FSM, Steed moves up from the source
leaf node in the Schema tree, then moves down to the destination
leaf node. During such transitions, Steed sets the IDs, offsets, and
primitive values in the row data layout.

3.4 Query Engine
Presently, Steed supports SQL-select-like queries with select,

from, where, group-by, having, and order-by clauses. We have im-
plemented a Volcano-style query execution engine [29], and multi-
threading support for common relational operators.

Steed can process both row data and column data. The main
difference is in the implementation of the filter operators. In the
case of the binary row format, the row reader reads a block of data
at a time, and the row filter operator processes the records one by
one, applying the filtering predicates. Then, the projector preserves
only the attributes that are relevant to the query.

In the case of the binary column format, Steed instantiates a col-
umn reader and a column filter for every column in the query. The
column reader reads a CAB at a time. If there is a filter predicate,
the column filter applies it to the column values. Then the columns
are assembled according to the description in Section 3.3. As a
6null values can be identified by rep and def and are not stored.

result, after the selection and the projection, the records are in the
row layout (regardless of the storage formats).

The remaining operators, including join, group-by, aggregation,
and sorting, all process data in the row layout. We assume that main
memory is large enough to hold all the data after filtering. There-
fore, we employ main memory algorithms and data structures for
the operators, including a hash-based join operator, a hash-based
group-by operator, and a quick-sort based sorting operator.

Steed can exploit multiple cores to run a single query. Given a
desired thread count t, Steed divides the underlying data files into t
subsets of data blocks and assigns them to t threads for the selection
and projection. Then, Steed implements multithreaded versions of
the remaining operators.

3.5 Addressing Semantic Differences
We consider only relational operations on tree-structured records

in our current implementation of Steed.7 Even in this case, there
exist significant semantic differences between tree-structured data
and relational data. Afrati et al. has studied the semantic difference
in filtering predicates [22]. The work shows that repeated nodes
must be used with care otherwise predicates may have ambiguous
meanings. Therefore, our goal in the design is to avoid ambigu-
ity by defining default behaviors and sometimes introducing new
keywords.

Our solution is summarized in Table 3. First of all, a leaf node
with no repeated nodes on the root-to-leaf path represents an atomic
primitive value (e.g., user.lang). Thus, it has the same semantics
as a relational attribute, and therefore can appear in any clauses in
a SQL select query.

Second, a leaf node with repeated nodes on the path corresponds
to a list of values in a record. To avoid ambiguity, we convert the list
into a single value depending on where it is used, as shown in Ta-

7It would be interesting to investigate operations that are specific to tree-
structured records, which may not be relational. However, this is beyond
the scope of this paper.



Table 3: Addressing semantic differences.
Leaf node 

(not repeated)
Leaf node 
(repeated)

Nonleaf node

Filtering predicate

Correct

semantics

Any, All A string 

representation

of the subtree

rooted at the 

node

Group-by key Concatenation

Aggregation value All

Order-by key Concatenation

Join key Concatenation

ble 3. For filtering predicates, we introduce two keywords: any and
all8. One of the keywords must be specified. For the predicate to
be evaluated to be true, any requires at least one of the value in the
list to satisfy the predicate, while all requires all values in the list
to satisfy the predicate. For example, any:entities.media.id
< 25 is true, but all:entities.media.id < 25 is false in the
running example. In the case of group-by keys, order-by keys, and
join keys, Steed will concatenate all the values in the list and use
the concatenated string as the key. If the list is used as an aggrega-
tion value, Steed assumes the all behavior, i.e. all the values in the
list are aggregated.

Third, if a nonleaf node is used, then we assume that it represents
its subtree as a whole (e.g., retweeted_status.user). Steed
converts the nonleaf node to a string representation of its subtree.
This string is then used as an atomic relational attribute in the query.

Finally, we use the SQL null semantics to deal with values that
are missing in a record.

4. OPTIMIZING FOR SIMPLE PATHS
While the baseline design supports generic tree-structured data

that may have arbitrarily complex structures, our study of the real-
world tree-structured data in Section 2 shows that a majority of the
root-to-leaf paths are simple. In this section, we optimize the pro-
cessing for simple paths. In particular, we can leverage the knowl-
edge of the simple path to simplify the CAB layout, accelerate the
column assembling process, and design more compact and more
efficient in-memory record structures.

4.1 Optimizing Column Storage
Consider the example in Figure 5(b). Clearly, if there are no

repeated nodes on the root-to-leaf path (the cases without high-
lighting), then rep will always be 0. Therefore, we can omit the
repetition array entirely. If there is only a single repeated node on
the root-to-leaf path, then repetition can occur either at this node or
at the root node (to start a new record). Thus, rep has at most two
values. In this case, we can use a single bit for each rep. In both
cases, we can reduce def to a single bit to specify whether the leaf
node value is missing or not.

Our optimization reduces the size of rep and/or def for simple
paths. Suppose there are L levels in the tree. Then a rep and a
def can take up to log(L) bits. For simple paths without repeated
nodes, we remove the rep and use a single bit for def . Therefore,
for each record, we save up to 2log(L) − 1 bits. For simple paths
with a single repeated node, we use a single bit for both rep and
def . Therefore, for each occurrence of the record and the repeated
branch, the saving is up to 2log(L) − 2 bits. Suppose the path is
repeated an average r times in a record. For each record, the saving
is up to r(2log(L)− 2) bits.

In the real world use case study, L is up to 8. In this case, the
savings are up to 5 bits and 4r bits per column per record for sim-
8Argo [25] introduces the any keyword to deal with JSON arrays. In addi-
tion to any, we find that all is also meaningful for handling repeated nodes
in predicates.

Algorithm 1 Flat Assemble Algorithm
Require: All column readers in rds are sorted by their leaf id
1: Procedure FlatAssemble (ColumnReader [] rds)
2: flt_recd = create new flat record
3: for all rd in rds do
4: while rd does not reach record boundary do
5: read column item and append it to flt_recd
6: end while
7: end for
8: fill header of flt_recd
9: End Procedure

ple paths without repeated nodes and simple paths with a single
repeated node, respectively. Depending on the value size and the
path length, this may lead to significant savings. For example, if
the value is a 2-byte string representing languages and the path has
6 levels, then the space saving can be up to 20%.

4.2 Optimizing Column Assembling Process
In the baseline assembling algorithm, the state transformation

closely follows the tree structure. Every non-leaf node instance in
the tree is visited twice, i.e. for initializing fields (e.g., Num, IDs,
Offsets) when entering the subtree rooted at the node, and for fi-
nalizing the field values when leaving the subtree. Every leaf node
instance in the tree is visited once. A node visit is costly; it vis-
its the state transformation array then the schema tree, potentially
requiring interpretation of repetition values and definition values.

If all or most of the paths in a query are simple, we can avoid the
complex baseline algorithm that visits a state machine to traverse
the schema tree. We propose an optimization, called a flat assemble
algorithm, as shown in Algorithm 1. Basically, it reads the value
of the simple columns in a record one by one to construct a flat
row data layout for the simple paths. The flat data layout will be
discussed in detail in the next subsection. The non-simple nodes in
the query are processed with the baseline algorithm. As a result,
Algorithm 1 directly visits the leaf nodes without incurring the cost
of visiting non-leaf nodes as in the baseline algorithm.

We consider a node visit as a basic operation, and analyze the
cost savings. Suppose k simple columns C1, ..., Ck are to be as-
sembled. The leaf node of Ci appears at level Li. Ci may share
common ancestors with C1, ..., Ci−1. Suppose the node at level
LDi is the first ancestor that does not appear in the previous paths.
If there is a repeated node, suppose the repeated node is at level
LRi, and Ci repeats an average ri times per record. We consider
the following three cases:
• Case 1: Ci does not contain repeated nodes. Thus, the base-

line algorithm will visit Li − LDi non-leaf nodes that have
not been covered by the computation for C1, ..., Ci−1. Since
every non-leaf node is visited twice, the number of nonleaf
node visits is given by: N1 = 2(Li − LDi).
• Case 2: Ci contains a repeated node and LRi ≥ LDi. In

this case, the path fragment from level LDi to LRi − 1 is
not repeated, while the path fragment from level LRi to Li

is repeated ri times. Therefore, the number of nonleaf node
visits is given by:

N2 = 2(LRi − LDi) + 2ri(Li − LRi)

• Case 3: Ci contains a repeated node and LRi < LDi. In
this case, the repeated node is shared between Ci and some
previous nodes. We only need to consider Level LDi to Li,
which occur ri times. Therefore, the number of nonleaf node
visits is given by: N3 = 2ri(Li − LDi).
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Figure 6: Flat data layout in memory.
Let ri = 1 and LRi = Li for case 1. Then we can combine the
three cases to compute the total number of node visits:

k∑
i=1

[2 ·max(LRi − LDi, 0) + 2ri(Li −max(LRi, LDi))]

Since the total number of leaf node visits is given by
∑k

i=1 ri,
the relative improvement depends on the leaf node levels and the
tree structures. For example, if two leaf nodes at level 5 with non-
repeated simple paths are assembled, then the number of leaf node
visits is 2, and the number of non-leaf visits is up to 8. Therefore,
this optimization saves 80% of the node visits in this case.

4.3 Optimizing In-memory Structure
The baseline design employs the generic row data layout (as

shown in Figure 4) in memory. The number of nesting levels in
the data layout is greater than or equal to the number of nonleaf
nodes in the root-to-leaf paths. A nonleaf node corresponds to
an object, while a repeated (nonleaf or leaf) node corresponds to
an array. At every level, there is an array of Offsets and/or IDs.
The IDs are sorted to allow binary searches. However, this de-
sign incurs significant overhead. it is necessary to perform a bi-
nary search at every level and follow offset pointers in a root-to-
leaf path in order to retrieve a value. For example, the value of
retweeted_status.user.lang is stored on the 3rd level in the
generic layout. Thus, one has to perform three binary searches and
follow offset pointers to move to retweeted_status at level 1,
user at level 2, then lang at level 3 to retrieve the value.

We aim to avoid the above overhead. Figure 6 depicts two alter-
native flat data layouts. In the first design, as shown in Figure 6(a),
the flat data layout contains only a single level of IDs, Offsets, and
values. The values in the figure are primitive values. Leaf node
IDs are sorted to allow efficient binary search. If a root-to-leaf
path does not contain any repeated nodes, then there is a single in-
stance of (ID, Offset, and value). If a root-to-leaf path contains a
repeated node, then there can be multiple instances of (ID, Offset,
and value)s. The ID is the same, while each pair of Offset and value
corresponds to an instance of the leaf node in the record. Note that
this design keeps the structure simple to access. The drawback is
that the ID field is potentially repeated multiple times.

The second design employs a nested structure for the repeated
values, as shown in Figure 6(b). Paths with no repeated nodes are
stored in the same way as the first design. For a path with a repeated
node, there is only a single entry in the top-level (ID, Offset) array.
The multiple values and their offsets are stored contiguously in the

value area. This design saves memory space because it does not
store the ID field multiple times. However, it may incur more cost
for going through one more nesting level. We choose this design
only when the average number of the repeated values per record is
above a pre-defined threshold. The average number of repeated val-
ues can be estimated by using the number of values and the number
of records as recorded in the CAB header.

When a query involves both simple paths and non-simple paths,
we use the flat layout and the generic layout for the simple paths
and the non-simple paths, respectively. Then, we store a pointer in
the flat layout to point to the generic layout of the same record.

The in-memory layout is accessed by the join, group-by, aggre-
gation, and sorting operators. Therefore, the in-memory layout may
significantly impact the performance of these operators. The actual
savings depend on the number of levels of the root-to-leaf paths.
The larger the number of the levels, the more savings that the flat
data layout brings. Suppose a simple path without repeated nodes
contains 3 nonleaf nodes and a leaf node. Therefore, the original
generic row layout has 4 nesting levels. The flat data layout re-
moves 3 of the 4 levels, reducing 75% of nesting level accesses for
retrieving a value.

5. PERFORMANCE EVALUATION
We evaluate the performance of our proposed optimizations in

this section. We would like to understand the following questions:
• How effective are our proposed optimizations for simple paths?
• What is the impact of the variation in path lengths and types

on the proposed optimization?
• What is the relative performance of Steed compared to state-

of-the-art systems (e.g., PostgreSQL, MongoDB, and Parquet)?

5.1 Experimental Setup
Machine Configuration. The experiments are performed on a
Lenovo ThinkCentre M8500t equipped with an Intel(R) Core(TM)
i7-4770 @3.40GHz CPU (4 cores, 2 threads/core), 16GB DRAM,
and a 7200rpm SATA hard drive. The machine runs Ubuntu 14.04
with a 3.13.0-24-generic Linux Kernel. We have implemented Steed
in C/C++, and compiled it using gcc version 4.8.2 with optimiza-
tion level -O3.
Measurement Methodology. In most settings, we are interested
in understanding the benefits of the optimizations in memory. Note
that as main memory capacity increases exponentially, the (hot)
data set of many important applications can be processed in main
memory, as evidenced by the recent popularity of main-memory
database engines in mainstream database systems (e.g., Microsoft
Hekaton [27], IBM DB2 [35], Oracle [30], SAP HANA [34]) and
main-memory based big data processing systems (e.g., Spark [38],
Pregel [32], Memcached [14]). In such cases, we warm up the OS
file cache by running a query once before taking the measurements.
We call such measurements hot cache. When comparing Steed to
state-of-the-art systems, we measure cold cache performance in ad-
dition to hot cache performance. In cold cache experiments, we
manually clear the OS file cache before each run to ensure the data
are retrieved from the hard drive. In both cases, every reported
result is the average of 5 runs.
Datasets. We mainly use three tweet datasets collected by running
the Twitter API in 2012. The first dataset contains over 2.3 million
JSON text records, and is about 5.6 GB large. The second dataset
contains over 19.1 million records, and is over 45 GB large. The
third dataset is a small data set, which is about 44 MB large. We use
the first data set in the hot cache experiments and the second data
set in the code cache experiments. The third data set is used only
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Figure 7: Query performance varying selectivity. (Leaf nodes
are at level 2. All paths are simple without repeated nodes.)

in the join experiments. The characteristics of the tweet datasets
are discussed in Section 2.2. A majority of the root-to-leaf paths in
the schema tree are simple. If we consider the sizes of column data
files, the files corresponding to the simple paths occupy about 96%
of the total size. Therefore, simple path optimizations may lead to
significant improvement.

Steed Variants. We evaluate the following three variants of Steed.
(i) baseline: this is the baseline design as described in Section 3.
(ii) template: we optimize the column file layout to reduce the ref
and def sizes for simple paths, as described in Section 4.1. In
our implementation, each different layout is called a template. (iii)
T+F: we exploit the flat assemble algorithm and the flat data layout
in addition to (ii), as described in Section 4.2-4.3. Here, T stands
for template, and F stands for flat.

State-of-the-art Systems to Compare. We consider three state-of-
the-art systems that are relevant to the processing of tree-structured
data: an RDBMS with JSON extension (PostgreSQL), a native sys-
tem with a binary row layout (MongoDB), and a native system that
stores data in a binary column format (Hive+Parquet).

• PostgreSQL: PostgreSQL has been extended with JSON support
recently. A JSON record is stored either as text (in the json

type) or as binary data (in the jsonb type). We use jsonb in
our experiments because it is more efficient for query process-
ing. PostgreSQL provides a set of operators and functions to
access JSON data in SQL queries. In our experiments, we use
PostgreSQL 9.5 and issue SQL queries to process JSON data.
• MongoDB: MongoDB is an open-source database system that

provides native support for JSON documents. It is written in
C/C++. In January 2017, MongoDB was ranked the 4th most
popular database9. MongoDB users include Adobe, Craigslist,
eBay, LinkedIn, Foursquare, and so on. MongoDB stores JSON
records in a binary format called BSON. We use MongoDB 3.2.8
in our experiments. We load tweet data sets using mongoimport,
and use MongoDB’s javascript interface to submit queries.
• Apache Hive with Apache Parquet: Apache Parquet implements

the Dremel design of storing and assembling columns for tree-
structured data. Apache Hive is a popular analytical big data pro-
cessing system that supports SQL-like queries on top of MapRe-
duce. In our experiments, we use Hive 1.2.2 on Hadoop 2.6.0
with Parquet as the underlying storage format. Hadoop, Hive,
and Parquet are all implemented in Java. Note that Parquet re-
quires the declaration of the data schema. To simplify the ex-
perimental setup, we extract a subset of the tweet attributes that
are to be used in the experimental queries. This subset contains
9 attributes. We manually create the required schema and load
the data into Hive using a tool called Kite. Then we submit SQL

9http://db-engines.com/en/ranking
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Figure 8: Breakdown of query execution times for Figure 7(b).

queries using Hive’s query interface. Note that this simplifica-
tion is favorable to Parquet because a smaller amount of data is
stored, which may lead to more efficient data accesses.

5.2 Query Performance Varying Selectivity
We compare the baseline, template and T+F schemes using the

following two queries while varying selectivity:

• Query with Aggregation (Query 1):
select max(user.followers_count)
from twitter
where user.favourites_count CMP_OP CONSTANT
group by user.lang

• Query without Aggregation (Query 2):
select user.followers_count
from twitter
where user.favourites_count CMP_OP CONSTANT

The queries perform selection and projection on the twitter data set.
Note that the dot notations are used to specify attributes in tree-
structured records. The where clause compares an attribute (i.e.
user.favourites_count) against a constant threshold. We vary
the constant threshold to select about 0%, 20%, 40%, 60%, 80%,
and 100% of the total records. The two queries are the same except
that the first query performs additional group-by and aggregation
operations, which significantly reduce the amount of output. All
the attributes in the queries are leaf nodes at level 2 in the schema
tree. Their root-to-leaf paths are simple without repeated nodes.
We will vary the leaf path levels and types in the Section 5.3.

Figure 7 shows the query execution times for the three Steed
schemes. Overall, we see that (i) both optimized schemes achieve
better performance than the baseline in all the experiments; (ii)
Template slightly improves the baseline by a factor of 1.03–1.24x
in the case with aggregation, and 1.02–1.17x in the case without
aggregation; and (iii) T+F achieves significant improvements, ob-
taining 1.29–1.68x speedup in the case with aggregation, and 1.15–
1.30x speedup in the case without aggregation.

The template optimization removes the space for rep and the
cost of accessing rep for simple paths without repeated nodes.
However, the leaf nodes in the queries are at level 2. Therefore,
the original size of rep is log(2)=1 bit. As a result, the savings are
quite low. On the other hand, the flat assemble algorithm signifi-
cantly reduces the complexity in assembling columns, and the flat
data layout improves data accesses in memory. As a result, T+F
achieves significant better performance.

As more records are selected, the execution times of all schemes
increase, as evidenced by the upward trends in the figure. The
speedup of T+F over the baseline also increases. This is because
the more records are selected, the more records need to be assem-
bled and processed by the group-by and the aggregation operators.
The benefits of the flat assemble algorithm and the flat data layout
will be higher.
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Figure 9: Adding a second predicate to Query 1.

Comparing Queries with Aggregation and without Aggrega-
tion. Comparing Figure 7(a) and (b), we see that the optimized
schemes achieve significantly higher improvements in the case with
aggregation. The main difference between the two cases is that the
amount of output is drastically reduced when the group-by aggrega-
tion is used. As a result, the queries spend a much smaller fraction
of their execution times producing text output.

To verify the above insight, in Figure 8, we break down the query
execution time into two parts, the time for producing output and the
remaining query computation time. We comment out the text out-
put code and rerun experiments in Figure 7(b). This gives the time
of the query operation. The output time is computed as the differ-
ence between the execution times with output and without output.
From Figure 8, it is clear that the time to produce output is roughly
the same across the three schemes. The output time occupies up
to 86% of the total execution time (at 100% selectivity). Profiling
shows that Steed spends a lot of time in the libc snprintf func-
tion. Therefore, the large (roughly fixed) output time is indeed the
main cause for lower improvements of the optimized schemes. If
we remove the output time and consider only the query operation,
then T+F achieves 1.31–2.02x speedups over the baseline.

5.3 Varying Path Lengths and Types
In this section, we study how different root-to-leaf path lengths

and types affect query performance.
Adding an Additional Predicate to Query 1. We add a second
predicate to Query 1, and choose attributes of the predicate to intro-
duce a different path length and a different path type, respectively.

select max(user.followers_count)
from twitter
where user.favourites_count CMP_OP CONSTANT

and ATTR CMP_OP2 CONSTANT2
group by user.lang

• Path length (Query 3): In Query 3, the ATTR is a level 3 leaf
node, retweeted_status.user.listed_count.
• Path type (Query 4): We choose any:geo.coordinates as
ATTR. The attribute corresponds to a simple path with a single
repeated node. Note that the keyword any is used. It means
that the predicate is true if any instance of geo.coordinates
satisfies the predicate.

Figure 9 shows the query performance for the two queries while
varying selectivity. The two figures show similar trends as Fig-
ure 7(a). We see that (i) Template is slightly better than the baseline;
and (ii) T+F achieves significant improvements, obtaining 1.21–
1.68x speedup for Query 3, and 1.23–1.74x speedup for Query
4. The T+F scheme is effective when a different root-to-leaf path
length or type is introduced.
Varying Both Path Lengths and Types. We use a variant of the
above select-from-where query with three predicates. Then, we

choose the attributes in the predicates to test various combinations
of path lengths and types. We use n, r, and m to denote a root-to-
leaf path with no repeated nodes, 1 repeated node, and 2 or more
repeated nodes, respectively. Note that our optimization supports
both n and r. We consider the following cases: 3n, 2n+1r, 1n+2r,
3r, 1m+2n, 1m+1n+1r, and 1m+2r. Most leaf nodes in the twitter
schema tree appear at level 1 to 3. Thus, we consider level 1 to 3.

Figure 10 and Figure 11 show the performance of queries with
various combinations of path lengths and types. In Figure 10, we
vary path lengths for 3n and 2n+1r. All the predicate attributes are
at the same level. In Figure 11, we fix the path length, then test
different combinations of path types. Across all the configurations,
we see that compared to the baseline, Template achieves a factor of
1.02–1.15 improvements, and T+F achieves a factor of 1.16–1.63
improvements. The m paths cannot be optimized. They are pro-
cessed using the baseline algorithm. However, T+F can accelerate
the processing of the simple paths when other m paths are present.
We see that T+F achieves 1.16–1.31x speedups for configurations
including m paths.

As the queries have different selectivity, it is difficult to compare
the speedups of different configurations. However, it is clear that
the speedups are similar to those achieved in Figure 7 and Figure 9.
This shows the the effectiveness of the proposed scheme under var-
ious combinations of path lengths and types.

5.4 Random Query Performance
Next, we run queries generated randomly according to the fol-

lowing query template:

select $output_field
from twitter
where $pred1 and $pred2 and $pred3
group by user.lang

We use 7 patterns to generate random queries, as listed in Ta-
ble 4. All the attributes in the output field and in the predicates are
leaf nodes at level 3 in the schema tree. We divide the leaf nodes
at level 3 into three disjoint subsets. The n-set, r-set, and m-set
contain leaf nodes whose paths have no repeated nodes, 1 repeated
node, and 2 or more repeated nodes, respectively. The output field
is always randomly generated from the n-set. Each pattern in Ta-
ble 4 specifies a combination of path types for the attributes in the
three predicates. Given a pattern, the attributes in the predicates
are randomly selected from the subsets of attributes as specified by
the pattern. For example, for Pattern 2, two predicate attributes are
randomly selected from the n-set, and one from the r-set.

Table 4: Random query patterns.
Path Type n r m Figure
Pattern 1 3 0 0

Patterns 1–4 are shown in Figure 12(a).
In these cases, all paths are simple.

Pattern 2 2 1 0
Pattern 3 1 2 0
Pattern 4 0 3 0
Pattern 5 2 0 1 Patterns 5–7 are shown in Figure 12(b).

In these cases, one path contains 2 or
more repeated nodes.

Pattern 6 1 1 1
Pattern 7 0 2 1

For every pattern, we randomly generate 1000 queries and mea-
sure their performance. Figure 12 shows the histograms on T+F’s
speedups over the baseline. Patterns 1–4 are reported in Figure 12(a),
and Patterns 5–7 are reported in Figure 12(b). The X-axis shows
the speedup ranges, and the Y-axis shows the number of queries
that fall in a particular histogram bucket.

From Figure 12(a), we see that T+F achieves 1.5–1.7x speedups
over the baseline for a large number of random queries where all
paths are simple. On the other hand, when there are mixed simple
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Figure 12: Speedups of T+F for random queries.

and non-simple paths, the speedups achieved by T+F are lower,
as shown in Figure 12(b). In this case, a large number of queries
see speedups in the range of 1.2-1.3x. Overall, the random query
experiments confirm that the T+F optimizations can significantly
improve the performance of the baseline.

5.5 Join Performance
While previous experiments run queries on a single tree-structured

data set, we focus on the join performance of Steed in this sub-
section. In particular, we join the 5.6 GB twitter data set (denoted
twitter) with the 44 MB twitter data set (denoted twitter.small).
We run the following two join queries:
• Join query 1: All the nodes in the query are at level 2.
select ts.user.lang, max(t.user.statuses_count)
from twitter t, twitter.small ts
where t.user.listed_count CMP CONSTANT

and t.user.id = ts.user.id
group by ts.user.lang

• Join query 2: All the nodes except t.user.listed_count are
at level 3. The filtering predicate is kept the same as join query 1
so that both queries select the same sets of records as the inputs
to the join operator at a given selectivity.
select ts.retweeted_status.user.lang,

max(t.retweeted_status.user.statuses_count)
from twitter t, twitter.small ts
where t.user.listed_count CMP CONSTANT

and t.retweeted_status.user.id
= ts.retweeted_status.user.id

group by ts.retweeted_status.user.lang

Figure 13 shows the performance of the two queries varying se-
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Figure 13: Join performance varying selectivity.

lectivity. We see that T+F improves the baseline by a factor of
1.28–1.92x for join query 1, and 1.28–1.98x for join query 2.

Compared to the improvements for queries on a single data set,
the improvements for join queries are higher. In a join, columns
from both input data sets need to be assembled. The join operator
needs to access join keys and payload attributes to perform the join
operation in main memory. The T+F scheme employs the flat as-
sembler to avoid the complex state machine and tree traversal in the
baseline scheme for assembling columns. Moreover, it keeps only
a single flat structure rather than the nested row layout in the base-
line. Every flat attribute requires less space and fewer operations
to access. Compared to queries on a single data set, join queries
need to access and merge records from both inputs. The flat struc-
ture makes this process simpler and more efficient. As a result, the
optimized T+F scheme achieves higher speedups for join queries.

5.6 Comparison with State-of-the-art Systems
Finally, we compare Steed with state-of-the-art systems, Post-

greSQL, MongoDB and Hive+Parquet. In the case of PostgreSQL,
we write SQL queries using the JSON operators and functions de-
fined by PostgreSQL. In the case of MongoDB, we write our queries
in javascript and run them via MongoDB’s shell. MongoDB pro-
vides several ways to deal with query output. We choose ’toAr-
ray()’ to return all query results as array. In the case of Hive,
we directly run SQL queries via Hive’s shell, which can return
the JSON results. In addition to the three systems, we also im-
plemented a hybrid system that runs MongoDB on top of Steed
(MongoDB+Steed). MongoDB stores binary JSON records (a.k.a.
BSON) in an underlying storage management system, called wired
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Figure 14: Comparison with state-of-the-art systems.

tiger. We have modified the calling interface between MongoDB
and wired tiger to redirect the retrieval of records to Steed. To take
advantage of the column layout in Steed, we parse the MongoDB
commands to extract all the fields used in a query. The fields are
then communicated to Steed for reading only the relevant columns.
After obtaining the records, MongoDB performs the actual query
processing operations. We perform hot cache experiments using
the 5.6 GB data set, and cold cache experiments using the 45 GB
data set. All the execution times are measured using the Linux time
command.

Figure 14 shows the performance comparison. Steed row pro-
cesses binary row data. Steed base and Steed column are the base-
line and the T+F optimized versions of Steed that processes binary
column data, respectively. The figures report the cold cache and
hot cache performance of different types of queries: selecting all
records (select), selection with 1–3 filtering predicates (1filter, 2fil-
ters, and 3filters), selection with group-by and aggregation opera-
tions (group), adding a having clause to the group-by query (hav-
ing), selection with an order-by clause (order), and a join query
(join). Appendix A lists the queries used in the comparison. In the
figure, the range on the Y-axis is chosen to clarify the comparison.
In some cases, the bars are too high to be cut off. In such cases, we
label the bars with the execution times.

Cold Cache Comparison. Figure 14(b) and (d) show the cold
cache results. The row and column layouts incur significantly dif-
ferent amount of I/Os. Comparing the two native systems that use
row data layouts, i.e. MongoDB and Steed Row, we see that Steed

Row achieves 1.8–2.5x speedups (excluding the join query10, for
which MongoDB runs for a very long time and the speedup is over
1010x). This is because Steed stores attribute type information in
the schema tree, while MongoDB’s BSON format stores type in-
formation in every binary record. Therefore, Steed saves space for
storing data, and reduces the amount of I/Os for reading the data.

Comparing the two native systems with column layouts, i.e. Hive
+Parquet and Steed column, we see that Steed column achieves
4.1–17.8x speedups over Hive+Parquet. Hive runs MapReduce
jobs on top of Parquet, leading to the slower performance. Steed
column achieves 1.2–2.2x speedups over Steed base, which shows
the effectiveness of our optimizations.

The two native systems with column layouts are faster than both
PostgreSQL and the two native systems with row layouts because
the queries access only a small subset of attributes. Compared to
MongoDB, Steed column achieves 55.9–105.2x improvements (ex-
cluding the join query). Compared to PostgreSQL, Steed column
achieves 33.8–1294x speedups, where the 1294x speedup occurs
for the group-by aggregation query.

MongoDB+Steed uses column layout instead of the original row
layout. This leads to 16–51x speedups. On the other hand, the
query processing in MongoDB uses BSON formats extensively.
BSON embeds field names as strings. Field accesses need to per-
form string comparisons, which are significantly slower than the
binary in-memory layout in Steed. Steed column is 1.8–5.5x faster
than MongoDB+Steed.
Hot Cache Comparison. Figure 14(a) and (c) show the hot cache
results. PostgreSQL is often the slowest system. This means that
storing and processing entire JSON records in relational columns
may incur significant overhead. Hive runs Java-based MapReduce
jobs for queries. This leads to longer execution times when data
fits in memory. Compared to MongoDB, Steed row achieves a fac-
tor of 1.2–5.0x improvements (excluding the join query, where the
speedup is 3794x). On the other hand, Steed column reduces the
amount of data copying operation compared to systems that pro-
cess row data. As a result, it sees higher performance benefits.
Steed column achieves 11.9–22.6x speedups over MongoDB (ex-
cluding the join query), 19.5–59.3x speedups over Hive+Parquet,
and 16.9–392x speedups over PostgreSQL in the hot cache sce-
nario. Moreover, Steed column achieves at least 1.6x speedups over
the baseline Steed. MongoDB+Steed is a solution in between Steed
and MongoDB, which is 3.8–8.4x slower than Steed, but 1.9–5.5x
faster than MongoDB.

6. CONCLUSION
In conclusion, we have performed an in-depth study of real-

world data patterns for tree-structured data. We find that simple
root-to-leaf paths dominate. Therefore, we optimize for the com-
mon patterns in our Steed design. Experimental study confirms that
this is indeed a good idea. Our optimizations achieve significant
improvements over the baseline. Compared to three state-of-the-
art systems (i.e. PostgreSQL, MongoDB, and Hive with Parquet),
Steed achieves orders of magnitude better performance in both cold
cache and hot cache scenarios.
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APPENDIX
A. QUERIES FOR COMPARISON WITH

STATE-OF-THE-ART SYSTEMS
Select

select retweeted_status.user.id
from twitter

1 filter

select retweeted_status.user.id
from twitter
where retweeted_status.user.favourites_count > 1

2 filters

select retweeted_status.user.id
from twitter
where retweeted_status.user.favourites_count > 1

and retweeted_status.user.friends_count > 110

3 filters

select retweeted_status.user.id
from twitter
where retweeted_status.user.favourites_count > 1

and retweeted_status.user.friends_count > 110
and retweeted_status.user.followers_count > 500

Group by



Figure 15: The schema tree of Twitter tweets. (The green node
is the root of the tree. The tree is too large to fit into a single
graph. Therefore, the subtree rooted at the blue node is shown
on the right. Red nodes are repeated.)

select retweeted_status.user.utc_offset,
max(retweeted_status.user.followers_count)

from twitter
group by retweeted_status.user.utc_offset

Having

select retweeted_status.user.utc_offset,
max(retweeted_status.user.followers_count)

from twitter
group by retweeted_status.user.utc_offset
having
max(retweeted_status.user.favourites_count)>10000

Order by

select retweeted_status.user.id,
retweeted_status.user.followers_count

from twitter
order by retweeted_status.user.followers_count

Join

select ts.user.lang, max(t.user.statuses_count)
from twitter.small as ts , twitter as t
where t.user.listed_count >= 1

and ts.user.id == t.user.id
group by ts.user.lang


