
iPLUG: Personalized List Recommendation in Twitter

Lijiang Chen1, Yibing Zhao2, Shimin Chen3, Hui Fang4, Chengkai Li5, Min Wang6

1 HP Labs, Beijing, China lijiang.chen@hp.com
2 John Hopkins University, Baltimore, MD, USA zyb009988@gmail.com

3 Chinese Academy of Sciences, Beijing, China chensm@ict.ac.cn
4 University of Delaware, Newark, DE, USA hfang@udel.edu

5 University of Texas at Arlington, Arlington, TX, USA cli@cse.uta.edu
6 Google Research, Mountain View, USA minwang@google.com

Abstract. A Twitter user can easily be overwhelmed by flooding tweets from
her followees, making it challenging for the user to find interesting and useful
information in tweets. The feature of Twitter Lists allows users to organize their
followees into multiple subsets for selectively digesting tweets. However, this
feature has not received wide reception because users are reluctant to invest ini-
tial efforts in manually creating lists. To address the challenge of bootstrapping
Twitter Lists, we envision a novel tool that automatically creates personalized
Twitter Lists and recommends them to users. Compared with lists created by real
Twitter users, the lists generated by our algorithms achieve 73.6% similarity.

1 Introduction
Twitter is an instant content sharing service, through which users share their opinions
and status by posting tweets, i.e., short messages with less than 140 characters. As one
of the most popular social networking services, Twitter boasts over 140 million active
users and more than 340 million tweets per day 1. With Twitter, a user (follower) can
follow other users’ (followees) tweets. A follow operation establishes a subscription-
dissemination channel to send messages from a followee to a follower.

Twitter Lists. Users can easily be overwhelmed by flooding tweets from their followees
since both the number of followees they subscribe to and the number of tweets their
followees post on a daily basis could be very large. Thus, it is critical to help users
organize their followees in order to more effectively digest and access the information
posted by their followees.

Twitter Lists is one useful feature in Twitter for coping with this information over-
load problem. A user can organize her followees into multiple lists, each containing a
subset of followees. She can then opt to view the tweets from the followees in a particu-
lar list, thereby selectively digesting information from the list. A user can also subscribe
to lists created by others without following the users in those lists.

Problem Definition. Albeit a potentially effective tool for social user organization and
information selection in overloaded information space, Twitter Lists has not received
wide reception from users 2. One observation made from our empirical study is that
over 80% of Twitter users have more than 100 followees, but only 35% of them have

1 http://blog.twitter.com/2012/03/twitter-turns-six.html
2 http://moreinmedia.com/2011/12/why-make-use-twitter-lists

created at least one list and only 16% have more than 3 lists (cf. Observation 1). More-
over, among the users who have created lists, 49.6% of them included only less than
5% of their followees into their lists, and 76% of them included less then 10% of their
followees in the lists (cf. Observation 2). This is not surprising, as other social media
and social networks have encountered similar challenges in bootstrapping their services,
including tagging, social bookmarking, and friend recommendation [5, 1, 4]. One par-
ticular reason for the low popularity of Twitter Lists is that users are reluctant to invest
initial efforts in manually creating lists. Another reason is that users may have intrinsic
difficulty in such a fuzzy grouping process.

To tackle the low popularity of Twitter Lists and help achieve its full utility, we
propose to automatically recommend personalized lists to Twitter users. This study can
also shed light on solving similar problems in other leading social network services,
which have features similar to Twitter Lists (e.g., friend lists in Facebook, circles in
Google Plus).

Various definitions of the list recommendation problem may be worth studying. As
an initial step towards effective list recommendation, this paper focuses on a particular
problem definition— Given a Twitter user, recommend to the user new lists consisting
of only the user’s current followees. We consider the problem of recommending new
followees a separate issue. We also do not simply recommend lists subscribed by many
users, as such globally popular lists do not necessarily match a particular user’s personal
interests and social relationships.

Our Solution: iPLUG. We propose a solution that combines two approaches— a
structure-based method and a content-based method, which recommend lists based on
how users are co-listed in existing lists and how similar the contents of users’ tweets
are, respectively. After obtaining the initial list recommendations by the structure-based
method and the content-based method, we improve the accuracy of the recommenda-
tions by performing both inter-list optimization and intra-list optimization. For inter-
list optimization, we diversify top k recommended lists, to achieve a degree of overlap
among these lists similar to the overlap exhibited by existing lists. For intra-list opti-
mization, we study ways to prune unimportant members from the recommended lists.
We call the resulting solution integrated PLUG (iPLUG).

The effectiveness of the proposed techniques is demonstrated by extensive exper-
imental results. We evaluate iPLUG as well as various schemes that consist of only
subsets of the proposed techniques. In a nutshell, the similarity between lists recom-
mended by the proposed methods and those created by real users is as high as 73.6%
for the largest lists and 72.2% for the largest five lists.

2 Characteristics of Twitter Lists Created by Real Users
To understand the characteristics of real lists created by Twitter users and to gain in-
sights towards our technical solution for personalized list recommendation, we collect-
ed a large Twitter data set and conducted a comprehensive study on its various statistics.
Our data set contains 810, 769 Twitter users, 53, 922, 948 lists, and 324 million tweets.
The tweets were posted between December 27th, 2007 and March 21st, 2011. Details
on the collection of the data set shall be described in the experiment section. In the rest
of this section, we introduce our observations from the data set and provide analysis of
the observations.

0

10

20

30

40

50

0 (0,10] (10,
10

2
]
(10

2
,

10
3
]
(10

3
,

10
4
]
(10

4
,

10
5
]
(10

5
,

10
6
]

0.8 2.5

14.8

49.5

29.3

3.0
0.1

Number of followees

(%)

P
e

rc
e

n
ta

g
e

 o
f

u
se

rs

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10 (10,
10

5
]

65.0

12.5

4.0 2.5 2.1 1.9 1.4 1.3 1.1 1.0 0.9
6.4

Number of lists

P
e

rc
e

n
ta

g
e

 o
f

u
se

rs

(%)

(a) Number of followees (b) Number of lists

Fig. 1. Statistics of Twitter lists.

0 20 40 60 80 100
0

10

20

30

40

50

60
(%)

(%)

49.6

26.4

8.3

Pe
rc

en
ta

ge
 o

f l
is

ts

Percentage of list members/followees

0 200 400 600 800 1000 1200
0

20

40

60

80

100

18.1

37.2

48.9
57.5
63.5

List size

(%)

C
u

m
u

la
ti

ve
 p

er
ce

n
ta

g
e

o
f l

is
ts

(a) List coverage (b) List size

Fig. 2. Live coverage and list size.

Observation 1 A Twitter user often follows a large number of other users, but rarely
creates lists.

Figure 1(a) and Figure 1(b) show the distribution of the number of followees of a
user and the distribution of the number of lists created by a user, respectively. From
Figure 1(a), we observe that over 80% of Twitter users have 100 or more followees and
almost half of all users have between 100 and 1000 followees. However, Figure 1(b)
shows that 65% of users do not create any list. Only 16% of users have more than
3 lists, and nearly 93% have less than 10 lists. The sharp contrast between the large
number of followees per user and the low popularity of Twitter Lists motivates our
study of mechanisms for automatic list recommendation.
Observation 2 For users who have created lists, their lists often cover only a small
fraction of their followees.

For those users that have lists, we measured the percentages of their followees in
their lists. The results are shown in Figure 2(a). We observe that the lists created by a
user often cover only a small fraction of the followees of the user. More specifically,
49.6% of the lists contain only less than 5% of the corresponding list owners’ followees
and 76% of the lists cover less than 10% of their followees. We also observe that lists
are typically small in size. Figure 2(b) shows the cumulative distribution of list sizes
(by increment of every 10 lists). The largest list has around 1200 members, while the
most typical list sizes are [1, 10) and [10, 20), accounting for 18.1% and 19.1% of all
the lists, respectively. 63.5% of the lists have less than 50 members. The observed small
coverage and small size of existing lists further motivate the need for an automatic list
recommendation approach.
Observation 3 For users who have created multiple lists, a small number of their
largest lists can cover most of their followees in their lists.

We further investigated the coverage of users’ largest lists. We focused on the users
who created at least 5 lists. For a user, we compute the coverage of her largest k lists
by dividing the number of her followees in her largest k lists by all the followees in her
lists. Figure 3 reports the average coverage across all these users while varying k from 1
to 5. As shown in Figure 3, the largest list of a user covers 34.5% of the followees in her
lists on average, and the largest 5 lists cover an average of 86% of all followees in her
lists. The statistics make it clear that a small number of lists cover most listed followees
for a user. Assuming that creating longer lists takes more efforts, we speculate that users
spend most efforts in creating largest 5 lists, which should be most important to them.
Observation 4 Although a user could put a followee into multiple lists, the number of
overlapped followees among the lists is small.

Top 1 Top 2 Top 3 Top 4 Top 5
0

20

40

60

80

100

34.5

53.2

68.5
78.3

86.2

(%)

Top k lists
Pe

rc
en

ta
ge

 o
f l

is
te

d
fo

llo
w

ee
s

Fig. 3. The coverage of the largest 5 lists.

User Set Top 2 Top 3 Top 4 Top 5
Created > 1 lists 13.2%
Created > 2 lists 13.7% 13.5%
Created > 3 lists 13.1% 12.6% 10.9%
Created > 4 lists 12.7% 11.8% 10.8% 10.0%

Fig. 4. Average redundancy in users’ largest k lists.

We measured the redundancy in a user’s largest k lists l1, . . . , lk as follows:

Redundancy =

∑k
j=1 |lj | − |

∪k
j=1 lj |

|
∪k

j=1 lj |
(1)

where |lj | is the size of list lj , i.e., the number of members in lj . The
∪

denotes the set
union operation.

Note that we only considered the largest k lists because many lists in the long tail
only contain a few members and thus do not have much impact on the measured redun-
dancy. We investigated the redundancy for different k values, ranging from 2 to 5. For
each k value, we calculated the redundancy in the largest k lists, averaged across all
users that have at least k lists. The result is shown in Table 2. We see that overall the
average redundancy is small (10% to 13%) and slightly decreases while k increases.

Observation 3 and Observation 4 provide important characteristics of the lists cre-
ated by real users. Given these characteristics, we aim to develop methods that generate
lists exhibiting similar characteristics.

3 Personalized Twitter Lists Recommendation
Given a Twitter user u, let FEu and FRu denote the set of followees and the set of
followers of u, respectively. Hence, u1 ∈ FEu2 ⇔ u2 ∈ FRu1 . A list l created by
user u is a subset of u’s followees, i.e., l ⊆ FEu. We use Lu = {l1, l2, . . . , lm} to
denote the set of lists created by u. Since a followee can be placed into multiple lists
of u, it is possible that li ∩ lj ̸= ∅. A followee of a user can also be followed by other
users and included in their lists. The set of lists, to which a user u belongs, is denoted
L′
u = {l | u ∈ l}.

Problem Statement: Given a user u and her followees FEu, the problem of list rec-
ommendation is to generate k new lists l1, . . . , lk for u, where li ⊆ FEu and li /∈ Lu

for 1 ≤ i ≤ k.
Note that the problem focuses on recommending top-k lists. It is not necessary that

every followee of a user u is assigned to a new or existing list.

3.1 Solution Overview
We propose two methods to form and rank candidate lists. The structure-based method
exploits the personalized list-user graph (PLUG) of a user and recommends new lists
containing her followees that are often included together in existing lists. The content-
based method recommends lists based on content similarity of the tweets posted by
list members. The two methods are different on two aspects. First, the structure-based
method can only cover listed followees— a user u’s followees that are included in at
least one existing list created by any user, including u. The content-based method can
also cover non-listed followees. Second, the content-based method is explicitly geared
towards recommending interest-oriented lists, in which the list members share similar

u

u1
l1

l2

lm

l3

FEu

l4

l5

l6

un

u3

u2

L

Fig. 5. The PLUG for a user u.

interests on topics (e.g., music and sports) shown by their tweets. The structure-based
method can also recommend relation-oriented lists, in which the list members have
common real-world relations with their follower u (e.g., family, friends, colleagues).

To improve the accuracy of the initial recommendations from these two methods, an
inter-list optimization is applied to diversify recommended top-k lists, and an intra-list
optimization is applied to prune unimportant members from the recommended lists.

We also combine the results from both structure- and content-based methods. The
resulting method is termed integrated-PLUG (iPLUG for short). Suppose the top-k
ranked lists for user u by structure-based and content-based methods are Recs and
Recc, respectively. For each list l ∈ Recs ∪ Recc, its ranking scores in Recs and
Recc are Scoresl and Scorecl , respectively. (Note that Scoresl = 0 if l /∈ Recs and
Scorecl = 0 if l /∈ Recc.) The iPLUG method computes the new ranking score of l by
the following equation. The top-k lists with highest new scores are recommended to u.

Scorel = ηScoresl + (1− η)Scorecl (2)

In Equation (2), η is a regulatory factor (i.e. 0 ≤ η ≤ 1) that controls the contributions
of the two methods to the final result. Larger η values prefer more contributions from
the structure-based method. In our implementation we tested an intuitive value for η,
which is the percentage of u’s listed followees, i.e., η = |{ui|ui ∈ FEu and L′

ui
̸= ∅}|

/ |FEu|. The rationale is that, since the structure-based method can only cover listed
followees, the percentage is used to determine the extent of the method’s effect.

3.2 Structure-Based Method
Personalized List-User Graph (PLUG) The structure-based method takes advantage
of crowd intelligence of Twitter users to recommend new lists. We call two users u1

and u2 co-listed in list l, if both users are members of l, i.e., u1 ∈ l and u2 ∈ l. If an
existing list l co-lists u1 and u2, l’s creator indicates that u1 and u2 are related from her
perspective. Therefore, if u1 and u2 are frequently co-listed by existing lists, then many
existing users agree that u1 and u2 are related. The more frequent that two users are
co-listed, the stronger that they are considered related among Twitter users. We exploit
this intuition in the structure-based method.

Specifically, to recommend lists to a user u, we build a personalized list-user graph
(PLUG) for u. As illustrated in Figure 5, it is an undirected bipartite graph between the
followees of u, depicted as circles, and existing lists created by all users (including u),
depicted as rectangles. An edge between a followee node ui and a list node lj captures
the membership relation ui ∈ lj . Two followees are co-listed in a list if they are both
connected to the list node. The concept of PLUG is defined as follows.
Definition 1 (Personalized List-User Graph).

The personalized list-user graph of a user u, PLUGu = (FEu, L,E), is a bipartite
graph between two node sets FEu and L, where FEu is the set of u’s followees and L
is the set of lists containing u’s followees, i.e., L =

∪
ui∈FEu

L′
ui

. In the edge set E,
each edge captures the membership of a followee ui in a list lj , i.e., E = {(ui, lj) |
ui ∈ FEu, lj ∈ L, ui ∈ lj}.

The algorithm exploits an iterative random walk model [3] to propagate scores on
the bipartite graph. It ranks the followees FEu and the lists L based on their connections
in PLUGu according to the following equations.

st+1
ui

=
∑

lj∈L′
ui

Weight(ui, lj)∑
uk∈FEu

Weight(uk, lj)
Scoretlj (3)

st+1
lj

=
∑

ui∈lj∩FEu

Weight(ui, lj)∑
lt∈L Weight(ui, lt)

Scoretui
(4)

Scoret+1
ui

=
st+1
ui∑

uk∈FEu
st+1
uk

(5)

Scoret+1
lj

=
st+1
lj∑

lk∈L st+1
lk

(6)

In Equations (3) and (4), the score of a followee ui is collected from all lists con-
taining ui, where the score of such a list lj is distributed into its members. The score of
ui collected from lj is according to the transition probability, which captures the impor-
tance of lj to ui. Recursively, the score of a list is collected from all its members, where
the score of a member is distributed into its containing lists. The score of lj collected
from ui is according to the transition probability. Then the scores of followees and lists
are both normalized, by Equations (5) and (6), respectively. The initial score of a fol-
lowee is 1 normalized to the total number of followees. The initial score of a list is the
list size after removing unrelated members, |lj∩FEu|, normalized to the aggregate size
of the lists. With the initial scores of followees and lists, our method iteratively updates
their scores using the above equations. After the scores converge, the algorithm selects
and returns the top k lists with the highest scores as the recommended lists.

Tackling Sparsity of Co-Listed Relation by List Clustering For most users, we find
that their PLUGs are sparse bipartite graphs, since many of the followees are placed in
only a small number of existing lists because of the current low popularity of Twit-
ter Lists. To tackle this sparsity problem of the co-listed relation, we improve the
structured-based method by merging similar lists before the iterative computation of
scores by Equation (3) and (4).

A natural similarity measure between two lists would have been based on the tweet
contents of their members. However, such a similarity measure will only work for topic
interest-oriented lists (e.g., food, music) rather than relation-oriented lists (e.g., col-
leagues in an organization), since the members of a relation-oriented list may not share
the same interests and their tweets may not have similar contents. Such a similarity mea-
sure would increase the significance of interest-oriented lists, while relation-oriented
lists will become relatively less significant. As a result, our algorithm would tend to
recommend only interest-oriented lists, which is undesirable.

Instead, we merge lists according to the similarity of list names, thus making a
balanced improvement for both kinds of lists. We pre-process list names by applying

word stemming. Then we cluster the lists using the edit distance between stemmed list
names as the distance function. Since we do not know the resulting number of clusters,
we prefer hierarchical clustering to k-means. However, a regular hierarchical clustering
algorithm is compute-intensive. Therefore, we instead use a greedy algorithm which
aims to achieve the goal that the distance between any two final clusters is greater
than or equal to a specified threshold Tdist (Tdist = 0.4 in our implementation). The
algorithm randomly chooses a point (i.e., a list name) to form a single-point cluster,
and then iteratively grows the cluster by adding other points whose average distances
to the existing points in the cluster satisfy the threshold Tdist, until no more point can
be included into the current cluster. The algorithm repeats this process to form multiple
clusters. This greedy clustering algorithm computes the pair-wise distance between any
two points at most once, and therefore has worst-case time complexity of O(|L|2).

Finally, we merge the multiple lists in each cluster into one list. The new PLUG of
a user u is a bipartite graph between u’s followees and the merged lists. Each merged
list corresponds to a set of original lists. An edge exists between a followee ui and a
merged list l if ui was in at least one of the constituent lists of l. In our data set, we start
with 53, 922, 948 original lists. The total number of resulting merged lists (clusters) for
all users is 240, 572, a nearly 99.5% reduction from the original lists. The new PLUG
of a user becomes more compact and the extended co-listed relation helps improve our
recommendation algorithm.

A new PLUG may not distinguish the importance of different followees in the
merged lists. It is possible that a followee was included in multiple original lists within
a merged list. For example, consider a musician u1 that is in many music-related lists
created by her fans. Such lists with similar names may be clustered into the same cluster
and merged into a single list. In contrast, another followee u2 may be in only one of the
original lists before merging. It is clear that these two followees u1 and u2 should bear
different importance in the resulting PLUG.

To distinguish the importance of different followees in the merged lists, we enhance
PLUG to edge-weighted PLUG. A weight on an edge between a followee ui and a
merged list lj represents the number of lj’s constituent lists that contain ui:

Weight(ui, lj) = |L0
lj ∩ L′

ui
| (7)

where L0
l is the set of constituent lists of l, i.e., the original lists that were merged

into l. As discussed in the previous section, the edge weights are used to compute the
transition probabilities for the iterative computation.

3.3 Content-Based Method

A limitation of the structure-based method is that it cannot cover non-listed followees—
a user’s followees that are not included into any existing list. This limitation is ampli-
fied by the low popularity of Twitter Lists. To tackle this problem, we also propose a
content-based method that recommends lists based on the semantic similarity between
the followees’ tweets. Hence, this method can cover a non-listed followee as long as the
followee has posted tweets.

To recommend k lists to a user, this method applies the k-means clustering algo-
rithm to cluster a user u’s followees into k clusters by the semantic similarity between
their tweets. A virtual document is generated for each followee ui, by concatenating the

tweets posted by ui. TF-IDF weighting is applied to represent each virtual document as
a vector. The similarity between two followees is the cosine similarity between the cor-
responding two vectors, following the standard vector space model [12]. The clusters,
i.e., new lists of followees, are ranked by the similarity between their centroids and the
vector representing u’s virtual document.

Since the content-based method is based on similarity of tweets, it is explicitly
geared towards recommending interest-oriented lists. It tends to include two followees
into the same list if their tweets exhibit similar topics. The structure-based method can
implicitly recommend both relation-oriented and interest-oriented lists, since it captures
the otherwise complex reasons for two followees to be included into the same list. A
relation-oriented list represents real-world relations between a user and her followees
(e.g., family, friends, colleagues), where the followees in the same list may not share
common interests.

3.4 Inter-List Optimization: Reducing List Redundancy through Diversified
Ranking

Given the ranked lists by both structure- and content-based methods, we discovered
that many top-ranked lists share a large fraction of common members. One reason is
that popular users are likely to be placed into multiple popular lists which makes both
popular users and lists ranked high by our methods. However, we have observed that
real lists created by users do not overlap much (Observation 4). To reduce the overlap a-
mong recommended lists and improve their diversity, we employ a Maximum Marginal
Relevance algorithm [2]. It re-ranks lists by trading off between their original scores
and diversity.

Scoredl = Argmax
l∈S

[λScorel − (1− λ)max
li∈L

Sim(l, li)] (8)

The new score of a list, Scoredl , is calculated by Equation (8). Suppose L is the set
of selected lists so far. We are to select the next list among a set of candidate lists S.
Scorel is the score of a list l, by Equation (2). Sim(l, li) is the similarity between two
lists. (Specifically, we use Jaccard similarity, i.e., Sim(l, li) =

|l∩li|
|l∪li| .) λ is the parameter

to balance the original list score and list diversity. A proper λ value is selected through
experiments. According to Observation 4, the redundancy of the real lists created by
users is about 10–13%. In choosing a proper value of λ, we set the list redundancy
round 10%, because our goal is to make recommended lists exhibit similar statistics to
that of the lists created by real users. Our diversification method chooses the list with
the highest original score as the first recommended list, then iteratively applies Equation
(8) to recommend the next list, until k lists are selected.

3.5 Intra-List Optimization: Pruning Unrelated Members from Merged Lists
Both structure-based and content-based methods may produce long lists, especially due
to clustering and merging of original lists. The resulting merged lists may contain many
members that have little relevance to the lists. They might be included just because
they were co-listed with other members that are more relevant. For example, a followee
uf may be put into a list by another user u with whom she happened to play tennis
once. The followee uf in fact may not like tennis that much. However, since the list
also contains many other followees that are true tennis fans, uf may be included in a

merged list corresponding to the tennis interest of u. In another example, user u1f may
be listed by a user u1 in a list named “colleague”, while user u2f may be listed by a
user u2 in a list that happens to have the same name “colleague”. Our list clustering
algorithm will merge the two lists and u1f and u2f will be co-listed in the resulting
merged list although they are not quite related.

Given a result list produced by the structure-based or content-based method, we
compute a ranking score for each individual followee ui in the list. With regard to
the content-based method, the ranking score captures the relevance of an individual
followee to the list. We compute the score as the cosine similarity between the vectors
corresponding to the centroid of l and ui. Recall that the vectors model the tweets posted
by the users.

Scorec(ui, l) = Cosine(V ectorui , V ectorl) (9)

With regard to the structure-based method, the ranking score is the sum of co-
occurrence counts for ui and all other members in l, given by the following equation:

Scores(ui, l) =
∑

uj∈l∧ui ̸=uj

|L′
ui

∩ L′
uj
| (10)

We sort the followees in a list l by their ranking scores according to the above
definitions, and then find a threshold t to divide the sorted followees into two classes,
members (Cm = {u1, . . . , ut}) and non-members (Cn = {ut+1, . . . , u|l|}). We then
prune all non-members from the list. Instead of tuning a pruning threshold by experi-
ments and using the same threshold invariably for all lists, we apply the Otsu Threshold-
ing Method [10] to automatically select an optimum threshold. This method is widely
used for threshold selection from gray-level histograms in computer vision and image
processing. The idea is to exhaustively search for the threshold t that minimizes the
weighted intra-class variance for the two classes, defined as follows:

σ2
w(t) = ωCm(t)σ2

Cm
(t) + ωCn(t)σ

2
Cn

(t) (11)

where weights ωCm(t) and ωCn(t) are the probabilities of the two classes separated
by the threshold t, which are given by ωCm(t) = Pr(Cm) =

∑t
i=1 pi and ωCn(t) =

Pr(Cn) =
∑|l|

i=t+1 pi, where pi is a normalized probability based on the followee’s
score Score(ui, l). σ2

Cm
(t) and σ2

Cn
(t) are the variances of scores in the member class

and the non-member class, respectively. More details of this method can be found
in [10].

4 Evaluation
4.1 Experimental Design
Twitter Data Set We collected a Twitter data set through the Twitter API. Our imple-
mentation is based on an open source Java library– twitter4j3.

We started with around 10 thousand randomly selected seed Twitter users. We call
them level-1 users. We retrieved all the followees of the level-1 users. We call these
followees level-2 users. We also retrieved all the followees of the level-2 users, which
we call level-3 users. The union set of all level-1, level-2, and level-3 users is our Twitter
user set. For each user in the set, we crawled the user’s Twitter Lists, her followees, her

3 http://twitter4j.org/en/index.jsp

Table 1. Overview of list recommendation methods to evaluate.
Basic Model List Merging Diversification Member Pruning (Sec 3.5) Integration

Algorithm Structure
(Sec 3.2)

Content
(Sec 3.3) (Sec 3.2) (Sec 3.4) User

Co-occurrence
Tweet

Similarity Model (Sec 3.1)

Content
√

Content-Div
√ √

Content-LMP
√ √ √

PLUG-Basic
√

PLUG-Merge
√ √

PLUG-Div
√ √ √

PLUG-LMP
√ √ √ √

iPLUG
√ √ √ √ √ √ √

followers, and her latest 3, 200 tweets4. The collected data set contains 810, 769 Twitter
users, 53, 922, 948 Twitter lists, and 324 million tweets. The earliest tweet was created
on December 27, 2007 and the latest one was dated March 21, 2011.

We studied the characteristics of Twitter lists on the full data set. To quantitatively
evaluate the effectiveness of the proposed methods, we construct an evaluation data set
based on the collected data. The evaluation set contains a focus group with 8, 614 users
and together they have 550, 793 followees. Our task is to recommend personalized lists
for each user in the focus group based on his or her followees. The real lists created by
these users are used as ground truth for our evaluation. The number of lists created by
these users is 20, 016. On average around 25% followees of a user in the focus group
have been included in the lists.

Methods To Be Evaluated Several list recommendation methods are formed by com-
bining the proposed techniques. Table 1 summarizes the techniques included in these
methods which are compared in the evaluation.

Evaluation Methodology When evaluating the above algorithms, we hide all the origi-
nal lists created by users from the focus group and generate recommended lists for each
of them. We then compare the recommended lists with the original ones. The reported
performance is computed by taking the average of the performance for all the users in
the focus group. Since we observed that the largest 5 lists of a user often cover 86% of
the followees, we focus on comparing the top 5 recommended lists with the largest 5
lists created by users. In order to better understand the performance of our algorithms,
we evaluate the results under two scenarios: (1) Member Set (M-Set): We recommend
lists based on the followees who were list members in the original lists. (2) Full Set
(F-Set): We recommend lists based on all the followees of a user.

We report the following measures in our evaluation:

• Redundancy: As defined in the previous section, it is a measure to quantify the over-
laps among a set of lists. The statistics in Observation 4 show that the redundancy from
the largest 2 to the largest 5 original lists are stably around 10%. Therefore, in our
experiments, we choose a proper λ setting to keep the redundancy around 10%.

• List similarity: We measure the similarity between two lists by Jaccard coefficient,
i.e., Sim(li, lj) =

|li∩lj |
|li∪lj | . With this definition, the larger the similarity value is, the

more similar the two lists are. To calculate the similarity between two sets of lists, we
compute the average pairwise-similarity of all list pairs from the two sets.

4 Due to Twitter API constraint, we can only retrieve at most 3200 tweets of a given user.

Table 2. Experimental results of the top-1 lists.

Algorithm Precision Recall F1 Similarity
Content 0.321 0.276 0.297 0.295
Content-LMP 0.533 0.552 0.544 0.532
PLUG-Basic 0.051 0.065 0.095 0.048
PLUG-Merge 0.456 0.393 0.357 0.359
PLUG-LMP 0.694 0.757 0.724 0.727
iPLUG 0.718 0.742 0.731 0.736

Table 3. List similarity results on Member Set.

Algorithm top-2 top-3 top-4 top-5
Content 0.354 0.372 0.319 0.273
Content-Div 0.457 0.482 0.441 0.424
Content-LMP 0.556 0.581 0.612 0.574
PLUG-Basic 0.043 0.034 0.036 0.026
PLUG-Merge 0.456 0.393 0.357 0.359
PLUG-Div 0.563 0.592 0.601 0.552
PLUG-LMP 0.731 0.729 0.705 0.690
iPLUG 0.735 0.746 0.733 0.722

Table 4. List similarity results on Full Set.

Algorithm top-2 top-3 top-4 top-5
Content 0.143 0.153 0.139 0.086
Content-Div 0.238 0.253 0.261 0.251
Content-LMP 0.321 0.357 0.365 0.343
PLUG-Basic 0.012 0.009 0.009 0.008
PLUG-Merge 0.216 0.203 0.197 0.199
PLUG-Div 0.275 0.291 0.286 0.285
PLUG-LMP 0.436 0.462 0.476 0.426
iPLUG 0.452 0.508 0.542 0.524

Table 5. Redundancy of recommended lists.

Algorithm top-2 top-3 top-4 top-5
Content 73.5% 71.4% 69.2% 67.4%
Content-Div 18.6% 17.5% 16.6% 15.9%
Content-LMP 14.5% 13.1% 12.4% 11.3%
PLUG-Merge 72.4% 70.6% 68.2% 67.3%
PLUG-Div 16.2% 15.8% 14.6% 13.3%
PLUG-LMP 13.1% 12.4% 11.6% 9.9%
iPLUG 11.2% 10.3% 9.6% 9.3%

4.2 Experiment Results

Top-1 List Recommendation Results As shown in Observation 3, the largest list (top-
1) covers more than 1

3 followees of a user on average. Thus, it is the most representative
list of a user. We compare the members of this list with the members of the top-1
recommended list, in terms of precision, recall, F1-measure and list similarity. The
results on M-Set are shown in Table 2. We omit all results of Content-Div and PLUG-
Div because in our experiments the diversification algorithm always selects the top-1
list as the first candidate to recommend. We also omit the results on F-Set because they
exhibit similar trend.

Table 2 shows that the iPLUG algorithm outperforms other algorithms in terms of
precision, F1-measure, and list similarity. It achieves slightly worse recall compared to
PLUG-LMP, but is dramatically better than other algorithms. Overall, iPLUG achieves
73.6% in list similarity and 73.1% in F1-measure. We also see that the performance of
the PLUG-Basic model is poor due to the sparsity of the co-listed relation. List merging
can effectively improve the performance of PLUG-Basic by about 5 to 10 times. Then
list member pruning yields as much as 200% improvement in performance, indicating
that irrelevant members often exist in the initial recommended lists.

Top-2 to top-5 Recommended Lists The list similarity for top-2 to top-5 recommend-
ed lists for M-Set and F-Set are shown in Table 3 and Table 4. The two tables exhibit
result trends similar to those in Table 2. Overall, the iPLUG algorithm achieves the best
performance among all the methods. PLUG-LMP is quite close to iPLUG. There is only
a 4% performance difference between iPLUG and PLUG-LMP on M-Set. This means
that PLUG-LMP is good enough for most users in M-Set.

Comparing Table 3 with Table 4, we see that the performance of all algorithms
deteriorates on F-Set. iPLUG is significantly better than all other methods, including
the second best PLUG-LMP. The improvement of iPLUG compared with PLUG-LMP
on F-Set is as much as 20%. It indicates that the content-based method has significant
effect on iPLUG’s performance when non-listed followees exist.

Diversification To show the effectiveness of the technique of diversified list ranking,
we compare the redundancy of the recommended lists of our major algorithms and
show the results of top-2, 3, 4, 5 lists in Table 5. We find that the redundancy of PLUG-
Div and Content-Div decreases by more than 70%, compared with PLUG-Merge and
Content, respectively. This demonstrates the effectiveness of our diversified list ranking
technique.

From results shown in Table 3 and Table 4, we see that the list similarity of both
PLUG-Div and Content-Div improves significantly compared to PLUG-Merge and Con-
tent. The performance gap increases as k increases. The reason is that the top-k recom-
mended lists are highly redundant before diversification. For example, the redundancy
is 67–73% in the lists recommended by PLUG-Merge and Content. With diversified
ranking, we are able to keep the redundancy to a relatively low level (around 10%),
which is near the level of the lists created by real users.

4.3 Parameter Sensitivity Analysis
Parameter Settings of λ In our diversified list ranking algorithm, the parameter λ
plays the role of balancing list ranking from basic models (structure-based and content-
based) and list diversification. As discussed earlier, the redundancy of lists captures
list diversification. Two lists with less redundant members are considered more diverse.
Therefore, we vary λ from 0 to 1, and report the redundancy of the top-k (k = 3, 4, 5)
recommended lists, as shown in Figure 6(a). We see that λ has significant impact on
the redundancy of the results. According to the statistics discussed in Observation 4,
the redundancy of original lists in the real data is around 10%. From the results of
Figure 6(a), it is clear that when λ is around 0.3, the redundancy of our recommended
lists is close to 10%.

To understand the impact of the settings of λ on list similarity, we compute list
similarity between the largest 5 original lists and the top-5 recommended lists while
varying λ values for both M-Set and F-Set. The results of both structure-based and
content-based algorithms are shown in Figure 6(b). The results indicate that the PLUG-
Div and Content-Div algorithms achieve the best performance on M-Set when λ = 0.3.
On F-Set Content-Div achieves the best performance when λ = 0.4. That is to say,
setting λ to 0.3 (or 0.4) results in recommending lists most similar to the ones created
by real users. Therefore, we set λ = 0.3 in our experiments.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

λ

re
d

u
n

d
an

cy

Top3

Top4

Top5

(a) List redundancy

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

λ

si
m

il
a

ri
ty

PLUG−Dvi(mem)

Content−Dvi(mem)

PLUG−Dvi(full)

Content−Dvi(full)

(b) Similarity of top-5 lists
Fig. 6. Impact of λ values on list recommendation.

Parameter Settings of η We study the impact of different settings of η on the per-
formance of the integration algorithm (iPLUG). η is the factor that controls the contri-
butions of the structure-based model and the content-based model to iPLUG. A larger

η indicates that iPLUG sees higher contribution from the structure-based model, and
lower contribution from the content-based model. We vary η from 0 to 1 and report
the corresponding list similarity of iPLUG. Figure 7 shows the list similarity results of
top-1 and top-5 lists. When η = 0, iPLUG becomes the content-based model. On the
other hand, when η = 1, iPLUG uses only the structure-based model.

As we see in Figure 7, the performance monotonically increases from η = 0 to the
peak (η = 0.7 on M-Set and η = 0.6 on F-Set). Afterwards, it decreases and finally is
equal to the performance of PLUG-LMP algorithm (η = 1). That is, η has significant
impact on the performance of iPLUG. It also shows the trend that generally taking in
more contribution of the structure-based model results in better performance for iPLUG.
The best setting of η for both top-1 and top-5 cases on M-Set are 0.7 while on F-Set are
0.6, we therefore set η = 0.7 and 0.6 respectively in our experiments.

As mentioned before, an intuitive value for η is the proportional of the followees
who are listed, i.e., η = τ

|FEu| , where τ is the number of the followees that appear in at
least one list. This method prefers more contribution from the structure-based model if
a user has a larger fraction of listed followees. We set η separately for each individual
user using this method. The results are shown as the black dash line in Figure 7. We
see that in all four figures, the performance of this setting is between the performance
of the settings of η = 0.3 and η = 0.4. The reason is that in our data set only 24.52%
of followees of the focus group users have been listed. That is on average the iPLUG
model takes only 24.52% of contribution from the PLUG model, and the fine-grained
η settings for each user improves the performance more than a fixed setting of η = 0.3.
However, we observe that it is far from the best performance result in our data set.
Hence, η = τ

|FEu| is not an optimal setting for η.

0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

η

si
m

il
a

ri
ty

iPULG

PULG−LMP

Content−LMP

η=f(τ)

0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

η

si
m

ila
rit

y

iPULG
PULG−LMP
Content−LMP
η=f(τ)

0 0.2 0.4 0.6 0.8 1
0.3

0.35

0.4

0.45

0.5

η

si
m

ila
rit

y

iPULG
PULG−LMP
Content−LMP
η=f(τ)

0 0.2 0.4 0.6 0.8 1
0.3

0.35

0.4

0.45

0.5

0.55

0.6

η

si
m

ila
rit

y

iPULG
PULG−LMP
Content−LMP
η=f(τ)

(a) Top-1, M-Set (b) Top-5, M-Set (c) Top-1, F-Set (d) Top-5, F-Set

Fig. 7. Impact of η values on lists similarity.
5 Related Work
Our goal is to help Twitter users automatically group their followees and put them into
different lists. The problem is similar to a recent study on classifying users accordingly
to their interests [11]. This study is limited to bifacial interests detection such as de-
tecting whether a user is democrat or republican or whether a user likes Starbucks or
not in business affinity detection. Twitter List can be considered as a tag for each fol-
lowee. Tag and Tag-based entity (e.g. photos, music, videos, web pages) classification
or clustering [9, 6, 15] have been used to improve the performance of web page index-
ing, music categorization, news filtering and content recommendation. Compared with
these studies, the difference of our method is to take advantage of both structural and
content information for list recommendation.

Social recommendation is becoming prevalent in online services [1, 14, 7]. Social
tags help users better understand, interact with and propagate variety of content. How-

ever, user-generated tags with uncontrolled vocabulary can sometimes be ambiguous,
obscure, inadequate and redundant. To tackle this problem, [13] proposed a personal-
ization algorithm based on content-dependent variant of hierarchical tag clustering. We
observed the same drawback of list names as [13] discovered with user-generated tags.
Also, the topic selection algorithm in [8] helps to eliminate the redundancy between
topics and focus on the important ones. In our algorithm, instead of using the semantic
information from list name, we take advantage of the information of users and lists.

6 Conclusions and Future Work
In this paper, we propose the iPLUG algorithm for recommending lists for Twitter users,
which leverages both the structure of list-user graphs and the tweets of users. Experi-
ments over a Twitter dataset show that iPLUG is capable of recommending lists similar
to the ones created by real users. There are many interesting directions for future work.
First, it is interesting to study how to help users automatically discover and add new
followees to existing lists. Second, it would be interesting to study how list recommen-
dation changes user behavior on Twitter.

Acknowledgments. The work of Li is partially supported by NSF grants 1018865,
1117369, and 2011, 2012 HP Labs Innovation Research Award.

References

1. F. Belém, E. Martins, T. Pontes, J. Almeida, and M. Gonçalves. Associative tag recommen-
dation exploiting multiple textual features. In SIGIR, 2011.

2. J. Carbonell and J. Goldstein. The use of mmr, diversity-based reranking for reordering
documents and producing summaries. In SIGIR, 1998.

3. H. Deng, M. R. Lyu, and I. King. A generalized co-hits algorithm and its application to
bipartite graphs. In SIGKDD, 2009.

4. Z. Guan, C. Wang, J. Bu, C. Chen, K. Yang, D. Cai, and X. He. Document recommendation
in social tagging services. In WWW, 2010.

5. I. Guy, N. Zwerdling, I. Ronen, D. Carmel, and E. Uziel. Social media recommendation
based on people and tags. In SIGIR, 2010.

6. A. Khudyak and O. Kurland. Cluster-based fusion of retrieved lists. In SIGIR, 2011.
7. C. Lu, X. Hu, X. Chen, J.-R. Park, T. He, and Z. Li. The topic-perspective model for social

tagging systems. In SIGKDD, 2010.
8. R. Matthew, W. Claudia, S. Markus, and A. Harith. Measuring the topical specifficity of

online communities. In ESWC, 2013.
9. B. Meeder, B. Karrer, A. Sayedi, R. Ravi, C. Borgs, and J. Chayes. We know who you

followed last summer: inferring social link creation times in twitter. In WWW, 2011.
10. N. Otsu. A threshold selection method from gray-level histograms. In IEEE TSMC, 1979.
11. M. Pennacchiotti and A.-M. Popescu. Democrats, republicans and starbucks afficionados:

user classification in twitter. In SIGKDD, 2011.
12. G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing. Commun.

ACM, 1975.
13. A. Shepitsen, J. Gemmell, B. Mobasher, and R. Burke. Personalized recommendation in

social tagging systems using hierarchical clustering. In RecSys, 2008.
14. P. Venetis, G. Koutrika, and H. Garcia-Molina. On the selection of tags for tag clouds. In

WSDM, 2011.
15. Z. Yin, R. Li, Q. Mei, and J. Han. Exploring social tagging graph for web object classifica-

tion. In SIGKDD, 2009.

