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Abstract

Over the past decade, new solid state storage technologiéis flash being the most mature one,
have become increasingly popular. Such technologies digedurably, and can alleviate many hand-
icaps of hard disk drives (HDDs). Nonetheless, they havg diferent characteristics compared to
HDDs, making it challenging to integrate such technolognts data intensive systems, such as database
management systems (DBMS), that rely heavily on underbtimmgge behaviors. In this paper, we ask
the question: Where and how will flash be exploited in a DBM&@écribe techniques for making
effective use of flash in three contexts: (i) as a log devic&dnsaction processing on memory-resident
data, (ii) as the main data store for transaction processand (iii) as an update cache for HDD-resident
data warehouses.

1 Introduction

For the past 40 years, hard disk drives (HDDs) have been fitdirtguiblocks of storage systems. The mechan-
ics of HDDs rotating platters dictate their performanceit@tions: latencies dominated by mechanical delays
(seeks and rotational latencies), throughputs for randoresses much lower than sequential accesses, inter-
ference between multiple concurrent workloads furtheraldigg performance [25], etc. Moreover, while CPU
performance and DRAM memory bandwidth have increased expa@ily for decades, and larger and deeper
cache hierarchies have been increasingly successful iimghidain memory latencies, HDD performance falls
further and further behind. As illustrated in Table 1, HDBahdom access latency and bandwidth have im-
proved by only 3.5X since 1980, their sequential bandwidgsIfar behind their capacity growth, and the ratio
of sequential to random access throughput has increasealdL9 f

New storage technologies offer the promise of overcomimgpierformance limitations of HDDs. Flash,
phase change memory (PCM) and memristor are three suchotegies [7], with flash being the most ma-
ture. Flash memory is becoming the de facto storage mediunmdoeasingly more applications. It started as
a storage solution for small consumer devices two decadesrd) has evolved into high-end storage for per-
formance sensitive enterprise applications [20, 21]. Tdeeace of mechanical parts implies flash is not limited
by any seek or rotational delays, does not suffer mechafddate, and consumes less power than HDDs. As
highlighted in Table 1, flash-based solid state drives (§3D# the latency and bandwidth gap left by HDDs.
SSDs also provide a low ratio between sequential and randoesa throughptit The time to scan the entire
device sequentially is much lower than modern HDDs, closeftat it was in older HDDs.
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Table 1: Comparison of Hard Disk Drives (1980, 2010) andhr@gves (2010)

Device Capacity | Cost | Cost/MB | Random Access Random Access | Sequential Accesy Sequential BW /| Device Scan

& Year (GB) $) %) Latency (ms) | Bandwidth (MB/s) | Bandwidth (MB/s) Random BW (s)
HDD 1980 0.1 20000 200 28 0.28 1.2 4.3 83
HDD 2010 1000 300 0.0003 8 0.98 80 81.6 12500
SSD 2010 100 2000 0.02 0.026 300 700 2.3 143

Sources: Online documents and presentations [13], venebsites and other sources [18].

Flash devices, however, come with certain limitations efrtbwn. There is an asymmetry between random
reads and random writes [3, 6, 23], with the latter incur@gngerformance hit due to the specifics of the flash
technology [2, 6]. Newer SSDs [16, 19] mitigate this perfanoe hit, but random writes still have a negative
impact on the future performance of the device. Interebtimgquential writes not only offer good performance
but in many cases repair device performance after extenandom writes [26]. Finally, flash cells wear out
after 10K—100K writes to the cell.

The differences between HDDs and SSDs are particularly itapbin Database Management Systems
(DBMS) because their components (query processing, gqueignization, query evaluation) have been tuned
for decades with the HDD characteristics in mind. Speclificedndom accesses are considered slow, sequential
accesses are preferred, and capacity is cheap. Thus, iaghseiccessful integration of flash requires revisit-
ing DBMS design. Currently, flash usage in DBMS follows twenttls, resulting either in flash-only systems
or in hybrid flash-HDD systems. Flash-only systems beneéiaty from flash-friendly join algorithms [29],
indexes [1, 8, 23, 24], and data layout (this paper). Hylbygtesms use flash judiciously to cache either hot or
incoming data or for specific operations [9, 14].

In this paper we describe techniques for using flash to opirdata management in three different settings,
covering DRAM-resident, SSD-resident, and HDD-resideatbicstores. Each technique represents an exam-
ple of how flash can be used within current systems to addhes$inbitations of HDDs. First, we consider
transaction processing on a memory-resident data stodeslaw how to use flash for transactional logging,
dramatically improving transaction throughput (Sectioh)2 Second, a straightforward way to use flash is to
replace all the HDDs with SSDs without changing the DBMSwaft. In this scenario flash addresses the per-
formance limitations of HDDs but poses new challenges tmxaMcessive random writes degrade performance
and wear out the flash storage prematurely. To overcome thedlenges, we present a technique that leaves a
DBMS unchanged and yet avoids random writes on flash (Se2t)n Third, we show how flash can be used
as a performance booster for data warehouses stored gyimarHDDs. Specifically, we describe techniques
for buffering data updates on flash such that (i) for perfaroea queries process the HDD-resident data without
interference from concurrent updates and (ii) for corressn the query results are adjusted on-the-fly to take
into account the flash-resident updates (Section 3). kina# conclude by highlighting techniques and open
problems for other promising uses of flash in data manage(Seation 4).

2 Efficient Transaction Processing Using Flash Devices

In this section we describe how flash can be used effectivelhe context of online transaction processing
(OLTP). We show that the absence of mechanical parts malssdlaefficient logging device and that using
SSDs as a drop-in replacement for HDDs greatly benefits fraghifriendly data layout.

2.1 Using Flash for Transactional Logging

Synchronous transactional logging, in which log recoréSarced to stable media before a transaction commits,
is the central mechanism for ensuring data persistency ecaverability in database systems. As DRAM
capacity doubles every two years, an OLTP database that evesidered “large” ten years ago can now fit
into main memory. For example, a database running the TP@Chbeark with 30 million users requires
less than 100GB space, which can easily fit into the memoryseinzer (64—128GB of memory). In contrast,
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Figure 1: FlashLogging architecture: exploiting an
array of flash devices and an archival HDD for faster
logging and recovery.
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Figure 2: FlashLogging TPCC performance.

synchronous logging requires writing to stable media, arddfore is becoming increasingly important to OLTP
performance. By instrumenting a MySQL-InnoDB running TR@E find that synchronous logging generates
small sequential I/O writes. Such write patterns are iitesiifor an HDD because its platters continue to rotate
between writes and hence each write incurs nearly a fultiootal delay to append the next log entry. Because
flash supports small sequential writes well, we proposehElagging [10] to exploit flash for synchronous
logging.

FlashLogging Design. Figure 1 illustrates the FlashLogging design. First, wel@kpnultiple flash devices

for good logging and recovery performance. We find that theseotional striping organization in disk arrays
results in sub-optimal behavior (such as request splittingkipping) for synchronous logging. Because our
goal is to optimize sequential writes during normal operaiand sequential reads during recovery, we instead
propose arunconventionahrray organization that only enforces that the LSNs (logisage numbers) on an
individual device are non-decreasing. This gives the makiihexibility for log request scheduling. Second,
we observe that write latencies suffer from high variance @umanagement operations (such as erasures) in
flash devices. We detect such outlier writes and re-issua theother ready flash devices, thus hiding the long
latencies of outliers. Third, the flash array can be implewetteither with multiple low-end USB flash drives,
or as multiple partitions on a single high-end SSD. Finadlyr solution can exploit an HDD as a near-zero-
delay archival disk. During normal processing, flash-residog data is flushed to the HDD once it reaches a
predefined size (e.g., 32KB). Logging performance is impdovecause the HDD can also serve write requests
when all the flash drives are busy.

Performance Evaluation. We replace the logging subsystem in MySQL/InnoDB with Flagiging. Figure 2
reports TPCC throughput in new order transactions per mi(N©OTPM), comparing 14 configurations. “Disk”
represents logging on a 10k rpm HDD, while “ideal” enableswhite cache in “disk” (violating correctness)
so that small synchronous writes achieve almost ideal ¢gtellVe evaluate three low-end USB flash drives
(A, B, and C) from different vendors; “2f” uses two identidkdsh drives, and “2f-1d” is “2f” plus an archival
HDD. We also employ a single high-end SSD either directlyhwiite original logging system (“naive”), or
with FlashLogging while using multiple SSD partitions (Dartitions) as multiple virtual flash drives. From
Figure 2, we see that (i) FlashLogging achieves up to 5.7Xavgments over traditional (HDD-based) logging,
and obtains up to 98.6% of the ideal performance; (ii) théoogd archival HDD brings significant benefits; (iii)
while replacing the HDD with an SSD immediately improves TPtroughput by 3X, FlashLogging further
exploits the SSD’s inner parallelism to achieve an addaidn4X improvement; and (iv) when compared to
the high-end SSD, multiple low-end USB flash drives achiempmarable or better performance at much lower
price.

2.2 Transparent Flash-friendly Data Layout

Using flash as persistent storage medium for a DBMS oftersléa@xcessive random writes, which impact
flash performance and its predictability. In Figure 3(a) wargify the impact of continuous 4K random writes
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Figure 3: Experiments with a FusionlO SSD as (a) drop-inaegient of HDDs and (b) using Append/Pack.

on FusionlO [16], a high-end SSD. We find that the sustainemlitihout is about 16% of the advertised random
throughput. At the same time, sequential writes can fix remd®ad performance [26].

Transforming Temporal Locality To Spatial Locality. Viewing SSDs as append logs helps us exploit the good
sequential write bandwidth when writing. Consequentlgmperal locality is transformed to spatial locality and
thus sequential reads are transformed to random readstrahggormation helps overall performance, because
unlike HDDs, flash offers virtually the same random and saetjakeread performance.

Append/Pack (A/P) Design.The A/P data layout [26] treats the entire flash device as aTég dirty pages
that come out of the buffer pool to be stored persistentlyagmended in the flash device and an index is kept
in memory maintaining the mapping between the databaseiga® the location in the log. The A/P layer
exports to the overlying device a transparent block devistraction. We implement a log-structure data layout
algorithm that buffers the dirty pages and writes them irckdoequal to the erase block size in order to optimize
write performance. A/P organizes, as well, a second lag:tired region of the device that is used for the
packing part of the algorithm. During the operation of theteyn, some logical pages are appended more than
once (i.e., the pages are updated, having multiple versiotie log). In order to keep track of the most recent
version of the data, we invalidate the old entry of the pagbenin-memory data structure. When the log is close
to full with appended pages, we begiacking that is, we move valid pages from the beginning of the lodnéo t
second log-structure assuming these pages are not updatadoing period ¢old pages The premise is that
any (write-)hot page should be invalidated and all remaimiages are assumed to be cold. The cold pages are
appended in a second log-structure to ensure good seduymrfiarmance and, thus, fast packing of the device.

Experimentation and Evaluation. We implement A/P as a standalone dynamic linked library wltan be
used by any system. The A/P library offers the typipelrite and pread functions but manipulates writes as
described above. We experimented with a PCle Fusion ioleave [16]. The flash card offers 160GB capacity,
and can sustain up to 700MB/s read bandwidth and up to 350&j{sential write bandwidth. Serving a
TPCC-like workload using the A/P design, we maintain stgg@dormance (in a read/write mix) achieving the
max that the device could offer (400MB/s throughput as alredicombining reads and writes), as shown in
Figure 3(b). When compared to the performance of a TPCCeystethe same device but without A/P, we
achieved speedups up to 9X [26].

3 Flash-enabled Online Updates in Data Warehouses

In this section, we investigate the use of flash storage ad@pance booster for data warehouses (DW) stored
primarily on HDDs, because for the foreseeable future, HBillsemain much cheaper but slower than SSDs.
We focus on how to minimize the interference between updatdsjueries in DWSs.

While traditional DWs allow only offline updates at nightetheed for 24x7 operations in global markets and
the data freshness requirement of online and other quigldgting businesses make concurrent online updates
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Figure 4: MaSM design and performancé/ = /|| SSD||)

increasingly desirable. Unfortunately, the conventiompiproach of performing updates in place can greatly
disturb the disk-friendly access patterns (mainly, setigkeacans) of large analysis queries, thereby slowing
down TPCH queries by 1.5-4.0X in a row-store DW and by 1.2¢4m0a column-store DW [4]. Recent work
studieddifferential updategor addressing this challenge in column store DWs [17, 2T basic idea is (i) to
cache incoming updates in an in-memory buffer, (ii) to taie ¢ached updates into account on-the-fly during
qguery processing, so that queries see fresh data, and(iiijgrate the cached updates to the main data when
the buffer is full. While significantly improving performae, these proposals require large in-memory buffers
in order to avoid frequent, expensive update migrationst dadicating a large amount of memory solely
to buffering updates significantly degrades query openagoformance, because less memory is available for
caching frequently accessed structures (e.g., indicesiidermediate data (e.qg., in sorting, hash-joins).

Exploiting Flash to Cache Updates.Our proposal follows the differential updates idea disedssbove, but
instead of using a large in-memory buffer, exploits SSDsl @small amount of memory) to cache incoming
updates. The goal is to minimize online updates’ perforraampact on table range scan operations, which are
the major query pattern in large analytical DWs [5]. Unfostely, naively applying the prior differential update
techniques [17, 27] in the flash-augmented setting slowsidaele range scans by up to 3.8X [4]. Instead, we
observe that the merging operation is similar to an outer peitween the main data residing on HDDs and the
updates cached on SSDs. To facilitate the merging, we sertdbhed updates in the same order as the main
data. The memory footprint is reduced by using two-pasgeatsorting: generating sorted runs then merging
them. This requires\/ = /||SSD|| pages of memory to sofit5SD| pages of cached updates. Moreover,
because a later query should see all the updates that aer epréiry has seen, we can materialize sorted runs
and reuse them across multiple queries. We call the regudtgorithmmaterialized sort-merge (MaSM)

Figure 4(a) illustrates a MaSM algorithm usiag/ memory. It uses an/-page in-memory buffer to cache
incoming updates. When the buffer fills, updates are sodagtherate a materialized sorted run of siZeon
the SSD. A table range scan will merge upMb materialized sorted runs and the in-memory updates. When
the SSD is close to full, it is likely that there exist cachqutates for every data page. Therefore, MaSM
migrates updates to the main HDD-resident data store byesdiglly writing back the merging outcome of
a full table scan. Moreover, by attaching the commit timegtdo every update record, MaSM can correctly
support concurrent queries, migration, and incoming wgsjats well as transactions based on snapshot isolation
or two-phase locking [4]. Furthermore, we also designed eersophisticated MaSM algorithm that reduces the
memory footprint toM pages by incurring extra SSD 1/Os [4].

MaSM Evaluation. We implement MaSM in a prototype row-store DW. We compare Mad prior ap-
proaches using both synthetic data and TPCH [4]. We repertidtter here. Figure 4(b) shows the TPCH
performance with online updates. We record the disk tradesnwunning TPCH queries on a 30GB database
in a commercial row store. (Query 17 and 20 did not finish in 8drk.) Then we replay the disk accesses as



the query workload on our prototype. For MaSM, we use 1GB figstte, 8MB memory, and 64KB sized SSD
I/Os. In Figure 4(b), there are three bars for every quengrytime without updates (left), with in-place up-

dates (middle), and with updates using MaSM (right). We bagih-place updates incur 1.6-2.2X slowdowns.
In contrast, the MaSM algorithm achieves almost the samfoimeance (within 1%) as the queries without
updates, providing fresh data with negligible overhead.

4 Conclusions and Open Problems

Increasingly popular in mainstream computing, flash devipesent new performance vs. price tradeoffs for

data management systems. In this paper, we examined tlpeetaof traditional relational database manage-

ment systems (RDBMS) for answering the question: Where anddan flash be exploited in a DBMS? In

particular, we studied the use of flash in transactionalitfgggg memory-resident OLTP systems, flash-friendly

data layout in flash-resident OLTP systems, and flash as aateipgdche in HDD-resident data warehousing

systems. Experimental results showed that our proposéditpes make effective uses of flash in a DBMS.
There are a number of other opportunities for exploitinghflimsdata management, including:

e Flash-Only Data Warehouses&iven its high performance, low energy consumption, andedesing price,
flash-based SSDs have been considered as the main stordp@&'$d28]. In such settings, the fast random
accesses of flash may significantly benefit database datdusgs and query processing algorithms (e.g.,
joins [29]). On the other hand, because of flash’s poor randoite performance, our solution for online
updates may still be desirable for converting random ircg@lapdates into sequential writes.

e Exploiting Flash Beyond Traditional RDBMBlore generally, it is interesting to study the use of flash for
improving data management solutions beyond traditionaBRIS, such as data stream management, data
management in the cloud, key-value stores [14], sensorank$n23], approximate query processing, and
so on. For example, Chegt al.[11] proposed a non-blocking join algorithm, PR-Join, tachieves nearly
optimal performance by exploiting SSDs as temporary stoffag spilling intermediate data. PR-Join is
shown to support efficiently both online aggregation aneastr processing.

e Alternative Memory Hierarchies with FlasiGiven the very different characteristics of flash compared t
both DRAM and HDDs, it can be beneficial to use flash in alteveanemory/storage hierarchy organi-
zations. For example, Mesniet al. [22] proposed differentiated storage services that igttitly cache
high-priority I/O blocks on SSDs for better QoS. Caretal. [9] showed the benefits to traditional RDBMS
of including flash as a caching layer between main memory dbD$

e Emerging Byte-Addressable Non-Volatile Memory TechnesogSeveral emerging non-volatile memory
technologies are byte-addressable with access latermiggazable to DRAM, and endurance much better
than flash [7]. Among them, phase change memory (PCM) is thet pnromising to be ready for commercial
use in the near future. Because the performance of PCM fabstiveen flash and DRAM, there have
been proposals to use PCM both in SSDs and as main memorgdirgpDRAM) [15]. PCM-based SSDs
provide a similar block-level interface and better read&vperformance than flash-based SSDs. The main
characteristic difference is that PCM does not requireesr&&fore writing and therefore its random write
performance is close to its sequential write performan&Mmbased main memory promises to bring more
profound changes to computer systems because of the fimednaon-volatility and the unique read/write
characteristics of PCM (e.qg., writes are much slower andgpgwingry than reads). Thus, it is important to
investigate the impact of such changes on data managenstairsy[12].

These opportunities make for interesting future work.
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