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MOST: Model-Based Compression with Outlier Storage
for Time Series Data
ZEHAI YANG and SHIMIN CHEN∗, SKLP and Center for Advanced Computer Systems, Institute of
Computing Technology, CAS, China and University of Chinese Academy of Sciences, China

Time series data are used in a wide variety of applications. The explosive growth of the amount of time
series data poses a significant challenge in efficient data storage and query processing. Unfortunately, existing
compression techniques either show only low to medium compression ratio on time series data, or incur
significant decompression overhead during query processing.

We propose a novel compression technique, MOST (Model-based compression with Outlier STorage) for
time series data. As measurement values often change smoothly in a period of time, we divide a time series
into segments of smooth changes, then compute a linear model for each segment. Since tiny errors are often
acceptable in analysis tasks, we omit data points whose computed values are within a pre-specified error
threshold from the actual values, thereby effectively reducing the data size. Outliers are rare but important for
many applications, and therefore we store outliers explicitly. Moreover, for processing MOST compressed
data, we propose a segment-outlier dual-mode query engine that computes segments as a whole as much
as possible, and build a prototype MostDB. Experimental results on real-world data sets show that MOST
achieves 9.45–15.04x compression ratios. Compared to existing time series databases, MostDB achieves up to
11.68x speedups for common queries from the IoTDB Benchmark.
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1 INTRODUCTION
Time series data are used in a wide variety of applications, ranging from Internet of Things (IoT) [70]
and cloud server monitoring [31] to stock market prices [64], supporting many important tasks,
including forecasting [30] , trend analysis [81], real-timemonitoring [80], anomaly detection [79, 87].
To support these applications, time series databases (TSDB), such as InfluxDB [34] and IoTDB [92],
provide a unified system for time series data storage and relational query processing. However,
recent years have seen an explosive growth of the amount of time series data. According to an IDC
report [14], the amount of new data created is growing at a compound annual growth rate of about
26% between 2015 and 2025. About 65% of data are created at endpoints, such as IoT devices. The
rapidly growing data size poses a significant challenge in the efficient storage and processing of
time series data.
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We study compression techniques and query processing on compressed data in TSDBs for ad-
dressing this challenge. An ideal compression technique can (i) greatly reduce the size of time series
data (e.g., by 10x), thereby saving storage space and lowering I/O costs for accessing the data, and
(ii) support efficient relational query processing without decompressing the data. Unfortunately,
existing compression techniques fail to meet such goals. We find that most compression techniques
obtain only low to medium compression ratios for time series data, including general-purpose com-
pression techniques (e.g., LZ77 [95], Snappy [28], ZStd [65], LZ4 [12]), record-oriented compression
techniques (e.g., dictionary encoding [56], delta encoding [49], run-length encoding, Gorilla [75],
SplitDouble [74], BUFF [55]), and model-based compression techniques (e.g., Sprintz [8]). A recent
model-based technique, SZ3 [94], can achieve good compression ratios for a large amount of data.
However, SZ3 performs multi-layer spline interpolation on the data, and requires the decompression
of all the data before query processing, incurring significant overhead for query processing.
We propose a novel compression technique, MOST (Model-based compression with Outlier

STorage) for time series data. Our design is inspired by the following observations. First, measure-
ment values often change smoothly or stay stable in a period of time. Hence, prediction models
can effectively capture the characteristics of time series and accurately describe most data points.
Second, existing model-based compression either discards or stores all prediction errors. The former
has high compression ratio but poor data accuracy, while the latter preserves good data accuracy but
sees lower compression ratio. Neither approach is ideal. Third, given a pre-defined error threshold,
we can avoid storing data points whose prediction errors are within the error threshold. This idea
can effectively reduce the data size because models are expected to be accurate for most points.
Finally, we can explicitly store outliers, whose prediction errors are beyond the error threshold, to
preserve good data accuracy. The storage cost for outliers is expected to be reasonably low. As a
result, MOST can achieve both good compression ratio and good data accuracy.

The MOST compression algorithm consists of three steps: 1) outlier detection, 2) segmentation,
and 3) model and outlier encoding. We find that Step 1) before Step 2) is important because outliers
may divide an otherwise smooth segment into multiple small segments, which can adversely impact
the compression ratio. The segmentation step divides the points into segments and computes linear
models for each segment. We use linear models since they are well-studied [20, 21, 47, 48] and
amenable to fast computation and query processing without decompression. We propose a Com-
bined Shrinking Cone (CSC) algorithm for outlier detection and segmentation, after experimentally
studying the combinations of existing outlier detection and segmentation methods. In Step 3), we
exploit quantization and matissa truncation to reduce the data size of encoded model parameters
and outlier values.

Then, we design MostDB, a prototype TSDB for storing and processing MOST compressed times
series data. MostDB stores segment model parameters and outliers in an underlying database,
specifically InfluxDB [34] in our implementation. We propose a dual-mode query engine for query
processing. In the engine, measurement values are passed between query operators as a segment
with its associated outliers. Then the query operators have two modes: the segment mode and the
outlier mode. For the outlier mode, the operator processes each outlier record similar to the vanilla
relational operator. For the segment mode, the computation is performed on the linear model of
a segment as a whole. For example, the segment mode of a filter can accept or reject an entire
segment, or accept a partial segment. The segment mode of a sum aggregate can compute the sum
for the entire line segment. We support dual-mode scan, filter, aggregate, and output operators.
In this way, MostDB performs per-segment processing and defers the reconstruction of values as
much as possible, thereby significantly reducing query costs.
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Contribution. The contributions of this paper are threefold. First, we propose MOST, a novel
compression technique for time series data. While previous model-based techniques store either no
errors or all errors, MOST stores errors only for outliers, thereby achieving both high compression
ratio and good data accuracy. MOST detects outliers before segmentation to reduce the number
of segments for better compression results. Second, we propose a dual-mode query engine for
processing MOST compressed data. We present a MostDB prototype, which stores data in the
underlying database and processes relational queries in the dual-model query engine. Finally, we
perform an extensive experimental study to evaluate the benefits of MOST and MostDB. Our results
show that MOST achieves 9.45–15.04x compression ratios on real-world data sets. Compared to
InfluxDB, IoTDB andModelarDB,MOST achieves up to 11.68x, 9.75x and 4.99x speedups for common
IoT queries from the IoTDB Benchmark [57], and 3.73x, 3.82x, 1.82x speedups for TSBS [89] queries.
We have made the code of MostDB publicly available: https://github.com/schencoding/mostdb.
Outline. The remainder of the paper is organized as follows. Section 2 introduces relevant back-
ground and discusses related work. Section 3 presents the MOST compression technique. Section 4
describes MostDB, a TSDB based on MOST, with an emphasis on its query processing engine. Then,
Section 5 reports evaluation results. Finally, Section 6 concludes the paper.

2 BACKGROUND AND RELATEDWORK
In this section, we begin by reviewing background on time series data. Then, we discuss related
work on compression techniques, TSDBs, and query processing in TSDBs.

2.1 Background on Time Series Data

Time Series. A time series is a sequence of data points ordered in time order. Typically, it contains
the measurement values of a certain data source (e.g., an IoT device) collected at regular intervals.
Formally, a time series is defined as follows:

𝑆 = {(𝑡1, 𝑣1), (𝑡2, 𝑣2), ..., (𝑡𝑖 , 𝑣𝑖 ), ...} (1)
where 𝑣𝑖 is the measurement value and usually a floating point number, and 𝑡𝑖 is the timestamp
when 𝑣𝑖 is collected.
Error and Error Bound. Compression techniques can be categorized into lossless and lossy tech-
niques. Lossless compression reconstructs the original values from the compressed data. However,
since floating point numbers are difficult to compress, lossy compression has been used to attain
better compression ratio for time series data. We would like to constrain the lossiness of a lossy com-
pression technique by providing data accuracy guarantees. Suppose 𝑣 ′𝑖 is the decompressed value
of the original measurement 𝑣𝑖 . Given an error bound 𝜖 > 0, we define the following constraint:{

absolute error-bound : ∀𝑖, absolute_error𝑖 = |𝑣 ′𝑖 − 𝑣𝑖 | ≤ 𝜖

relative error-bound : ∀𝑖, relative_error𝑖 = | 𝑣
′
𝑖−𝑣𝑖
𝑣𝑖

| ≤ 𝜖
(2)

Our solution supports both relative and absolute error bounds.

2.2 Compression for Time Series Data
Existing compression techniques can be divided into four categories: (1) general-purpose, which
treats the input data as a byte stream; (2) record-oriented, which understands the record structures in
the input data; (3) model-only, which stores only computed models to represent time series data and
discards all data points; and (4) model with errors, which stores models as well as prediction errors
at each data point. Note that since time series data are mainly floating point numbers, compression
techniques targeting specific data types (e.g., audio [67], EEG recordings [60]) are ill-suited and
excluded from our discussion. In addition, neural network based compression techniques [93]
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Table 1. Compression techniques for time series data.
Compression
Techniques

Compression
Ratio

Data
Accuracy

Query
Types

Queries on
Compressed Data

General-Purpose low lossless general no
Record-Oriented low/medium lossless/good general yes
Model-Only highest poor special yes

Model w/ Errors medium/high ok/good general no
MOST (this paper) high good general yes

may incur significant computation overhead, slowing down data ingestion. Hence, they are not
generally suitable to time series applications. Table 1 summarizes and compares the features of the
compression techniques.

General-purpose compression. General-purpose byte-oriented compression techniques encode
a byte stream of input data. LZ77 [95] and its variants, such as GZip [61], Snappy [28], ZStd [65],
LZ4 [12], and Brotli [4], arewidely used. The core idea is to find and encode repeated substrings in the
sliding window of the input byte stream. However, general-purpose compression is not optimized
for the characteristics of time series data. Consequently, the compression ratio is low. Moreover, it
is impossible to distinguish individual records in the compressed data. Hence, queries and analysis
operations cannot be supported directly on the compressed data, causing data decompression
overhead in query processing.

Record-oriented compression. Record-oriented compression transforms each record into a
compact representation. Run length encoding (RLE) represents consecutive records having the same
value as the value and the number of occurrences. Dictionary encoding creates a mapping between
values and compact integer codes, then replaces the original data entries with the corresponding
codes. Delta encoding [49] stores the difference between two adjacent records, and Delta-of-Delta
uses Delta encoding twice in succession. Xor encoding is similar to delta encoding except that it
computes the Xor of adjacent records. Gorilla [75], an in-memory TSDB developed by Facebook,
employs Delta-of-Delta encoding for timestamps and XOR-based encoding for floating point
numbers. SplitDouble in VergeDB [74] encodes the integer and decimal parts of floating-point
numbers separately. The former is bit compressed and the latter is encoded by Gorilla. Recently,
BUFF [55] exploits bounded range and precision to reduce the number of bits for storing the integer
and the decimal parts of floating point numbers. The resulting encodings are stored in byte-oriented
columnar layout to improve query processing.

As shown in Table 1, record-oriented compression techniques retain the record information and
thus are capable of supporting query processing on compressed data. Except BUFF, the techniques
are lossless and their compression ratio are low. In comparison, BUFF is a lossy technique with
good accuracy. It achieves medium compression ratio (cf. Section 5.2) by bounding the range and
precision of the floating point numbers.

Model-only compression. Model-only techniques include singular value decomposition [40],
discrete wavelet transformation [11], discrete Fourier transformation [3], PAA [42], PLA [82].
For example, PAA divides the time series into segments and uses the average value to represent
each segment, while PLA uses a linear function to model each segment. Symbolic Aggregate
Approximation (SAX) [54] employs PAA then discretizes the PAA coefficients using equal-area
buckets of the Gaussian distribution. Model-only techniques are typically optimized for specific
analysis tasks, e.g., monitoring pre-defined aggregates, classifying time series, comparing time
series. Since the models themselves suffice the targeted tasks, the techniques store only the model
parameters and discard all data records. As a result, they achieve the highest compression ratio, as
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shown in Table 1. However, it is not possible to accurately reconstruct the original measurement
values. Hence, model-only techniques cannot support general-purpose queries.
Model-based compression with errors. A number of model-based compression techniques store
both model parameters and errors for all data points so as to achieve better data accuracy and
support general-purpose analysis tasks. Sprintz [8] was initially targeted at compressing integer
values. It proposes a Fire (Fast Integer REgression) model to predict the next value based on a linear
combination of a fixed number of previous values. Then, it saves the (integer) errors using zigzag
encoding. To support floating point time series, Sprintz quantizes floating point values before
applying the Fire model. For each segment of data, it divides the value range into a pre-defined
number of buckets (e.g., 256 or 65536 buckets), then maps floating point values to the bucket IDs.
The quantization can result in very large error bounds because the value range must contain all
outliers. SZ3 performs multi-layer spline interpolation on the values [94]. It stores the first and
last points. Then, each layer predicts the intermediate points by interpolation. All the intermediate
points can be reconstructed hierarchically through the multiple interpolation calculations. SZ3
quantizes the errors and provides error bound guarantees.

As shown in Table 1, since prediction errors can be represented more compactly than the original
values, model-based techniques usually obtain better compression ratio than lossless techniques.
Sprintz and SZ3 attain medium and high compression ratio, respectively (cf. Section 5). While the
data accuracy of Sprintz suffers from its quantization, SZ3 provides good data accuracy. Finally,
data compressed by these techniques must be decompressed before query processing, incurring
significant overhead.
Our proposed solution:MOST.MOST (model-based compression with outlier storage) selectively
stores prediction errors, neither discarding them completely as in model-only compression, nor
retaining all errors as in model-based compression with errors. To improve compression ratio,
MOST exploits models to represent most values whose prediction errors are small. For outliers,
whose values are very different from predicted values, MOST stores them explicitly to ensure data
accuracy. As shown in Table 1, MOST is capable of supporting high compression ratio, good data
accuracy, general-purpose queries, and queries on compressed data.

2.3 Time Series Databases andQuery Processing

TSDB. Time series database (TSDB) aims to support high-throughput data insertion and general-
purpose relational queries on time series data. InfluxDB [34] is a popular open source TSDB written
in Go. Its storage engine is based on TSM-Tree [69], a variant of LSM-Tree [72]. InfluxDB compresses
integers with Zigzag and Simple8b [7], and floating point numbers with Gorilla. IoTDB [92][91] is
an open source TSDB written in Java. It designs an optimized columnar file format for efficient
time-series data storage. It supports Gorilla, RLE, Delta-of-Delta, Sprintz, as well as general-purpose
compression, such as LZ4. Other TSDBs include TimescaleDB [83], OpenTSDB [2], KairosDB [86],
TDengine [85], Druid [24], Gorilla [75], and VergeDB [74]. They mainly use general-purpose and/or
record-oriented compression techniques.
We compare MostDB with InfluxDB, IoTDB, and ModelarDB using real-world data sets in our

experiments (cf. Section 5). Please note that MostDB and ModelarDB perform lossy compression,
while InfluxDB and IoTDB use lossless compression by default. MostDB allows users to choose the
error bound based on application requirements. We evaluate the impact of varying error bounds
on compression performance (cf. Figure 9).
Approximate query processing. When querying data compressed with lossy compression tech-
niques, TSDBs compute query results from reconstructed values. The baseline approach employed
by TSDBs is to simply ignore the errors and treat the reconstructed values as accurate ones. In
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this paper, we would like also to provide guarantees on result accuracy. Our scheme is built on the
techniques of approximate query processing and probabilistic databases.

Approximate query processing can greatly reduce the computation time of aggregates for massive
data sets [51]. Online aggregation methods, such as sampling [71] and online aggregation [29, 32],
use data samples to compute approximate query answers and the confidence intervals. Offline
synopses, such as offline samples [1], histograms [13, 76], and sketches [13, 84], generate synopses
offline and use them in query processing. Probabilistic databases [15, 17] assign a probability to
each record in the data table to represent uncertain values or the results from uncertain query
predicates. A recent study [53] performs model-only compression for time series data, and computes
deterministic error bounds for a number of analytic tasks by combining per-segment models and
pre-computed error measures (e.g., L2-norm of predication errors). We borrow the ideas of these
studies to compute expectation, standard deviation, and/or deterministic bounds for aggregations in
MostDB. The main difference is that MostDB combines both models and outliers in the computation
(cf. Section 4.5) .

Model-based database systems. Previous works store models and support query processing on
models in DBMSs. MauveDB [18] proposes model-based views to hide the irregularities of the
underlying sensor data. It supports a declarative language for defining and querying over model-
based views. Queries use ScanView or IndexView operators to retrieve tuples computed from the
models. FunctionDB [88] stores models in function tables and supports algebraic operations (e.g.,
variable substitution, equation solving/approximation, function inference) based on hypercubes in
query processing. Plato [41] regards models as the ground truth of spatio-temporal sensor data
and as first-class citizens in DBMS. In query processing, models are viewed either as functions
or as tables with an infinite number of tuples. A recent study, ModelarDB [38], builds a TSDB
that performs model-based compression for time series with regular timestamps and infrequent
gaps. Query processing is based mostly on data points reconstructed from the models. In case that
query results can be computed directly from the models (e.g., aggregation with time predicates),
ModelarDB performs pure-model computation.

In the above studies, query processing uses either reconstructed values or pure-model computa-
tion. In comparison, we propose a dual-mode query engine in MostDB that combines the processing
of both segment models and outliers in query operators. Compared to pure-model computation, our
approach (i) includes outliers naturally and (ii) supports a wide range of query types. We compare
MostDB with ModelarDB in our experiments (cf. Section 5).

3 MOST COMPRESSION
Model-based compression captures the characteristics of time series as values in a time series
often change smoothly in a period of time. At one extreme, model-only compression does not
store any prediction errors. This attains high compression ratio but sacrifices data accuracy. At the
other extreme, model-based compression with errors preserves good data accuracy by storing all
prediction errors. However, this leads to less ideal compression ratio. We propose MOST (Model-
based compression withOutlier STorage) to strike a balance of compression ratio and data accuracy
by storing only rare outliers, i.e., data points whose prediction errors are beyond a pre-specified
error threshold. In this way, MOST achieves both high compression ratio and good data accuracy.
The MOST compression algorithm consists of three steps: 1) outlier detection, 2) segmentation,

and 3) model and outlier encoding. Note that it is important to detect outliers before segmentation.
Figure 1a depicts the segments and outliers of a time series. If Step 2) were before Step 1),𝑂1 would
cut the segment (75,117) into two parts. If we can detect and skip 𝑂1, then segmentation produces
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Fig. 1. (a) Segments and outliers of a time series; (b) Segmentation process of Shrinking Cone

a single segment for (75,117). In other words, Step 1) can prevent smooth segments from being split
by scattered outliers in Step 2).

In the following, Section 3.1– 3.2 focus on Step 1) and 2), then Section 3.3 describes Step 3).

3.1 Outlier Detection and Segmentation Methods for Time Series Data
In this subsection, we review existing methods for outlier detection and segmentation for time
series data. Then, in the next subsection, we experimentally choose the best strategy and propose a
combined shrinking cone (CSC) algorithm for the chosen strategy.
Outliers. In this work, we construct (linear) models for the purpose of compressing time series
data. In this context, we define outliers as the data points whose prediction errors based on the
models are beyond the pre-defined error bound.
Please note that the outliers as defined are different from outliers in previous outlier/anomaly

detection work [9, 10]. First, the outliers in the context of data compression may or may not
correspond to actual anomalies meaningful to upper level applications. The definition suits our
goal of designing a general-purpose compression solution. Second, while outliers in previous work
can be individual points, a sequence of points, or even an entire time series [9, 10], we mainly focus
on point outliers in a single time series. It would be interesting but beyond the scope of this paper
to exploit application knowledge in the outlier detection for data compression.
Outlier detection methods. Existing methods can be divided into the following three categories:
• Density-based outlier detection: Density-based methods [5, 6] examine each point in sliding

windows and count the number of neighbors (i.e., points with close values) in the windows.
A point is regarded as an outlier if it does not have sufficient number of neighbors in any
window. The time complexity of the methods is 𝑂 (𝑛), where 𝑛 is the number of data points.

• Histogram-based outlier detection: A number of methods [37, 68] are based on the optimal
histogram vopt [36] given a fixed number of buckets. A point is considered as an outlier if
its removal reduces the estimation error of the vopt histogram. The methods look for the
optimal set of points whose removal minimizes the estimation error of vopt. Previous work [37]
proposes a dynamic programming algorithm that computes the optimal set in 𝑂 (𝑛2𝑘2𝐵) time
for 𝑛 data points, 𝑘 outliers, and 𝐵 histogram buckets. Improved algorithms [68] reduce the
power of 𝑛 in the time complexity, but the power of 𝑘 is raised to at least 3. These methods
incur high computation overhead, and therefore are not used in our study.

• Model-based outlier detection: Methods in this category employ models to detect outliers. ML-
based models, such as LSTM [33, 63] and recurrent autoencoder ensembles [45], have high
accuracy, but suffer from high computation cost. Hence, they cannot be employed for rapid
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data ingestion in IoT scenarios. Shrinking cone [26] is an algorithm derived from feasible
space window [59]. As shown in Figure 1b, given an error-bound 𝑒 , the cone-shaped feasible
slope range shrinks as more points are added. 𝑉0 is the starting point of the segment. After 𝑉1
is added, the feasible slope range is [𝑙𝑜𝑤 (𝑉1), 𝑢𝑝 (𝑉1)]. After 𝑉2 is added, the range shrinks to
[𝑙𝑜𝑤 (𝑉1), 𝑢𝑝 (𝑉2)]. If𝑉3 were added,then

⋂3
𝑖=1 [𝑙𝑜𝑤 (𝑉𝑖 ), 𝑢𝑝 (𝑉𝑖 )] = ∅, the range becomes empty.

Thus, the segment stops at 𝑉2.
Originally, Shrinking Cone is a segmentation method. We modify Shrinking Cone to detect

outliers as follows. Since an outlier (e.g, 𝑂1) often disrupts a segment or forms a very short
segment, we mark a point as an outlier in two cases: a) it stops a segment but the removal of
the point continues the growth of the segment; b) it starts a short segment that contains less
than min_seg_len (e.g., 5) points.

Segmentation methods. We mainly consider linear segment models as they are well-studied [20,
21, 47, 48] and amenable to fast computation and query processing without decompression.
There are a number of linear segmentation methods in the literature [21]. The top-down

method [50] recursively partitions a time series until certain stopping criterion is met, while
the bottom-up method [44] iteratively merges adjacent short segments to longer segments. The
extreme/trend point method cuts series into different segments at extreme/trend points. In sliding
windowmethods [46], a segment grows until its total error exceeds a user-defined threshold. Sliding
window and bottom-up (SWAB) [43] combines the ideas of sliding window and bottom-up methods.
In SWAB, bottom-up is used to segment points in the sliding window till there remains 5 to 6
segments. The first segment is popped from the sliding window, and new points are added. Then,
SWAB performs the bottom-up computation again. In addition, the Shrinking cone method [26] as
described above naturally supports segmentation. When the feasible slope range becomes empty,
the growth of the current segment stops and the next point starts a new segment.

3.2 Optimal Strategy Selection for Outlier Detection and Segmentation Steps
In this subsection, we evaluate different combinations of outlier detection and segmentation
methods.

Metrics.We consider the following four metrics in the comparison:
• SPTP (number of Segments Per Thousand Points): For each segment, MOST stores the start

position, length, and model parameters. Hence, SPTP should be lowered as much as possible.
• OR (Outlier Rate): OR is the fraction of points that are outliers. Since MOST stores outliers, the

lower the OR, the better.
• Compression Ratio: It is computed as the original data size divided by the compressed data size.

Thus, the higher the better.
• Compression Throughput: We measure the throughput of a strategy for compressing data in

memory.

Data sets. The experimental evaluation in Section 5 uses five real-world data sets. In the strategy
selection in this subsection, we use three of the five data sets (i.e., PAMAP2, UCR, AMPds2) with
diverse characteristics as the “training” data sets. The resulting MOST compression algorithm will
be tested against the two “test” data sets in Section 5.

Strategy combinations. We implement three outlier detection methods: none, density-based
method (DEN), and Shrinking Cone (SC). We implement six segmentation methods: fixed50 (50
points per segment), top-down (TD), bottom-up (BU), extreme points (EX), SWAB, and Shrinking
Cone (SC). We set the relative error-bound 𝜖 = 0.01. For TD, BU, and SWAB, 𝜖 is used in the
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Table 2. Comparing SPTP and OR of different combinations of outlier detection and segmentation strategies.

SPTP / OR None Density (DEN) Shrinking Cone (SC)
Fixed50 20.00 / 0.2725 20.00 / 0.2304 20.00 / 0.1696
Top-Down (TD) 39.05 / 0.0014 12.35 / 0.0491 5.49 / 0.0784
Bottom-Up (BU) 38.29 / 0.0018 12.40 / 0.0491 5.52 / 0.0776
Extreme (EX) 55.11 / 0.0521 18.45 / 0.0682 12.29 / 0.0773
SWAB 42.23 / 0.0074 15.80 / 0.0466 7.66 / 0.0777
Shrinking Cone (SC) 11.20 / 0.0777 8.81 / 0.0830 4.89 / 0.0764
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Fig. 2. Comparing different strategy combinations.

stopping criterion. For EX, the difference between an extreme point and its neighbors should be at
least 𝜖 . For SC, 𝜖 is used in the slope range computation.
Result analysis. Table 2 compares the SPTP and OR of different combinations of outlier detection
and segmentation strategies. Each column corresponds to an outlier detection method. Each row
corresponds to a segmentation method. Every cell reports the average SPTP / average OR for the
three data sets. First, comparing SPTP across the columns, we see that SC outlier detection produces
the smallest number of segments. Specifically, compared to none, detecting and skipping outliers
with SC effectively reduces the number of dynamically generated segments by 2.3–7.1x. Second,
we focus on the SC column, and see that SC+SC is the best combination. The SPTP/OR of SC+TD
and SC+BU are close to those of SC+SC.
Figure 2a compares the compression ratio of different strategy combinations. Due to space

limitation, we show only the more competitive strategy combinations. From the figure, we see that
SC+SC is the best, while SC+TD and SC+BU are also quite competitive. This result is consistent
with the SPTP and OR in Table 2. The lower the SPTP and OR, the better the compression ratio.

Figure 2b compares the compression throughput of SC+SC, SC+TD, and SC+BU. We see that
SC+SC achieves 132–208x higher throughput than SC+TD and SC+BU. This is because TD and BU
pay the cost of iterative processing of the segments.

In summary, from the experiments, it is clear that SC+SC is the best strategy of outlier detection
and segmentation.
Combined Shrinking Cone (CSC) algorithm.
We observe that SC+SC performs Shrinking Cone twice on the time series data. Therefore, we

propose an optimized algorithm in MOST that performs one-pass Shrinking Cone computation to
improve efficiency. The combined Shrinking Cone algorithm is listed in Algorithm 1.

The algorithm computes and updates the slope range of the current segment for each point (Line
4-5, 8-9). When the slope range becomes empty, we denote the current point as a splitter because it
tends to split the current segment. At this moment, the algorithm does not immediately start a new
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Algorithm 1: Combined Shrinking Cone algorithm for outlier detection and segmentation in
MOST.
Input: points, 𝜖 /* error threshold */, min_seg_len
Output: segments, outliers

1 segments = ∅; outliers = ∅;
2 start = 0; next = start + 1; splitter = -1; slope𝑙𝑜 = −∞; slopeℎ𝑖 = +∞;
3 while next < points.size() do
4 (cur𝑙𝑜 , curℎ𝑖 ) = SlopeRange(points[start], points[next], 𝜖);
5 if (cur𝑙𝑜 , curℎ𝑖 ) ∩ (slope𝑙𝑜 , slopeℎ𝑖 ) != ∅ then
6 if splitter >= 0 /* segment grows so skip the splitter */ then
7 outliers = outliers ∪ { splitter }; splitter = -1;

8 (slope𝑙𝑜 , slopeℎ𝑖 ) = (cur𝑙𝑜 , curℎ𝑖 ) ∩ (slope𝑙𝑜 , slopeℎ𝑖 );
9 next = next + 1;

10 else if splitter < 0 /* try skipping the point and continue */ then
11 splitter = next; next = next + 1;

12 else
13 if splitter - start >= min_seg_len /* new segment */ then
14 segments = segments ∪ { current segment };
15 start = splitter;

16 else
17 /* segment is too short! start is an outlier */
18 outliers = outliers ∪ { start }; start = start + 1;

19 next = start + 1; splitter = -1; slope𝑙𝑜 = −∞; slopeℎ𝑖 = +∞;

20 return (segments, outliers);

segment. Instead, it records the splitter and moves on to check the next point (Line 10-11). If the
next point successfully extends the current segment, then the algorithm records the splitter as an
outlier (Line 6-7), and continues growing the segment (Line 8-9). In case that the next point after
the splitter splits the segment again, the algorithm tries to begin a new segment (Line 13–15). It
ensures that the current segment’s length is at leastmin_seg_len. If not, then we regard the segment
start point as an outlier, and re-examine the other points in the segment (Line 17–18). Note that
the two outlier detection cases (Line 7 and Line 18) correspond to case a) and b) as described in
Section 3.1, respectively.

The time complexity of the CSC algorithm is 𝑂 (𝑛) for 𝑛 points. As shown in Figure 2b, the CSC
algorithm improves the compression throughput of SC+SC by a factor of 1.27–1.40x.

3.3 Model Parameter and Outlier Encoding
We further reduce the space for storing outliers and model parameters with quantization and
matissa truncation as follows.
Quantization for outlier encoding. Inspired by recent works on error-bounded lossy compres-
sion for scientific data [39, 94], we quantize outliers to reduce the space cost. We associate each
outlier 𝑣 to the segment that it resides in or the segment before the outlier if the outlier is between
two segments. Then, we compute the prediction value 𝑣𝑝 for the outlier using the segment’s model.
The quantization result 𝑞 and the reconstructed value 𝑣 ′ after decompression are computed as
follows:
• Absolute error-bound: 𝑞 = 𝑟𝑜𝑢𝑛𝑑 ( 𝑣−𝑣𝑝2𝜖 ), and 𝑣 ′ = 𝑣𝑝 + 2𝑞𝜖 .
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• Relative error-bound: 𝑞 = 𝑟𝑜𝑢𝑛𝑑 ( ln 𝑣−ln 𝑣𝑝2𝜖′ ), and 𝑣 ′ = 𝑣𝑝𝑒
2𝑞𝜖′ , where 𝜖 ′ = 𝑙𝑛(1 + 𝜖).

It is easy to see that the error-bound constraints in Eqn 2 are satisfied. After quantization, we store
𝑞 with Zigzag [27] and variable-length integer encoding.
Mantissa truncation for encoding slopes. Since long mantissa prevents floating point compres-
sion algorithm (e.g., Gorilla [75]) from achieving high compression ratio, MOST truncates the
mantissa of slopes. We employ BFLOAT16 [35], a floating point format widely used in deep learning.
BFLOAT16 has 1 sign bit, 8 exponent bits, and 7 mantissa bits (rather than 23 matissa bits in the
IEEE 754 32-bit floating point format). We obtain matissa-truncated slopes by bit operations on
the matissa bits. The matissa-truncated slopes are used in the main computation. Specifically, in
Algorithm 1, we make sure that truncated cur𝑙𝑜 >= cur𝑙𝑜 , and truncated curℎ𝑖 <= curℎ𝑖 . We find that
using BFLOAT16 to represent slopes would not considerably decrease the diversity and accuracy
for linear functions. However, this is not the case for intercepts. As intercepts can be much larger
than slopes, truncating matissa of intercepts has a much larger impact on prediction accuracy.
Therefore, intercepts are stored as 32-bit single precision floating point numbers.
Error-bound guarantee. For normal points, Algorithm 1 guarantees that normal points fall in the
Shrinking Cone slope range of the associated segment. Since the slope range computation observes
the error bound 𝜖 , it follows that normal points satisfy the error bound. For outliers, as described
in the quantization process, the error bounds hold for the reconstructed values. In summary, MOST
satisfies the error-bound constraint of Eqn 2 for all points.

4 MOSTDB
We design MostDB, a TSDB prototype that stores and processes MOST compressed data, as shown
in Figure 3. In the following, Section 4.1 describes the MOST storage. Then, Section 4.2 proposes a
dual-mode query engine to support efficient relational queries. After that, Section 4.3– 4.6 describe
the dual-mode scan, filter, aggregation, and output operators, respectively.

4.1 Segment and Outlier Storage
We store MOST compressed data in an underlying database. A time series table can be represented
as:

𝑑𝑎𝑡𝑎(𝑡𝑎𝑔𝑠, 𝑡𝑖𝑚𝑒, 𝑣𝑎𝑙𝑢𝑒1, ..., 𝑣𝑎𝑙𝑢𝑒𝑘 )
𝑡𝑎𝑔𝑠 specify the descriptive information of the data source1. Every 𝑣𝑎𝑙𝑢𝑒 𝑗 ( 𝑗=1, ..., 𝑘) column stores
a time series. The 𝑘 time series are correlated and collected together. Usually, tags are strings, while
measurement values are (floating point or integer) numbers.

For MOST compressed data, we create the following two tables:
• Segment table: 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 (𝑡𝑎𝑔𝑠, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡 , 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, 𝑠𝑙𝑜𝑝𝑒).
• Outlier table: 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 (𝑡𝑎𝑔𝑠, 𝑡𝑖𝑚𝑒, 𝑞).
We require that the underlying database supports efficient data retrieval given tags and time ranges.

Given the above generic description, MostDB can be supported by any TSDB or relational
database. Specifically, we employ InfluxDB [34, 69] as the underlying database. Since InfluxDB does
not have native support for BFLOAT16, we declare the slope column as 32-bit floating point type
and clear the lower 16 matissa bits. We leverage the default compression methods in InfluxDB (i.e.,
Gorilla for 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 and 𝑠𝑙𝑜𝑝𝑒 , Simple8b for 𝑞) to compress the columns.
Regular and irregular time series. In regular time series [38], the measurement values are
captured at regular intervals. Most real-world scenarios satisfy this condition. In this case, the
timestamps can be computed and do not need to be stored for normal points. For irregular time

1𝑡𝑎𝑔𝑠 may consist of multiple columns, providing different levels of description, e.g., to support a hierarchy of devices.
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Fig. 3. Architecture of MostDB.

series, we store the timestamps as a measurement value column, and use an auto-increment id as the
regular timestamp. The actual timestamp column is compressed using Delta-of-Delta encoding [75].
To support queries, time ranges are converted to the regular id ranges by checking the timestamp
column.

4.2 Dual-ModeQuery Engine

Query operation analysis. According to the IoTDB Benchmark [58], there are ten common
query types in IoT applications, as listed in Table 3. The query operations can be divided into four
categories:
• Operations on time: Many queries are interested in the data either at a time point (Q1, Q9) or

in a time range (Q2, Q4-6, Q8, Q10). Time range can also be used as the group by key (Q10).
For these operations, MostDB specifies appropriate time conditions when retrieving data
from the underlying DB. Suppose the time range in a query is [𝑇𝑏 , 𝑇𝑒]. It is straightforward to
retrieve outlier data in [𝑇𝑏 ,𝑇𝑒]. However, segments are different because a segment can span the
boundaries of the time range. To address this problem, we take a simple approach. We maintain
the maximum segment length, max_seg_len, and use [𝑇𝑏-max_seg_len, 𝑇𝑒+max_seg_len] to
retrieve segment data. Note that max_seg_len is often small compared to the total data size.
Hence, while this approach may load a few extra segments outside the original time range,
they can be easily filtered with little overhead.

• Operations on tags: Since data sources are identified by tags, almost all queries contain either tag
conditions (Q1,Q2,Q4,Q5,Q9, Q10) or tags as group by keys (Q6-8). To support these operations,
MostDB specifies the tag conditions when retrieving data from the underlying DB.

• Operations on values: There are three kinds of operations on measurement values: a) Value in
select clause: Q1-5 and Q9 return values as query results; b) Filter on values: Q4, Q5, Q7 and Q8
filter data with value predicates; and c) Aggregate of values: Q6-8 and Q10 compute aggregates
of values.

• Limit clause: Q3 and Q5 use limit clause to retrieve a given number of records. This can be
supported by specifying appropriate limit clauses when retrieving data from the underlying
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Table 3. Common relational queries in IoT applications [58].

Description SQL
Q1 exact point query select [values] from data where time=? and [tag conditions]
Q2 time range query select [values] from data where time between ? and [tag conditions]
Q3 limit query select [values] from data limit ?

Q4 time range + value
filter

select [values] from data where time between ? and [value conditions]
and [tag conditions]

Q5 Q4 with limit clause select [values] from data where time between ? and [value conditions]
and [tag conditions] limit ?

Q6 aggregation w/ time
range select [aggr(value)] from data where time between ? group by [tags]

Q7 aggregation w/ value
filter

select [aggr(value)] from data where [value conditions] group by
[tags]

Q8 Q6 + Q7 select [aggr(value)] from data where time between ? and [value
conditions] group by [tags]

Q9 latest point query select time, [values] from data where [tag conditions] and
time=max(time)

Q10 group by time range
query

select [aggr(value)] from data where time between ? and [tag
conditions] group by [time range]

DB. For outliers, we use the same limit clause. For segments, we set the limit to 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑙𝑖𝑚𝑖𝑡

𝑚𝑖𝑛_𝑠𝑒𝑔_𝑙𝑒𝑛 .
In case that query processing does not produce sufficient result records (e.g., in Q5), more data
are retrieved from the underlying DB.

Since values are MOST compressed, the support for value operations is the main focus of the rest
of this section.
Dual-mode query engine. As discussed in Section 2.3, query processing in existing model-based
database systems uses either reconstructed values or pure-model computation. We find neither
approach appealing for the following reasons. First, pure-model computation cannot support
outliers, and is applicable only to limited query types. Second, it is expensive to decompress the
data and evaluate queries on reconstructed values.
We propose a dual-mode query engine for processing relational queries on MOST compressed

data. By dual-mode, we mean that the main query operators have two modes: the segment mode
and the outlier mode. The outlier mode processes each outlier record, while the segment mode
computes results for each segment as a whole. The engine performs a variant of volcano-like query
execution. The main difference is that next() on a dual-mode operator returns a segment and a list
of outliers associated with the segment.

The dual-mode query engine has three benefits. First, it naturally combines outliers with models.
Second, it supports a wide range of query types. We will describe dual-mode scan, filter, aggre-
gation, and output operators. Third, the engine performs per-segment processing and defers the
reconstruction of values as much as possible, thereby substantially reducing query costs.
Result styles. MostDB provides several styles for generating query results. In the default style,
the query engine computes results based on the values predicted by the segment models. This
style attains the best query performance. However, predicted values are not exactly the original
measurement values. To model this uncertainty, we assume that a predicted value is uniformly
distributed in [𝑣𝑎𝑙𝑢𝑒𝑙𝑜 , 𝑣𝑎𝑙𝑢𝑒ℎ𝑖], where the value range is computed using the error bound constraint.
Then, MostDB provides three detailed styles that take the uncertainty into consideration. They
mainly differ in the evaluation of aggregation operations. Style-E provides the expectation of the
result. Style-EB generates both the expectation and the deterministic bounds of the aggregation
result. Style-EBS computes the standard deviation in addition to the output of Style-EB.
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Fig. 4. Weaving scan obtains global segments and outliers.
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Fig. 5. Evaluating a filter (𝑣𝑎𝑙𝑢𝑒 > 𝑐𝑜𝑛𝑠𝑡 ) on a segment.

4.3 Weaving Scan
As shown in Figure 3, the query engine transforms an incoming query to retrieve data from the
underlying DB. Time, tags, and limit operations are handled appropriately. The scan operator
collects the segments and outliers of all measurement value columns involved in the query. There
can be multiple value columns (e.g., in predicates, aggregates, and/or select results). Interestingly,
their segment start points and their outliers can be different because the outlier detection and
segmentation of MOST is performed on each column of values alone. Therefore, the scan operator
must align the segments and outliers of multiple value columns. We call this alignment action
weaving the columns.

As shown in Figure 4, we treat all the start points from the columns as the global segment split
points2. Next, an outlier in any value column becomes a global outlier. If it is a normal point in
some column 𝑣𝑎𝑙 𝑗 , then the relevant outlier entry is computed from the associated segment of 𝑣𝑎𝑙 𝑗 .
After weaving, next() returns a global segment and a list of global outliers.

4.4 Dual-Mode Filter Operator

Filter on segments in detailed styles. For every segment, we consider three cases when eval-
uating the segment against a filter predicate. Figure 5 depicts an example, where the filter is
𝑣𝑎𝑙𝑢𝑒 > 𝑐𝑜𝑛𝑠𝑡 . In case (a), the segment fully satisfies the filter. We set the result to true for the
segment. In case (b), the segment fully dissatisfies the filter. We set the result to false. In case (c),
the segment partially satisfies the filter. We divide the segment into (up to) three smaller segments,
as shown in Figure 5c. We set the results for the true and false parts accordingly. For the unknown
part, we need to consider each point. Here, we simply insert all the points of the unknown part
into the outlier list, and handle them with other outliers. The unknown segment becomes empty
and we set its result to false.
Filter on outliers in detailed styles. For every outlier, we generate a probability 𝑝 for the filter
evaluation. We first compute [𝑣𝑎𝑙𝑢𝑒𝑙𝑜 , 𝑣𝑎𝑙𝑢𝑒ℎ𝑖] based on the predicted value and the error bound
constraint. Then we compare the value range with the filter predicate. There are also three cases.
2In our prototype, we weave all columns in the query at once in the weaving scan operator. However, since weaving reduces
segment sizes and lower the benefit of per-segment processing, a more sophisticated solution can build a weaving operator,
and judiciously place the operator to delay weaving until necessary in the query plan.
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First, the entire range satisfies the filter. We set 𝑝=1. Second, the entire range does not satisfy the
filter. We set 𝑝=0. Third, the range intersects with the filter. We compute 𝑝 according to the uniform
distribution. For an example filter value > const, if 𝑐𝑜𝑛𝑠𝑡 ∈ [𝑣𝑎𝑙𝑢𝑒𝑙𝑜 , 𝑣𝑎𝑙𝑢𝑒ℎ𝑖 ], then 𝑝= 𝑣𝑎𝑙𝑢𝑒ℎ𝑖−𝑐𝑜𝑛𝑠𝑡

𝑣𝑎𝑙𝑢𝑒ℎ𝑖−𝑣𝑎𝑙𝑢𝑒𝑙𝑜 .
Multiple Filters. Logical operations (i.e., AND, OR, NOT) of filter predicates can be easily sup-
ported. Please recall that segments are aligned across all value columns by the weaving scan. We
may further divide a segment into smaller segments if case (c) occurs in any filter evaluation, as
shown in Figure 5c. We have a true/false result after evaluating an individual filter on a given
segment. Hence, it is easy to compute and/or/not on filter predicates for a segment.

For outliers, we assume that the filter results on different columns are independent. Suppose the
probabilities of two filter predicates are 𝑝 (𝑝𝑟𝑒𝑑1)=𝑝1 and 𝑝 (𝑝𝑟𝑒𝑑2)=𝑝2. Then 𝑝 (𝑝𝑟𝑒𝑑1 𝑎𝑛𝑑 𝑝𝑟𝑒𝑑2) =
𝑝1𝑝2, 𝑝 (𝑝𝑟𝑒𝑑1 𝑜𝑟 𝑝𝑟𝑒𝑑2) = 1 − (1 − 𝑝1) (1 − 𝑝2), 𝑝 (𝑛𝑜𝑡 𝑝𝑟𝑒𝑑1)=1 − 𝑝1.
Filter in default style. The default style is a special case of the detailed styles. For segments, case
(c) has only the true and false parts. There is no unknown part. For outliers, only fully satisfy and
fully dissatisfy cases exist.
Filter operator output. In general, the filter operator outputs all input segments and outliers,
enhancing each segment with a true/false result, and enhancing each outlier with a probability. A
segment can be safely discarded only if its result is false, and either it does not have any outliers or
all its associated outliers have probability=0. An outlier can be discarded only if its probability=0
and its associated segment’s result is false.

4.5 Dual-Mode Aggregation Operator
The aggregation operator obtains a segment and a list of outliers in every child.next() call. The
returned segment has a true/false result, and every outlier has a probability. If the child operator
is the weaving scan (i.e., there is no value filters), then the segment result is default to true, and
the outlier probability to 1. We describe how to compute the aggregates progressively after each
child.next().
SUM and COUNT. For space constraint, we consider SUM with absolute error bound below.
SUM with relative error bound and COUNT can be supported similarly. Suppose there are 𝑚
segments 𝑠1, 𝑠2, ..., 𝑠𝑚 that are independent of each other. As 𝑠𝑢𝑚 = Σ𝑚𝑖=1𝑠𝑢𝑚(𝑠𝑖 ), we have 𝐸 (𝑠𝑢𝑚)
= Σ𝑚𝑖=1𝐸 (𝑠𝑢𝑚(𝑠𝑖 )), 𝑉𝑎𝑟 (𝑠𝑢𝑚) = Σ𝑚𝑖=1𝑉𝑎𝑟 (𝑠𝑢𝑚(𝑠𝑖 )), 𝑈𝐵(𝑠𝑢𝑚) = Σ𝑚𝑖=1𝑈𝐵(𝑠𝑢𝑚(𝑠𝑖 )), and 𝐿𝐵(𝑠𝑢𝑚) =
Σ𝑚𝑖=1𝐿𝐵(𝑠𝑢𝑚(𝑠𝑖 )). UB and LB stand for upper and lower bounds, respectively. Therefore, we can
progressively accumulate 𝑠𝑢𝑚, 𝐸, 𝑉𝑎𝑟 , 𝑈𝐵, and/or 𝐿𝐵 for each segment depending on the result
style. In the following, we focus on a single segment and omit the segment subscript.
Suppose there are 𝑛 points in the segment. The predicted value of point 𝑗 is 𝑓 ( 𝑗). We use 𝑟𝑠=1

or 0 to denote if the segment result is true or false. Suppose the set of outliers is 𝑜𝑢𝑡 . For an
outlier 𝑢 ∈ 𝑜𝑢𝑡 , denote its quantized error as 𝑞𝑢 . Then, the reconstructed 𝑣 ′𝑢 = 𝑓 (𝑢) + 2𝑞𝑢𝜖 , and the
measurement 𝑣𝑢 follows the uniform distribution with 𝐸 (𝑣𝑢) = 𝑣 ′𝑢 and 𝑉𝑎𝑟 (𝑣𝑢) = 𝜖2/3. Suppose the
filter columns and the aggregate column are independent. Let the outlier probability be 𝑝𝑢 . Then,
the event that the filter conditions are satisfied has mean 𝑝𝑢 and variance 𝑝𝑢 (1 − 𝑝𝑢). We have:

𝑠𝑢𝑚(𝑠) = 𝑟𝑠Σ
𝑛
𝑗=1 𝑓 ( 𝑗) + Σ𝑢∈𝑜𝑢𝑡 (𝑝𝑢𝑣𝑢 − 𝑟𝑠 𝑓 (𝑢))

𝐸 (𝑠𝑢𝑚(𝑠)) = 𝑟𝑠Σ
𝑛
𝑗=1 𝑓 ( 𝑗) + Σ𝑢∈𝑜𝑢𝑡 (𝑝𝑢 − 𝑟𝑠 ) 𝑓 (𝑢) + Σ𝑢∈𝑜𝑢𝑡2𝑝𝑢𝑞𝑢𝜖

𝑉𝑎𝑟 (𝑠𝑢𝑚(𝑠)) = Σ𝑢∈𝑜𝑢𝑡𝑝𝑢 (1 − 𝑝𝑢) (𝑓 (𝑢) + 2𝑞𝑢𝜖)2

+ 𝜖2

3 (𝑟𝑠𝑛 + Σ𝑢∈𝑜𝑢𝑡 (𝑝𝑢 − 𝑟𝑠 ))
𝑈𝐵(𝑠𝑢𝑚(𝑠)) = 𝑟𝑠Σ

𝑛
𝑗=1 𝑓 ( 𝑗) + 𝑟𝑠𝑛𝜖 + Σ𝑢∈𝑜𝑢𝑡 (𝑈𝐵𝑢 − 𝑟𝑠 𝑓 (𝑢))

𝐿𝐵(𝑠𝑢𝑚(𝑠)) = 𝑟𝑠Σ
𝑛
𝑗=1 𝑓 ( 𝑗) − 𝑟𝑠𝑛𝜖 + Σ𝑢∈𝑜𝑢𝑡 (𝐿𝐵𝑢 − 𝑟𝑠 𝑓 (𝑢))
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𝑈𝐵𝑢 =𝑚𝑎𝑥{𝑓 (𝑢) + (2𝑞𝑢 + 1)𝜖, 0}
𝐿𝐵𝑢 =𝑚𝑖𝑛{𝑓 (𝑢) + (2𝑞𝑢 − 1)𝜖, 0}

Note that 𝑓 () is a linear function. Hence, Σ𝑛𝑗=1 𝑓 ( 𝑗) is the sum of an arithmetic series. It is easy to
see that the time complexity of the above computation is 𝑂 ( |𝑜𝑢𝑡 |). As the number of outliers |𝑜𝑢𝑡 |
is expected to be small, we can efficiently compute and accumulate the result of each segment.
AVG. In the default style, we accumulate sum and count, then compute 𝑎𝑣𝑔 = 𝑠𝑢𝑚

𝑐𝑜𝑢𝑛𝑡
. In detailed

styles, for 𝐸 (𝑎𝑣𝑔) and 𝑉𝑎𝑟 (𝑎𝑣𝑔), we use the Monte Carlo method. For each uncertain outlier 𝑢, we
simulate whether it exists with probability 𝑝𝑢 , and generate the value 𝑣𝑢 to be uniformly distributed
in [𝑓 (𝑢) + (2𝑞𝑢 − 1)𝜖 , 𝑓 (𝑢) + (2𝑞𝑢 − 1)𝜖]. To calculate𝑈𝐵(𝑎𝑣𝑔), we first compute the sum and count
of the certain points. Then, we sort all the uncertain points in descending order of𝑈𝐵𝑢 . After that,
we examine each𝑈𝐵𝑢 from the largest to the smallest. If𝑈𝐵𝑢 > current average, then we include it
and update the average. We stop when the check fails. The lower bound is computed in a similar
fashion.

4.6 Dual-Mode Output Operator
The output operator supports measurement values in the select clause of queries. It obtains a
segment and its associated outliers in each child.next() call. For every point 𝑗 , it computes the
reconstructed value 𝑓 ( 𝑗) from the segment model unless it is an outlier. For an outlier𝑢, it computes
𝑣 ′𝑢 = 𝑓 (𝑢) + 2𝑞𝑢𝜖 . The output operator returns a set of tuples as the query result. In this way, we
hide the details of models and outliers from users.

5 EVALUATION
We perform extensive experiments to evaluate MOST and MostDB using real-world data sets in
this section.

5.1 Experimental Setup

Machine configuration. We conduct all experiments on a server equipped with an Intel i7-4790
CPU (3.60GHz, 4 cores, 32 MB L3 cache), 32GB 1600MHz DDR3 memory, and a 1TB SSD using
SATA 3.0. The server runs Ubuntu Linux 22.04 LTS. C/C++ code is compiled with GCC 11.3.0. and
Java code with OpenJDK 11.0.17.
Implementation.We implement MostDB in C++ (1320 lines) and Java (1525 lines). The interaction
with the underlying DB, the query transformer, and the user interface functions (e.g., insert and
query operations) are coded in Java. The MOST compressor and the query engine are written as
C++ sub-routines. We invoke the C++ code with JNI, and use the Java Unsafe off-heap memory
to store intermediate data. For data insertion, MostDB buffers the time series data in off-heap
memory. Each time series occupies a buffer. As soon as a buffer is full, MostDB gets an idle work
thread from the thread pool to process the buffer. The thread uses JNI to invoke the C++ MOST
compressor to compress the data, then calls InfluxDB’s Java API to insert the segments and outliers
with InfluxDB’s default compression setting. For a user query, MostDB transforms the query, and
calls InfluxDB’s Java API with the transformed query. It retrieves MOST compressed data into the
off-heap memory. Then, MostDB uses JNI to invoke the C++ dual-mode query engine to compute
the query results. Besides InfluxDB, we port MostDB to run on top of IoTDB to show the generality
of the design.
Solutions to compare. We compare MOST with state-of-the-art general-purpose compression
methods (i.e., Snappy, LZ4, GZip), record-oriented methods (i.e., RLE, SplitDouble [74], Gorilla [75],
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Table 4. Data sets used in our experiments.

Data Set Size1
Measurement

Columns
Length of

Longest Series
Tags

MSRC-12 516MB 80 24K 30
PAMAP2 1.7GB 52 440K 9
UCI GAS 1.2GB 18 4.2M 2
UCR 855MB 40–24K 2709 (27K)2 0 (1)3

AMPds2 229M 2–24 1M 0 (1)3

1. This reports the size of the binary uncompressed data (not the text data size). Each measure-
ment value and each timestamp take 8B.
2. Compression tests use the original UCR data sets. In query experiments, we interpolate 9
values between every 2 points to obtain 10x longer series.
3. UCR and AMPds2 do not contain tags. We add a single tag to the time series to support tag
conditions in query experiments.

TS-2DIFF, BUFF [55]), model-based methods (i.e., Sprintz [8] and SZ3 [52]), and the default com-
pression methods in InfluxDB [34], IoTDB [92], and ModelarDB [38]. The source code of BUFF is
from github [73]. We set Buff’s precision to achieve similar error bound as MOST for each column.
For Sprintz, we quantize floating point data into 16-bit integers, then employ its FIRE model and
Huffman encoding to compress the data. We denote the resulting method sprintzFIRE+Huff. We
obtain SZ3 code from github [25]. We compare MostDB with three state-of-the-art TSDBs. For
InfluxDB 2.1.0 [34] and IoTDB 0.11.2 [92], we use their Linux release packages and follow the
default configurations. For ModelarDB [38], we obtain its Rust code from github [66].

Unless otherwise noted, we set the relative error bound 𝜖 = 0.01 in the experiments.
Data sets. Our experiments use five real-world data sets, as summarized in Table 4.
• MSRC-12 [23]: The Microsoft Research Cambridge-12 Kinect gesture dataset consists of se-
quences of human movements and gestures when the subjects are interacting with a video game.
Body part locations are captured at a sample rate of 30Hz.

• PAMAP2 [77, 78]: This data set describes physical activities performed by 9 subjects wearing
3 inertial measurement units and a heart rate monitor with a sample rate of 100Hz and ∼9Hz,
respectively. We replace missing values (i.e., NaN) in the data with linear interpolation based on
the neighbor points.

• UCI GAS [22]: This data set contains gas concentration readings during chemical experiments
at a sample rate of 100Hz.

• UCR [16]: The UCR Time Series Archive (2018) consists of 128 sub-datasets without timestamps
from various domains. Our compression experiments use the original UCR data sets. In query
experiments, since most sub-datasets are short, we interpolate 9 values between every 2 points
to obtain 10x longer time series. Random fluctuations within the error bound are added to the
interpolated values.

• AMPds2 [62]: The data set collects electricity, water, and natural gas measurements at one
minute intervals in a house. The number of measurement columns varies from 2 to 24 in the 38
sub-datasets. There is no tag column.

Three data sets (i.e., PAMAP2, UCR, AMPds2) are used as training data for selecting the optimal
strategy in Section 3.2. We report the experimental results for all five data sets in this section.
The timestamps in the data sets are regular. In the experiments of varying irregular rate of

timestamps, we randomly choose data points to add random timestamp fluctuations.
Queries.We formulate four representative test queries based on the ten common queries in IoT
applications as discussed in Section 4.2. We make sure to have all three kinds of operations on
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Table 5. Test query templates in our experiments.
Description SQL

TQ1 exact point/time range
query select [value] from data where time between ? and tag=?

TQ2 value filter query select [value1] from data where time between ? and [value2
condition] and tag=?

TQ3 aggregation query w/
value filter

select sum/avg(value1) from data where time between ? and [value2
condition] group by [tag]

TQ4 aggregation query w/
two value filters

select sum/avg(value1) from data where time between ? and [value2
condition] and [value3 condition] group by [tag]

measurement values: a) value in select clause (i.e., retrieving decompressed data), b) filter on values,
and c) aggregate of values. Specifically, TQ1 contains a) and represents Q1 and Q2. TQ2 contains
a) and b), and represents Q4. TQ3 and TQ4 both contain b) and c), and represent Q8. Since Q8
combines the functionality of Q6 and Q7, TQ3 and TQ4 essentially cover Q6–Q83. Table 5 lists the
four query types4.
Each data set contains multiple time series or sub-datasets with different lengths. In the query

experiments, the largest range size is at least 104 points. So, we exclude time series shorter than this
size. Then, we randomly generate queries according to the query templates using the remaining
time series. Note that the compression and insertion experiments still use all data in a data set.
TSBSBenchmark.The Time Series Benchmark Suite (TSBS) [89] consists of a set of data generation
tools and queries for evaluating TSDBs. It supports two use cases: dev-ops and IoT. A dev-ops use
case simulates the monitoring of data center machines. We employ the CPU-only dev-ops data
set, which contains 10 CPU metrics. The IoT use case simulates data collected from the trucks in a
fictitious trucking company, which consists of 7 reading metrics and 3 diagnostic columns. For both
use cases, we follow the popular settings in existing TSBS tests [90] to generate time series data
for 100 and 4000 devices at a sample interval of 10 seconds. In all cases, we generate 300 million
records for each time series. We use double for metric values. We set 𝜖 = 0.02 for TSBS.

We choose six representative query types, three for each use case: 1) cpu single-groupby-1-8-1:
compute max(value) for 8 hosts for every 5 minutes in a one-hour period; 2) cpu double-groupby-1:
compute avg(value) per host per hour for a 24-hour period; 3) cpu high-cpu-1: for a chosen host,
find all readings where value > threshold; 4) iot low-fuel: find all trucks with less than 10% fuel; 5)
iot stationary-trucks: find all trucks that are at low average velocity for the last 10 minutes; and
6) iot avg-daily-driving-duration: calculate the average daily driving duration per truck. For each
query type, we generate 1000 random queries. The insertion experiments use both 100-device and
4000-device data sets, while the query experiments focus on the 100-device data sets.

5.2 Compression Performance

Comparison with state-of-the-art compression techniques. Figure 6 reports the compression
ratio of MOST and state-of-the-art compression techniques. Compression ratio is computed as
before-compression size divided by after-compression size. So the higher the better. For Figure 6a–c,
we measure the input and output sizes of the compression techniques. For a data set, we compress
each measurement column separately. Then, we consider the total size of all measurement columns
before and after compression.

3Q6 is less challenging than Q8. Q6 can be efficiently supported by storing pre-computed aggregates for time ranges.
4We omit four queries with (i) limit clauses (Q3, Q5), (ii) latest time point (Q9), and group by on time ranges (Q10). These
operations are tangential to our focus of queries on MOST compressed data. They are not yet supported by the current
prototype.
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Fig. 6. Compression ratio on real-world data sets.

As shown in Figure 6a and Figure 6b, MOST achieves 3.13–9.03x improvements compared to
general-purpose and record-oriented lossless compression methods. The compression ratio of
lossless compression is relatively low because small differences in floating point values can cause
significant changes in the binary representation. Compared with BUFF, MOST attains 1.32–1.83x
improvements. BUFF truncates matissa based on the precision setting. This reduces the impact of
matissa changes on compression ratio. In comparison, MOST exploits linear models with bounded
errors and outlier storage to effectively deal with floating point fluctuations.

Figure 6c compares MOST with state-of-the-art model-based compression techniques with errors.
We see that compared to sprintzFIRE+Huff, MOST is 1.48x–1.94x better. On the other hand, MOST
and SZ3 have comparable compression ratio. SZ3 requires the data to be fully decompressed before
query processing. This incurs poor query performance, as will be shown in Section 5.3.
Comparison with state-of-the-art TSDBs. Figure 6d compares MostDB with InfluxDB, IoTDB,
andModelarDB. Note that MostDB uses InfluxDB as the underlying database. We employ the default
compression settings for InfluxDB and IoTDB, and set the relative error 𝜖 = 0.01 for ModelarDB.
The data size after compression is computed as the disk space consumed by all files in the data
directory, including metadata, and indices on timestamps and tags.
From Figure 6d, MostDB achieves 2.36–4.24x, 2.42–3.37x, 2.02–2.84x higher compression ratio

than InfluxDB, IoTDB, and ModelarDB, respectively. This result shows that MOST can effectively
improve the compression ratio in TSDBs. While also a model-based TSDB, ModelarDB has lower
compression ratio because it starts new segments when encountering outliers, producing a large
number of short segments, adversely impacting the compression ratio.
Ablation study for MOST compression. To understand the benefit of the components in MOST,
we perform an ablation study in Figure 7. We compare the following variants of MOST with
different component removed or replaced: 1) MOST W/O OD removes outlier detection in MOST;
2) MOST(FIXED50) replaces our SC-based dynamic segmentation with FIXED50 (50 points per
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Fig. 7. Ablation study for MOST.
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Fig. 10. Compression performance for TSBS benchmark.

segment); 3) MOST(BUFF) applies BUFF rather than quantized error to encode outliers; and 4)
MOST(SLO32) replaces BFLOAT16 with 32-bit floating point numbers to encode the slopes of linear
models. From Figure 7, we see that all MOST variants show worse compression ratio, indicating the
contribution of the individual techniques to MOST. Specifically, the compression ratio improves
by a factor of 1.92-2.49x with outlier detection, 6.29-8.57x with SC-based dynamic segmentation,
2.07-2.42x with quantized error encoding for outliers, and 1.06-1.10x with BFLOAT16 encoding for
slopes.
Insertion throughput. Figure 8 reports the insertion throughput for the five real-world data
sets. InfluxDB, IoTDB, and ModelarDB use their default compression settings to compress the
data. The throughput is calculated as the original data volume divided by the insertion execution
time. From the figure, we see that compared to InfluxDB, IoTDB, and ModelarDB, MostDB attains
2.65–3.36x, 2.44–2.93x, and 1.86–2.12x higher insertion throughput, respectively. While data is
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Fig. 11. Query processing performance of TQ1-TQ4 (query throughput normalized to that of InfluxDB).

stored in InfluxDB, MostDB sees better insertion performance than InfluxDB because MostDB has
higher compression ratio, and therefore saves a substantial amount of I/O.
Varying error bound. Figure 9 shows compression ratio and insertion throughput while varying
the error bound 𝜖 from 0.0025 to 0.04. The default 𝜖 is 0.01.

From Figure 9a and 9b, we see that both compression ratio and insertion throughput increase as
the error bound increases. This is because there are fewer outliers when the error bound is larger,
which leads to better compression ratio. As the compression ratio increases, the amount of data
to store decreases, and therefore insertion throughput improves. Overall, when 𝜖 increases from
0.0025 to 0.04, the compression ratio increases from 6.90–10.07 to 11.62–21.01. In summary, MOST
compression is capable of achieving high compression ratio.
Compression performance for TSBS benchmark. Figure 10 shows the compression ratio and
the insertion throughput of MostDB and the TSDBs for the dev-ops cpu-only and the IoT use
cases. From the figure, we see that compared to the lossless compression in InfluxDB and IoTDB,
MostDB achieves a factor of 3.28-4.08x improvement for compression ratio. Compared to the lossy
compression in ModelarDB, MostDB improves the compression ratio by a factor of 2.27-2.89x.
Moreover, MostDB achieves 1.84–3.61x better insertion throughput compared to InfluxDB, IoTDB,
and ModelarDB. As the number of devices increases, the insertion throughput decreases. This is
because the underlying DB incurs many random I/O accesses to deal with the various device tags.

5.3 Query Performance
Query performance in default style. Figure 11 reports the performance of TQ1–TQ4 in default
result style. For each query template, we randomly generate 10,000 queries in a data set to form
a query workload. The X-axis varies range size from 102 to 104 points. Since the data in all five
data sets are collected at regular intervals, we can easily convert the range size to the time range.
To generate a query, we first randomly choose the measurement value column(s) according to the
query templates. Specifically, TQ1 requires one value column, TQ2 and TQ3 require two value
columns, and TQ4 requires three value columns. For a value condition, we generate a random
constant value in the column’s value range and create a predicate like 𝑣𝑎𝑙𝑢𝑒 𝜃 𝑐𝑜𝑛𝑠𝑡 , where 𝜃 is
randomly chosen from >, =, and <. We run a generated query workload on a TSDB using a single
thread to issue the queries one at a time, and measure the query throughput in QPS. In the figure,
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Fig. 12. Query execution time in different styles (normalized to time in default style).

we report QPS normalized to that of InfluxDB. We compare InfluxDB, IoTDB, ModelarDB, and
three variants of MostDB with error bound 𝜖 from 0.005 to 0.02.

From Figure 11, we see the following trends. First, when the range size is small, MostDB performs
worse than InfluxDB and IoTDB. This is because the queries retrieve only a small amount of data
with random I/Os. There is little savings on I/O cost, and MostDB pays extra cost for processing
data retrieved from InfluxDB. Interestingly, for the cases where MostDB’s QPS is lower, the query
latency ranges from 0.11ms to 27.47ms. Hence, MostDB can execute these queries sufficiently fast
to support user interactions.
Second, as the range size increases, MostDB achieves significant performance benefits in all

cases. As more data are retrieved, the I/O access becomes more and more sequential. The higher
compression ratio of MostDB leads to smaller I/O costs. Dual-mode query processing further
improves performance. Compared to InfluxDB and IoTDB, MostDB achieves up to 6.22x speedups
for TQ1, 6.63x speedups for TQ2, 11.68x speedups for TQ3, and 5.44x speedups for TQ4. Compared
to ModelarDB, MostDB performs up to 4.99x better. Note that the pure-model computation in
ModelarDB cannot support value predicates because segments may partially satisfy the predicates.
Hence, ModelarDB reconstructs the data points from models for evaluating the queries. In compar-
ison, our dual-mode query engine is capable of combining the processing of models and outliers
for a wide range of queries.

Third, as the error bound increases from 0.005 to 0.02, the query performance improves. This is
because the compression ratio increases as the error bound (cf. Figure 9a), and MostDB retrieves
smaller amount of data from the underlying database.
Finally, TQ4 processes one more value column than TQ3. With more value columns, weaving

generates finer global segments, making segment mode computation less effective. Hence, we see
that TQ4 has lower performance than TQ3.

Overall, we conclude that MostDB supports general-purpose queries on compressed data. It can
bring significant query performance benefits compared to InfluxDB, IoTDB and ModelarDB.
Query performance in detailed styles.We evaluate the three detailed result styles by running
10000 random TQ4 queries on UCI GAS. Figure 12a and 12b report the execution time of the detailed
styles normalized to the default style. We see that the estimation of expectation, deterministic
bounds, and standard deviation all incur additional overhead. Moreover, AVG is slower than SUM
because of the cost of the Monte Carlo simulation for AVG.

As shown in Table 6, the expectation 𝐸 (𝑎𝑔𝑔𝑟 ) is within 0.112%–0.146% of the accurate result 𝑎𝑔𝑔𝑟
computed with the original data. Both the standard deviation and the deterministic bound work
well as expected. This verifies that our computation is reliable. Interestingly, the result 𝑎𝑔𝑔𝑟 ′ in
the default style is already good, which is within 0.189%–0.294% of the accurate result. Moreover,
we compute the distribution error [19] as the 𝐿2 distance between normalized distributions of
the approximate and the accurate group-by results. MostDB achieves low distribution errors (i.e.,

Proc. ACM Manag. Data, Vol. 1, No. N4 (SIGMOD), Article 250. Publication date: December 2023.



MOST: Model-Based Compression with Outlier Storage
for Time Series Data 250:23

Table 6. Accuracy of the aggregation results.
sum query avg query

Accuracy of 𝑎𝑔𝑔𝑟 ′: 𝑎𝑣𝑔( | 𝑎𝑔𝑔𝑟
′−𝑎𝑔𝑔𝑟

𝑎𝑔𝑔𝑟 |) 0.189% 0.294%

Accuracy of 𝐸 (𝑎𝑔𝑔𝑟 ): 𝑎𝑣𝑔( | 𝐸 (𝑎𝑔𝑔𝑟 )−𝑎𝑔𝑔𝑟𝑎𝑔𝑔𝑟 |) 0.112% 0.146%
% within 𝐸 (𝑎𝑔𝑔𝑟 ) ± 3𝜎 98.84% 99.20%
% within deterministic bound 100% 100%
Distribution error 0.278% 0.427%
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Fig. 13. Comparing query performance of MostDB, SZ3 and BUFF. (QPS is normalized to that of SZ3.)

10−4 10−3 10−2 10−10.00

0.25

0.50

0.75

1.00

Irregular Rate

N
or

m
al

iz
ed

 Q
PS

(a) Varying ir-rate (range=104)

102 103 104 105 1060.00

0.25

0.50

0.75

1.00

Range Size

N
or

m
al

iz
ed

 Q
PS

(b) Varying range size (ir-rate=0.1)
Fig. 14. TQ3 with irregular timestamps. (QPS is normalized to that of regular timestamp case.)

0.278% for SUM and 0.427% for AVG) because it incorporates all relevant records in the group-by
aggregate computation rather than using a small sample as in sample-based AQP.
MOST vs. SZ3 and BUFF. MOST and SZ3 have similar compression ratio. BUFF is the most
competitive record-oriented compression method. We compare their query performance. Since
no TSDB supports SZ3, we run the queries fully in memory. Figure 13a shows the performance
of a filter query (TQ2), while Figure 13b reports the performance of an aggregate query (select
sum(value1) from data where time between ? and [value2 condition] and tag=?) (i.e., TQ3
without group by). The line curves show both the mean and the range of normalized QPS over the
five data sets.
From the figures, we see that MOST achieves much better query performance than SZ3. This

is because SZ3 pays the cost to decompress a data block (containing 128 floating point numbers
by default) before computing. BUFF supports progressive filter and aggregate computation on
compressed data. For the filter query, BUFF exploits SIMD to achieve good performance. However,
this is less effective for the aggregation of a scattered subset of records satisfying the value predicate.
In comparison, the dual-mode processing in MostDB can process a segment of data with low cost,
thereby achieving better performance.
Query performance with irregular timestamps. MostDB supports both regular and irregular
time series, as described in Section 4.1. In this set of experiments, we vary both the irregular rate (or
ir-rate) of timestamps and the range size. We randomly choose an ir-rate fraction of data points from
UCI Gas to add random timestamp fluctuations while preserving the time order of the data points.
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MostDB stores the timestamps as a separate column in InfluxDB. The extra space cost reduces
MostDB’s compression ratio slightly from 15.04 to 12.71 in the worst case (i.e., ir-rate=0.1). As
shown in Figure 14a, we see that MostDB pays slight overhead for supporting irregular timestamps.
This corresponds to the cost of calling InfluxDB to convert time ranges to regular id ranges for
a query. As shown in Figure 14a, the conversion overhead stays flat when the ir-rate varies. As
shown in Figure 14b, as the range size increases, the query time increases and the relative overhead
of the conversion decreases drastically (to close zero for large ranges).
Queries in TSBS benchmark. Figure 15 shows the query performance of the TSBS benchmark.
We see similar trends as in Figure 11: MostDB’s performance benefit is higher for queries with
larger time ranges. For double-groupby-1, high-cpu-1, and avg-daily-driving-duration, MostDB
achieves significantly (up to 3.73x) better performance than the other TSDBs. These queries examine
large time ranges, processing a large amount of time series data. For single-groupby-1-8-1 and
stationary-trucks, the time ranges (i.e., 1 hour and 10 minutes) are smaller, and the performance
advantage of MostDB is lower. For low-fuel, it is a point query, reading the latest data. While
MostDB is slightly worse, its query latency is 108.3 ms, which is sufficiently fast to support user
interactions.
MostDB with different underlying DB. Finally, we show the generality of the MostDB design
by porting it to run on top of IoTDB. Figure 16 shows the insertion and query (TQ1) performance of
MostDB-IoTDB. The experiments use the UCI Gas data set and the time range is 104 points. We see
that MostDB-IoTDB achieves similar performance compared to MostDB-InfluxDB. Both MostDB
implementations are faster than InfluxDB.

6 CONCLUSION
In conclusion, we propose and evaluate MOST (Model-based compression with Outlier STorage)
for time series data in this paper. We build a prototype MostDB with a segment-outlier dual-mode
query engine that computes segments as a whole as much as possible. Our experimental results
on five real-world data sets confirm that MOST is capable of supporting high compression ratios,
good data accuracy, general-purpose queries, and high performance queries on compressed data.
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