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Pea Hash: A Performant Extendible Adaptive Hashing Index

ZHUOXUAN LIU and SHIMIN CHEN∗, SKLP and Center for Advanced Computer Systems, Institute

of Computing Technology, CAS, China and University of Chinese Academy of Sciences, China

Hashing index is widely used to support efficient point operations. We observe that there is a conflict between

performance and memory utilization goals. Existing hashing indices often have to trade off hash table access

latency for better memory utilization.Moreover, many designs support only unique keys, and their performance

is often suboptimal with skew workloads.

In this paper, we propose Pea Hash with two techniques to address the above two problems: (i) adaptive

hashing strategy that holistically optimizes both access latency and memory utilization, and (ii) data-aware

adaptive buckets that accommodate unique keys, and keys with various numbers of duplicates. We develop

both an NVM-optimized Pea Hash and a DRAM-based Pea Hash index. Experiments on a machine equipped

with Intel Optane DC Persistent memory show that compared to state-of-the-art NVM-optimized hashing

indices, the NVM-optimized Pea Hash achieves up to 13.8x performance improvements with similar memory

utilization. The DRAM-based Pea Hash outperforms existing in-DRAM hashing index designs, showing the

generality of the proposed techniques.
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1 INTRODUCTION
Hashing index is widely used in database and big data systems [20, 22, 42, 44]. In main memory

database systems, hashing index is used to build primary and/or secondary indices (e.g., on pri-

mary/foreign key columns), and to perform hash-based computation of join, aggregation, and

deduplication operations [4, 21, 30]. In key-value store systems, such as Memcached [36, 48] and

Redis [8, 43], hashing index plays the central role to implement the Get and Put operations. There-

fore, it is important to study hashing index structures to better support the demands of database

and big data systems.

Recent hashing index solutions exploit Non-Volatile Memory (NVM) [1, 7, 46] to manage the

increasing amount of data. NVM can have much larger capacity than DRAM. A dual-socket server

can be equipped with up to 6TB of Intel Optane DC Persistent Memory [13]. As the number of index

entries increases, memory utilization and hash table resizing overhead become important design

aspects to optimize. Level Hashing [52] proposes a top-bottom two-level structure to improve the

memory utilization and reduce the resizing overhead. CCEH [37] and Dash [33] exploit Extendible
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Hashing [18] to amortize the resizing overhead across multiple segments. Apart from these NVM-

optimized solutions, Viper [5] and Halo [24] devise hybrid designs that store hash tables in DRAM

and key-value entries in NVM. Halo’s in-DRAM structure is also based on Extendible Hashing.

We observe the following two main challenges in existing hashing index designs:

• Conflict between performance and memory utilization goals: Performance and memory utilization

are two important design goals of hashing indices. It is desirable to achieve high memory

utilization so that more index entries can be stored in the same amount of allocated memory

space. However, optimization techniques to improve memory utilization often make performance

worse. Techniques to fit more entries into a hash table often increase the number of locations that

an entry can store in the hash table, e.g., by introducing 2-choice hashing schemes such as Cuckoo,

allowing linear probing to store keys into multiple buckets, or adding stash/overflow buckets.

Unfortunately, probing more locations incurs larger number of memory accesses, adversely

impacting index performance. Consequently, existing hashing index designs have to make trade-

offs between the two goals, e.g., in Level Hashing [52] and Dash [33], sacrificing performance

for higher memory utilization.

• Lack of efficient support for duplicate keys: Duplicate keys are common in secondary indices (e.g.,

on foreign key columns) and hash-based join operations. However, existing hashing indices are

designed to support mainly unique keys. One way to extend these structures to support duplicate
keys is to store a pointer in the payload of a (key, payload) entry. Then the pointer can point to

a buffer that stores the actual values of the index entries having the same key. However, this

design can be inefficient. First, it incurs an extra (random) memory access to dereference the

pointer for the payloads. Second, in real-world data sets, e.g., power-law graphs, there are keys

with a large number of duplicates. The buffer to store payloads needs to be carefully designed to

reduce memory access and space management overhead.

In this paper, we propose Pea Hash with two innovative techniques to address the above chal-

lenges.

• Adaptive hashing strategy: Pea Hash follows previous designs [24, 33, 37] to exploit the classic

dynamic hash table — Extendible Hashing [18]. In Extendible hashing, there is a global directory.

Each directory entry points to a segment, which consists of an array of buckets. Segment is

the unit for hash table resizing. We observe that a segment is actually a hash table by itself.

The hashing scheme inside a segment does not affect the global extendible hashing design.

Therefore, we propose to adaptively modify the hashing strategy in a segment in order to

resolve the conflicts between performance and memory utilization goals. Our goal is to optimize

performance under different memory utilization ratios. When the number of entries in a segment

is low, we employ simpler hashing strategies that reduce the number of memory accesses to

achieve high performance. When the number of entries in the segment increases, we adaptively

change the hashing strategy to consider more memory locations for a key to improve memory

utilization. Specifically, we begin with the single hashing strategy. When the segment is about to

resize, we switch to 2-choice hashing, then to 2-choice hashing with stash buckets. In this way,

the design enjoys high performance when the memory utilization is low, and it obtains maximal

utilization similar to the most sophisticated strategy.

• Data-aware adaptive buckets: A bucket in Pea Hash contains an array of (key, value) entries.

To deal with duplicate keys, we propose to adapt the bucket design for the following three

cases. (1) There is no duplicate. We store (key, value) entries in the bucket. (2) The number of

duplicates is low. The bucket can accommodate a small number of duplicates. It is easy to extend

index operations (e.g., search/delete) to look for multiple entries given a key. (3) The number of

duplicates is high. We detect this case by examining the keys when the bucket is full. For the
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key with many duplicates, we merge all the duplicate entries into one (key, pointer) entry. The

pointer points to a value bucket, which stores the multiple values of the key. We encode this

change in the bucket header so that index operations can distinguish between (key, value) and

(key, pointer) entries. We carefully design the value bucket structure to reduce memory access

and space management costs.

We exploit the above two techniques in the design of an NVM-optimized Pea Hash index. NVM

bandwidth is (e.g., 2 ∼ 3x) lower than DRAM, and persisting data from CPU cache to NVM with

special instructions (e.g., CLWB and SFENCE) incurs significant overhead [25, 31]. Therefore, our

design aims to reduce the number of NVM accesses, especially persist operations as much as

possible. We follow previous work [32, 33, 52] to employ fingerprints to accelerate in-bucket key

search, and handle typical insert/delete/update operations with atomic NVMwrites without logging.

We employ the entry moving technique previously proposed in LB+-Trees [32] so that insertions

are more likely to find an empty slot in the same cache line as the bucket header, and persist both

the header and the new entry with a single operation, thereby significantly reducing the the number

of persist operations. Moreover, we employ optimistic locking to support concurrent accesses,

and design a light-weight NVM space management module to reduce NVM memory allocation

overhead. Most of our designs are generally pertinent for any NVM implementation. For Intel

Optane DCPMM in our experimental machine, we set the bucket size to 256B, which is the internal

data transfer size in Intel Optane DCPMM.

In addition to the NVM-optimized design, we develop a DRAM-based Pea Hash index in order

to show that the proposed techniques are general purpose for in-memory hashing indices. The

implementation slightly modifies the NVM-optimized Pea Hash index by removing the persist

operations and allocating space in DRAM. Please note that the DRAM-based Pea Hash index can

be also used as the in-DRAM hash table in a hybrid DRAM-NVM hashing solution (e.g., Viper [5]

and Halo [24]). Since the DRAM-based Pea Hash is sufficient to demonstrate the generality of our

solution, we do not develop and evaluate such a hybrid solution.

We conduct extensive experiments on a server with Intel Optane DCPMM to evaluate Pea Hash.

We compare the NVM-optimized Pea Hash with three state-of-the-art NVM-optimized hashing

indices, i.e., Level Hashing [52], CCEH [37], and Dash [33]. Experimental results show that Pea Hash

achieves up to 13.8x speedup, while attaining similar memory utilization and reducing the recovery

time by an order of magnitude. Moreover, we compare the DRAM-based Pea Hash with DRAM-

based CCEH and Dash, CLHT [14], a CPU cache optimized hash table, and Level Hashing, which

has shown better in-DRAM performance than several previous hash tables, including BCH [19].

Experimental results show that Pea Hash achieves up to 7.0x improvement.

Contributions. The contribution of this work is three-fold. First, we summarize the common design

challenges of hashing indices, and identify two main challenges that have not been addressed before.

Second, we propose Pea Hash, an innovative hashing index. We develop two adaptive techniques to

deal with the two main challenges, and combine a number of features for performance, persistence,

and scalability. Finally, we conduct extensive experiments to compare Pea Hash and state-of-the-art

hash tables. Experimental results exhibit significant benefits of our proposed design. We have made

Pea Hash code publicly available
1
.

Outline. The rest of the paper is organized as follows. Section 2 examines the main design consid-

erations. Section 3 proposes Pea Hash. Section 4 presents the performance evaluation. Section 5

finally concludes the paper.

1
https://github.com/schencoding/peahash

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 108. Publication date: May 2023.



108:4 Zhuoxuan Liu and Shimin Chen

2 DESIGN CONSIDERATIONS
We examine the two main aspects of the hashing index design, i.e., performance and memory

utilization, for better understanding the design challenges.

2.1 Performance
We consider the design choices for (1) the processing of individual index operations; (2) the resizing

of hash tables; and (3) the handling of duplicate keys. (3) is often overlooked in previous studies.

2.1.1 Collision Handling in Normal Operations. A hashing index consists of an array of hash

buckets [17, 27, 35, 41]. It employs hash functions to map keys to bucket IDs. Compared to tree-

based indices, an ideal hashing index is capable of achieving O(1) time complexity for common

operations, i.e., search, insert, and delete. The main obstacle to achieving the ideal performance is

hash collision, i.e., multiple entries are mapped to the same bucket. Popular techniques to handle

hash collisions can be categorized as follows:

(1) Multiple entries in a bucket. A common technique is to set the bucket size to be large enough

to hold multiple key-value entries [14–16, 33, 52]. Another technique is chained hashing [14,

27, 35], which holds zero or more entries in a linked list in each bucket. Since pointer chasing

may incur poor CPU cache behaviors, chained hashing is less popular in recent hashing index

solutions. Multiple entries and chained hashing can also be combined in a design [14].

(2) Multiple subsequent buckets for a collision entry. A representative technique is linear probing [27,

35, 41]. If the bucket for an entry to insert is occupied, linear probing scans the subsequent

buckets linearly until an empty bucket is found. Unfortunately, this technique may incur large

overhead because of primary clustering, where there exist long sequences of occupied buckets.

To mitigate this problem, Robin Hood hashing [10] and Hopscotch hashing [23] reduce or

bound the distance between the location to store an entry and the hashed location. Alternatively,

quadratic or other functions can be used to compute the subsequent bucket to probe.

(3) 2-choice hashing. Two (independent) hash functions
2
are employed to compute two candidate

buckets for a given key [3, 9]. Then an insert stores an entry to one of the buckets. A search or

delete needs to probe both buckets. It is shown that instead of a single hash function, if we

employ two hash functions, the number of collision entries per bucket can be dramatically

reduced [3]. Cuckoo hashing [6, 16, 19, 26, 39, 40, 47] enhances 2-choice hashing with a

technique to displace entries for insertions. If both computed buckets for a key to insert are

full, cuckoo hashing randomly picks one entry E in the two buckets and displaces E to E’s
other bucket B to make room for the new entry. If this other bucket B is also full, then cuckoo

hashing performs displacement on B recursively. However, the displacement design may result

in endless loops [47] and incur cascading writes [15], leading to poor performance. Therefore,

several recent designs perform one-hop displacement, i.e., at most one displacement without

cascading [15].

(4) Stash or overflow buckets. Collision entries can be stored into a global stash or overflow area [15,

26, 27, 35]. Then a search needs to probe both the target bucket and the stash. Compared to

the global stash, local stash is shared among subsets of buckets. Path hashing [51] builds a

binary tree of buckets. The hash bucket array is the leaf nodes in the tree. Each non-leaf node

is a stash bucket shared across all the leaf nodes in the subtree rooted by the non-leaf node. In

level hashing [52], there are two levels of hash buckets. Every bottom level bucket is a stash

bucket shared by two adjacent top level buckets.

2
While this can be generalized to multiple-choice hashing, 2-choice hashing is the most popular in practice. 2-choice

achieves good memory utilization and is better performing than multiple-choice hashing.
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Recent hashing index solutions often combine several of the above techniques. PFHT [15] employs

multi-entry buckets, 2-choice hashing with one-hop displacement, and global stash. CCEH [37] uses

multi-entry buckets and linear probing with bounded probe distance. Level hashing [52] differs from

PFHT by using a local stash design with two-level buckets. Dash [33] employs multi-entry buckets,

local stash per segment of buckets, and a variant of 2-choice hashing with one-hop displacement,

which computes the second hash bucket ID as the first bucket ID plus one.

2.1.2 Hash Table Resizing. A resizing operation is typically invoked when the hashing index fails

to insert a new entry. The standard resizing approach allocates a new hash table whose size is

larger (e.g., twice as large as the original table), rehashes all existing entries into the new hash table,

then deletes the original table. However, this often incurs the long tail of hashing access latency.

Level hashing [52] proposes an in-place resizing design. Suppose the top and bottom levels in

level hashing consist of 2N and N buckets, respectively. The resizing scheme allocates a new top

level of 4N buckets, preserves the old top level as the new bottom level, then rehashes only entries

in the old bottom level. It reduces the number of rehashed entries to about 1/3 of the standard

scheme.

CCEH [37] and Dash [33] exploit Extendible Hashing [18] that divides the hash table into a

number of hash segments and an array of segment pointers (a.k.a. directory). When a key fails to be

inserted into a segment, the segment is split into two segments without affecting other segments.

Only the entries in the single segment need to be rehashed, thereby significantly reducing the

latency of individual resize operations.

2.1.3 Duplicate Key Support. It is important to support index entries with duplicate keys in practice.

First, duplicate keys are frequently seen in secondary indices in database systems [20, 42]. Secondary

indices are often created on non-primary-key columns in order to accelerate the evaluation of

filtering predicates. It is also a common practice to create secondary indices on foreign key columns

in order to efficiently enforce referential integrity when a referenced tuple is deleted or a referenced

primary key is modified. Second, hashing indices play a key role in hash-based query processing

algorithms [21], such as hash join operations. It is quite common to see multiple tuples with the

same join key.

Unfortunately, existing hashing indices [14, 15, 33, 37, 52] mainly focus on unique keys. An insert

with a duplicate key either is ignored or becomes an update to the existing (key, value) pair. One

way to get around the problem is as follows. Instead of storing (key, value), we store (key, value

pointer) in a hashing index, where the value pointer points to a buffer that contains all the values

with the given key. Then the insert, search, and delete operations can be modified to access values

through value pointers. However, this straightforward scheme incurs the cost of at least one extra

pointer dereference for every index operation, and the overhead of memory allocation for the value

buffers.

2.2 Memory Utilization
Memory utilization is another important aspect of the design. With higher utilization, a hashing

index stores a larger number of index entries and sees fewer resizing operations.

2.2.1 Conflict: Performance vs. Memory Utilization. We observe that there is a conflict between

performance and memory utilization in hashing index designs. The common collision handling

schemes as discussed in Section 2.1.1 improve memory utilization, but degrade the hashing index

performance. For example, for technique (1), a search has to check multiple entries in a bucket.

For techniques (2) and (3), a search may need to examine two or more buckets in order to locate

a key. For technique (4), a search not only checks the hashed bucket for a key, but also has to

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 108. Publication date: May 2023.
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visit the stash. Insert and delete operations incur similar overhead. Hence, it is desirable but very

challenging to resolve such conflict.

2.2.2 Average Utility. The term, load factor, measures the instantaneous memory utilization of a

hashing index [27, 35]. It is defined as the number of inserted entries divided by the total entry

slots in the hashing index at a particular instant. Previous studies mainly consider the maximum

load factor of a design, i.e., the load factor immediately before resizing.

However, we find that maximum load factor does not capture the full behavior of a hashing index

design. First, the load factor is essentially a time varying function. It increases as index entries

are dynamically inserted until an insert fails and triggers the hash table resizing operation. After

resizing, there is a sharp drop of the load factor. Then the load factor will increase again with new

inserts. The maximum load factor does not reflect this dynamic behavior. Second, the number of

index entries cannot fully represent the memory space used. There are often in-bucket metadata

and other auxiliary structures, such as the directory in Extendible Hashing [33, 37].

In this study, we propose the following new metric to succinctly describe the memory utilization

across the dynamic process:

Average Utility :=
∑n
k=1 N (k )∑n
k=1 S (k)

where N (k) denotes the memory space taken by the inserted key-value entries after the k-th insert,

S(k) denotes the total space used in the hash table after the k-th insert, and n is the total number of

inserted entries.

We compute the average utility for the baseline hash table that consists of an array of one-entry

hash buckets without in-bucket metadata and auxiliary structures. Suppose the hash table contains

M buckets, each (key, value) entry takes Se bytes, and its maximum load factor is α . We consider

n=αM before resizing:

Average Utility =
∑n
k=1 kSe∑n
k=1 MSe

= n+1
2M ≈ 0.5α

A resizing doubles the hash table size to 2MSe bytes. Then for n=2αM , we have

Average Utility =
∑n
k=1 kSe∑αM

k=1 MSe+
∑

2αM
k=αM+1 2MSe

= 2αM+1
3M ≈ 0.67α

For n ≫ alphaM , the hash table goes through a number of resizing. We can show that the average

utility is approaching 0.75α .
We can extend the above computation if a hashing index design has a constant factor f of extra

space overhead for in-bucket metadata and auxiliary structure. That is, if all the entry slots take

MSe bytes, then the total space, including the extra space overhead, is MSe (1 + f ). For such a

hashing index, we can show that when n ≫ alphaM , the average utility is approaching
0.75α
1+f .

We report the average utility of the studied hashing strategies in Section 4.

2.3 Design Challenges
We compare the state-of-the-art hashing indices in Table 1. Level hashing [52] has been shown to

outperform previous designs, including PFHT [15] and BCH [19]. CCEH [37] and Dash [33] are the

two most recent NVM-optimized hashing index solutions. They both exploit extendible hashing

to reduce the resizing latency. CLHT [14] is a CPU cache optimized hash table. It uses cache-line

sized buckets and chained hashing.

From Section 2.1–2.2, we observe two main challenges in existing hashing index designs:

• Conflict between performance and utilization: Collision handling techniques improve mem-

ory utilization but incur more memory accesses, essentially sacrificing hash table performance

when the load is low.
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Table 1. Comparing state-of-the-art hashing indices.
Level CCEH Dash CLHT Pea

Average Utility ✓ − ✓ − ✓
Performance at Low Load × × × ✓ ✓
Performance at High Load × − ✓ × ✓
Support for duplicate keys × × × × ✓

Resizing Latency × ✓ ✓ × ✓
note: × poor, − ok, ✓good.

• Lack of optimization for duplicate keys: Existing designs mainly target unique keys. The so-

lution to store (key, value pointer) in a hashing index incurs extra overhead of pointer dereference

and memory allocation.

Our solution, Pea Hash, aims to address the two challenges, while building on ideas of state-of-the-

art hashing indices.

3 PEA HASH
We propose Pea Hash, a Performant extendible adaptive hashing index, to address the aforemen-

tioned challenges with two main optimization techniques:

• Adaptive hashing strategies balance memory utilization and performance.

• Data-aware adaptive buckets accelerate index operations for both unique and duplicate keys.

In the following, we overview the Pea Hash structure in Section 3.1. Then, we focus on the two

optimization techniques in Section 3.2 and 3.3, respectively. Finally, we present the NVM-optimized

Pea Hash index in Section 3.4. To show the generality of our approach, we also implement a

DRAM-based Pea Hash index. Since it is very similar to the NVM-optimized design, we briefly

describe the DRAM-based Pea Hash index in the overview in Section 3.1.

3.1 Design Overview

Structure overview. Figure 1(a) depicts the structure of Pea Hash. The primary structure is an

extendible hash table, which consists of a directory and a set of main segments. We adaptively

choose the hashing strategy for every main segment based on the load factor of the segment. Below

the primary structure is a set of stash segments, which are used when stash is employed in the

chosen hashing strategy. The value segments on the right store the values of the same (duplicate)

key. A set of auxiliary structures are used for concurrency control and segment management. The

main, stash, and value segments are of the same size to simplify NVM space management.

Extendible hashing.We follow CCEH [37] and Dash [33] to employ extendible hashing [18] in

Pea Hash. The directory in Figure 1(a) is an array of 2
G
elements, whereG is the global depth. Each

element contains the segment ID and the local depth L of a main segment. L ≤ G is always true.

2
G−L

elements in the directory point to the same main segment. A hash table visit usesG bits in the

hash code computed from the key to retrieve the directory element. Then, it visits the associated

main segment as an independent sub hash table. When an insert to a segment S fails, extendible

hashing splits S into K = 2
k
segments (e.g., K=2 or 4). It allocates K new segments, S1, ..., SK , and

rehashes S ’s entries to the new segments. Then it adjusts the directory. In the common case where

S’s local depth L + k ≤ G, there are already 2
G−L ≥ 2

k = K directory elements associated with

S . Then the existing directory elements can be modified to point to S1, ..., SK . The local depth of

the new segments are all set to L+k . In case where L + k > G, the directory needs to be expanded

so that the new global depth G ′ = L + k , and then the common case can be applied. In this way,

extendible hashing amortizes the resizing cost across multiple segments, significantly reducing the

tail latency of hash table accesses.
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Fig. 1. Pea Hash overview.

Adaptive hashing strategy. We observe that when the load factor is low, it is feasible to employ

simple hashing strategies that obtain high performance. When the load factor is high, we have to

consider more sophisticated collision handling techniques. From this observation, we propose to

adaptively set the hashing strategy for each main segment in its associated directory element(s)

based on its load factor. We choose a sequence of hashing strategies, HS1, HS2, ..., HSk , with
increasing memory utilization but potentially decreasing performance. The initial strategy is HS1.
When an insertion fails under HSi , we switch the strategy to HSi+1. Segment split is invoked only

when HSk fails. Our design aims to achieve good performance under any load factors.

Data-aware adaptive buckets. As shown in Figure 1(a), each slot in a main bucket can be either

a (8B key, 8B value) or a (8B key, 8B pointer). There are three cases: 1) A unique key is stored as a

(key, value) entry; 2) A key with a few duplicates can be stored as multiple (key, value) entries; and

3) A key with many duplicates is stored as a (key, pointer) entry, where the pointer points to a value

buffer in the value segments containing all the values of the key. Note that Case 1 and 2 reduce

the pointer dereference overhead, and the value segments reduce the space allocation overhead in

Case 3. We design the buckets to be data skew aware and to adaptively handle the three cases well.
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NVM-optimized Pea Hash index. Figure 1(b) shows the memory layout for the NVM-optimized

Pea Hash index. We allocated two (global depth, directory) in NVM to support directory expansion.

Each main/stash/value segment is 512KB large. A directory entry is 8B large. It consists of (6B

segment ID, 1B local depth, 1B hashing strategy), which supports up to 2
48× 512KB = 2

67
B of total

hash table space. The segments area contains an array of segments. A main segment consists of 2048

buckets. We set the bucket size to 256B, DCPMM’s internal data transfer size. A bucket is composed

of a 16B header and fifteen 16B slots. A stash bucket has the same structure as a main bucket. Each

main segment is associated with two stash buckets if stash is used in the chosen hashing strategy.

The locations of the stash segments are recorded in the StashSid array. The value segments are

organized to efficiently allocate space for value buffers of different sizes. All the structures are

stored in NVM except the auxiliary structures, which are not critical for index persistence and are

placed in DRAM.

Dram-based Pea Hash index. Figure 1(c) shows the memory layout of the DRAM-based Pea

Hash index. We slightly modify the NVM-optimized Pea Hash index by removing the NVM persist

operations, and allocating all data structures in DRAM.

3.2 Adaptive Hashing Strategy
Existing hashing index designs focus on a fixed hashing strategy [14, 15, 33, 37, 52]. In order to

achieve high memory utilization, existing designs employ high-cost collision handling techniques.

However, such high-cost techniques are also used when the load factor is low, which is unnecessary.

Our idea is to gradually employ more sophisticated techniques as the load factor increases in order

to achieve good performance for any load factor.

The transition from a simpler hashing strategy to a more sophisticated one subjects to certain

qualifications. In the following, we first propose a containment relationship among hashing strate-

gies, clarify the transition requirement in terms of the containment relationship, and present our

solution in Pea Hash.

Containment relationship. We consider the following relationship among hashing strategies:

Definition 3.1 (Hashing Strategy Containment). Hashing strategy HSA is contained in
hashing strategy HSB , denoted as HSA ⪯ HSB , if for any hash table instance T that uses HSA, all the
index entries in T can be correctly retrieved using HSB .

In other words, HSA can be viewed as a special case of HSB . For example, single hashing ⪯

2-choice hashing. Single hashing refers to the simplest hashing strategy, where there is an array of

hashing buckets and a single hash function maps a key to a bucket ID. 2-choice hashing computes

2 hash functions to map a key to 2 bucket IDs, and then it visits both buckets [3, 9]. If the first hash

function is the one in single hashing, then a hash table instance using single hashing is also a valid

instance in 2-choice hashing in that any existing key is found in its first computed bucket.

Figure 2(a) depicts the containment relationship as directed edges among hashing strategies. We

consider combinations of the collision handling techniques in Category (2)–(4) in Section 2.1.1.

Note that we assume that multi-entry buckets in Category (1) are employed for all the hashing

strategies, which is the case in all state-of-the-art hashing indices [14, 15, 33, 37, 52]. We see the

following containment relationship in Figure 2(a).

First, single hashing can be viewed as a special case of 2-choice hashing, single+stash, and linear

probing variants.

Second, both Robin Hood [10] and Hopscotch [23] are contained in linear probing. While the

two variants reduce or bound the distance between the bucket to store an entry and the hashed

bucket, the resulting hash tables can still be accessed by linear probing.
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Fig. 2. Adaptive hashing strategy.

Third, a hashing strategy is contained by the same strategy with stash. For example, 2-choice ⪯

2-choice+stash. The first strategy can be viewed as a special case where the stash contains zero

entries.

Finally, 2-choice hashing and 2-choice+CD (cuckoo displacement) are equivalent in terms of

containment. It is clear that 2-choice ⪯ 2-choice+CD. Moreover, CD can displace an entry to its

other bucket to make room for a new entry. This does not change the fact that a key is still hashed

to one of two buckets. Hence, 2-choice+CD ⪯ 2-choice.

Transition requirements. The sequence of hashing strategies, HS1, HS2, ..., HSk , in adaptive

hashing strategy must satisfy:

(a) For i=1,...k − 1, HSi ⪯ HSi+1;
(b) For i=1,...k − 1, HSi+1 is expected to have higher memory utilization than HSi .

Requirement (a) ensures that the transition cost is low because none of the existing index entries

under HSi need to be redistributed for HSi+1. This minimizes the number of random memory

accesses. Requirement (b) is important because the transition toHSi+1 is triggered when an insertion
fails under HSi . Since HSi+1 has higher memory utilization, it can accommodate more inserts.

Our solution. As shown in Figure 2(b) Pea Hash chooses single hashing, 2-choice hashing, and

2-choice+stash as the sequence in adaptive hashing strategy for a main segment. It is easy to verify

that this sequence satisfies the transition requirements. Note that we avoid cuckoo displacement,

which may incur a lot of expensive NVM persist operations in NVM-optimized hashing indices [52].

When an insert to a segment fails, Pea Hash triggers the change of the hashing strategy for

the segment. Single hashing is employed when the load factor is low. It minimizes the number of

memory accesses, obtaining the fastest index operations. For 2-choice hashing, we employ balanced

inserts [15] to insert to the less occupied bucket as it leads to better memory utilization [3]. For

2-choice+stash, a main segment with 2048 buckets has two stash buckets in the stash segments, as

shown in Figure 1(a). Hence, stash segments occupy less than 0.1% of the space used in Pea Hash.

We record the stash segment IDs in an array StashSid[]. Given a main segment ID sid, the first
stash bucket is at bucket (2*sid%2048) in stash segment StashSid[sid/1024].
When an insertion fails under 2-choice+stash, we perform segment split for the main segment.

As the load factor of 2-choice+stash is over twice as high as that of single hashing, we split the

segment into four segments so that in most cases, single hashing can be employed for the resulting

new segments, as shown in Figure 2(b). In our experiments, this common case occurs 99.4% of the

time, while the transition to 2-choice occurs 0.6% of the time. We do not see the other rare case.

Consequently, our chosen adaptive hashing strategy can be applied in the segments after split.
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3.3 Data-aware Adaptive Buckets

Design goals. We achieve two goals in the design of data-aware adaptive buckets. First, we would

like to achieve good performance for unique keys and keys with only a few duplicates. Pea Hash

does not allocate a value buffer for each key. Instead, it tries to place entries in the main bucket as

much as possible. This minimizes the number of pointer dereferences.

Second, we would like to achieve good performance for popular duplicate keys. Pea hash places

(key, pointer) entries in the main bucket, and strives to store the values in a contiguous value buffer

rather than in a linked list, in order to improve the performance for retrieving the values. Moreover,

it places the (key, pointer) entries close to the header in the main bucket so that they tend to be in

the same cache line as the header. This accelerates the retrieval of the value buffer pointer for a

popular key.

Flexible bucket structure. Figure 3(a) depicts the structure of a main/stash bucket. We set the

bucket size to 256B, DCPMM’s internal data transfer size. There are a 16B header and 15 entry slots,

each of which can contain either a 16B (key, value) or a 16B (key, pointer) entry. The header is

composed of a 16-bit bitmap and 14 1-byte fingerprints. We follow previous studies [32, 33, 38, 52]

to use fingerprints (i.e. a 1B hash code of a key) to accelerate the search in a bucket. Note that given

the 256B bucket size, the layout is non-ideal in that we have to use only 14 fingerprints to support

15 entry slots. (The non-ideal layout will be discussed later in this section). The 16-bit bitmap is

designed to handle two cases:

• If the least significant bit is 1, then all 15 entries in the bucket are (key, value) entries. The rest of

the 15 bits indicate whether the corresponding slots are occupied or empty.

• If k > 0 least significant bits are 0 and the next bit is 1, then the first k slots in the bucket contain

(key, pointer) entries for popular duplicate keys, and the rest 15 − k slots contain (key, value)

entries. The 15 − k most significant bits in the bitmap record the occupied/empty status of the

(key, value) slots.

Data-aware adaptation. Figure 3(b) illustrates the adaptation of the bucket structure as entries

are inserted. Note that when an insert to a bucket fails, Pea Hash triggers the bucket adaptation.

In 1○, insertion proceeds as normal before the bucket is full. Pea Hash supports the entry moving

method [32] for faster insertion as will be discussed in Section 3.4. Here, the insert of (4,d) triggers

the moving of entry (1,a), (2,b), and (3,c) to the second 64B line in the bucket so that the next insert

finds an empty slot in the first line.

In 2○, when an insert (1,f) sees a full bucket, Pea Hash performs a bucket compaction, which

checks all entries including the pending entry to be inserted, and combines entries of duplicate keys.

Here, key 1 and 2 are identified as duplicate keys. Then, for each duplicate key, Pea Hash allocates

a value bucket to store all its values. It reorganizes the main bucket to contain (key, pointer) and

(key, value) entries. Since the first cache line is mainly occupied by (key, pointer) entries, entry

moving may not be effective and is disabled.

In 3○, for the insert of (3,s), Pea Hash checks if there is a (key, pointer) entry for the key 3. Since

such entry does not exist, it inserts (3,s) into the main bucket.

In 4○, for the insert of (1,t), there exists a (key, pointer) entry for the key 1. Therefore, Pea Hash

follows the pointer to insert the value t into the value buffer.

This process continues until the bucket is full. Then another bucket compaction operation is

triggered. If no more duplicate keys are combined in the main bucket, Pea Hash considers that the

segment is full under the current hashing strategy. Then it follows the adaptive hashing strategy to

either transition to the next hashing strategy or perform a segment split.
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Fig. 3. Data-aware adaptive bucket.

We see that this adaptation process satisfies the two design goals. 1○ and 3○ avoid pointer

dereferences for unique keys or keys with only a few duplicates. For popular keys, 2○ and 4○ store

the (key, pointer)’s in front slots and the values in contiguous value buffers
3
.

Managing value segments. We aim to place values of a popular duplicate key in a contiguous

value buffer. To avoid frequent space allocation calls, we design 12 types of value segments as

shown in Figure 1(a). A type-k (k=0, ..., 10) segment is divided into value buffers of 2
k × 256B each.

That is, a type-0 segment consists of 2048 buffers of 256B each. A type-10 segment consists of 2

buffers of 256KB each. When a type-k value buffer is full and a new value is to be inserted, Pea

Hash allocates and copies the values to a type-(k + 1) value buffer. The type-11 segment is special.

It uses an 8B pointer to build a linked list of type-11 512KB segments in case the values of a very

popular key require even larger space to store.

Coping with non-ideal layout. The hash bucket size is often determined by the underlying

hardware characteristics, such as the 256B internal data transfer size in DCPMM in this paper. As a

result, the bucket layout may not be ideal. In our case, there are 14 fingerprints and 15 entry slots

in a bucket.

A naïve approach to getting around this problem is to simply ignore one slot and support only

14 slots. We do not take this approach because it wastes valuable space. Another approach is

to compute 7-bit fingerprints rather than 1B fingerprints. However, this slows down fingerprint

comparison because SIMD instructions can no longer be used.

3
Note that during the bucket compaction operation, it is possible to leave keys with a small number of duplicates in the

main bucket (e.g., key 1 in 2○). However, we find that this may incur more frequent bucket compaction operations and have

negative performance impact. Therefore, we employ the current simpler design.
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To cope with the problem, we observe that slot 15 has the lowest probability to be occupied.

Therefore, we store fingerprints for the first 14 slots and omit the fingerprint for slot 15. In most

cases, the bitmap shows that slot 15 is empty, and it is filtered out. When it is occupied, Pea Hash

specifically checks slot 15 in addition to the normal checks.

Supporting different key sizes. There are two possible methods. First, the bucket layout can be

adjusted for different, pre-defined entry lengths. For example, for (4B key, 8B value), an entry is

12B large. A 256B bucket can hold 19 entries. In general, if the entry size is E, then the number of

entries = ⌊ 256

E+1.125 ⌋. Second, we can store (8B hash code of key, 8B pointer) in the bucket, where the

pointer refers to the actual (key, value) entry stored outside the hash table. The first method is more

suitable for small fixed sized keys, while the second can flexibly support large variable sized keys.

3.4 NVM-optimized Pea Hash Index
NVMmain memory [1, 7, 13, 46] is capable of supporting significantly larger memory capacity than

DRAM. However, compared to DRAM, NVM has lower read and write bandwidth, and persisting

data from CPU cache to NVM (e.g., with CLWB and SFENCE) is significantly slower than normal

writes [31, 49]. Therefore, our NVM-optimized design aims to reduce the number of NVM accesses,

especially persist operations as much as possible.

The index operations in Pea Hash are similar to previous hashing indices (e.g., CCEH [37] and

Dash [33]) that are based on extendible hashing. The main difference is how the two optimization

techniques are supported. Therefore, in the following, we first review existing techniques for

NVM-optimized index designs that we employ. Then, we focus on the NVM persistence design for

the two proposed optimization techniques. After that, we discuss NVM space management and

concurrency control. Finally, we describe how to recover the index from a crash.

Exploiting existing techniques forNVMperformance.We learn from previousNVM-persistent

index studies, including hashing indices [15, 33, 37, 52], B+-Trees [2, 11, 12, 32, 38, 50], and radix

trees [28, 29, 34], and emphasize the following techniques:

• Selective Data Persistence: We only need to persist data that are critical to the consistency of

the index. For example, B+-Tree performance can be improved by storing the non-leaf nodes

in DRAM because the non-leaf nodes can be reconstructed from the leaf nodes [32, 38, 50]. In

our case, we store the auxiliary structures in DRAM as shown in Figure 1. Specifically, the locks

will be cleared upon recovery. The bitmap of allocated segments, FESid, and the number of stash

segments can be reconstructed by examining the directory, the StashSid array, and the value

bucket manager in NVM.

• NVM-Atomic Writes: Since write-ahead logging (WAL) incurs NVM write amplification because

data are written both to the target location and to WAL, previous NVM-optimized indices exploit

NVM atomic writes to avoid WAL [2, 12, 28, 29, 32–34, 37, 38, 50, 52]. We follow this principle to

perform NVM atomic writes for all index operations except the bucket compaction operation

(which will be described later in this subsection).

• Entry Moving in a Bucket: We employ entry moving for the hash buckets. This technique is first

proposed in LB+-Tree [32] to reduce NVM persist operations for a 256B B+-Tree leaf node. An

insert to a leaf node looks for the first empty slot to store the new entry, then updates the node

metadata. In the good case, both the slot and the metadata are in the first 64B line of the node.

Then one persist suffices. In the bad case, they are in different lines and require two persist

operations. Without entry moving, the bad case is more often as the first line is soon filled. When

encountering the bad case, the entry moving technique creates empty slots in the first line by

moving as many entries from the first line to the line with the new entry. In this way, a later

insert sees the good case, saving one persist for the insert.
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Persistence for adaptive hashing strategy: strategy transition. A strategy transition does not

need to move any existing index entries in a main segment. Typically, the only NVM write is to

update the hashing strategy in the 8B directory element. This can be persisted with a single NVM

atomic write.

Infrequently, segment ID/1024 may exceed the current capacity of StashSid[] as indicated by

the counter in DRAM during a transition to 2-choice+stash. In such cases, Pea Hash allocates,

initializes, and persists new stash segments. Then, it populates and persists the new stash segment

IDs in StashSid[].

Persistence for adaptive hashing strategy: segment split. When an insertion fails under 2-

choice+stash, Pea Hash splits the main segment into four segments. It allocates, populates, and

persists the new segments, then modifies the directory. There are two cases.

(1) Directory update: If there are 2G−L ≥ 4 directory elements for the old segment, Pea Hash

performs directory update using two steps. Step 1 updates all the relevant directory elements except

the lowest element, then persists the writes. Step 2 performs an NVM atomic write to update the

lowest element. During recovery, Pea Hash copies the lowest element across all 2
G−L

elements.

This discards the new segments if a crash occurs during directory update.

(2) Directory expand. If 2G−L
< 4, Pea Hash first expands the directory, then performs directory

update. As shown in Figure 1(b), there are two directory regions. Pea Hash computes and persists

the new, expanded directory in the unused region. Then it performs an NVM atomic write for the

associated 8B global depth. During recovery, Pea Hash decides which directory is the latest by

comparing the two global depths and choosing the larger.

Note that the directory region capacity is computed based on a predefined maximum hash table

size. In case this capacity is exceeded, we can allocate a directory in the NVM segment space and

record its starting address in the 8B global depth, using bit 63 to determine if the 8B contains a

global depth or an address.

Persistence for data-aware adaptive buckets: bucket compaction. Since bucket compaction

is performed in place, we employ a small WAL in the value segment manager to guarantee crash

consistency. Note that Pea Hash supports all other index operations with NVM atomic writes

without logging.

NVM space management.We design a lightweight NVM space manager for Pea Hash. As shown

in Figure 1, it organizes the main NVM space in 512KB segments to reduce NVM space allocation

overhead. All segments are aligned at 256B boundary.

We use a segment bitmap and FESid in DRAM to accelerate segment allocation. A bit is set in the

bitmap if the corresponding segment is used. FESid roughly indicates the first empty segment in the

bitmap. It is updated after allocation/deallocation without atomic operations, which is good enough

for performance improvement purpose. To find an empty segment, the NVM space manager scans

the segment bitmap starting from FESid. This reduces the scan cost compared to a full scan of the

bitmap. Once a 0 bit is detected, the manager allocates the segment by atomically setting the bit in

the bitmap. If the scan fails, it tries the full bitmap scan. Both the segment bitmap and FESid are

rebuilt during recovery.

The other two NVM space management related structures are the StashSid array and the value

bucket manager. The former records all the allocated stash segment IDs. The latter is composed

of a list of allocated value segment IDs, the headers of the free lists for type-k (k=0, ..., 11) value
segments, and a small log per thread to support bucket compaction.

Concurrency control.We follow Dash [33] to use optimistic locks for concurrency control. We

place the concurrency control structures in DRAM to reduce NVM writes, as shown in Figure 1.
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The lock table in DRAM consists of locks to protect the segments and locks to protect the buckets

in the segments. For each segment, there is one segment lock entry and b bucket lock entries (b=8
in our experiments). A lock entry takes 4 bytes. Since the segment size is 512KB, the space overhead

of the lock table is
4(b+1)
512KB = 0.007%.

To protect concurrent accesses to a bucket, we map the bucket ID in the segment to one of the b
bucket lock entries using the modulo operation. A 32-bit lock entry is composed of 8-bit thread ID,

8-bit reference count, and 16-bit version. A non-zero reference count tells that the bucket is locked.

The thread ID is used to support the case where two buckets mapping to the same lock entry are to

be visited in two-choice hashing. For an insert/delete, we lock a bucket by atomically setting the

thread ID, increasing the reference count, and increasing the version. For a search, we ensure that

the bucket is unlocked, and we compare the before and after versions to make sure that the bucket

is not changed during the search. If the bucket is locked or if the before and after versions are

inconsistent, then we will retry the search from the beginning. Since #threads ≪ b ×#seдment (e.g.,
#seдment=8192 in our experiments), the probability of false sharing (i.e., two buckets associated

with the same lock entry are accessed by two concurrent threads) is low.

We use segment locks to protect concurrent accesses to segments. A segment lock entry contains

a lock bit and a version. For a search/insert/delete, we first take the fast code path assuming that

the operation does not modify the segment metadata. We compare the before and after versions for

such normal operations. If we find that an insert fails and it is about to trigger segment metadata

updates (e.g., strategy switch and segment split), we retry the insert from the beginning. Note that

at this moment, we have not yet modified any buckets or segment metadata. For the retry, we take

the slow code path to acquire the corresponding segment lock by atomically setting the lock bit

and increasing the version to protect the segment metadata updates.

The directory lock is used for directory expand operations. It contains a lock bit, a version bit,

and a bit to identify which of the two directories is currently in use. Similar to the segment locks,

normal directory reads only check the version without obtaining the lock. Only the slow code path

takes the directory lock. Interestingly, we can view the directory, segment, and bucket structure as

a multi-level structure, and employ the classical lock coupling technique in the slow code path.

Recovery. During recovery, Pea Hash selects the latest directory by comparing the global depths.

Then, it scans the directory, the StashSid array, and the value bucket manager to populate the

in-DRAM auxiliary structures. The scan of the directory is stridden [37]. Suppose the current

element is i (i=0 at the beginning). If element i’s local depth is L, then then next 2
G−L

elements

are associated with the same main segment. The scan copies element i to element i+1, ..., i+2G−L
-1

to deal with crash during directory update. Then it sets i=i+2G−L
for the next stride. The largest

segment ID with 2-choice+stash determines the number of the stash segments. If the logs in the

value bucket manager are not empty, they record states for bucket compactions. Pea Hash recovers

the buckets by undoing any changes. This cost is small because the number of concurrent bucket

compaction is bounded by the number of threads. Overall, Pea Hash can recover instantly in a few

ms (cf. Section 4).

Intel Optane DCPMM vs. NVM-generic features. The designs in this section are generally

pertinent for any NVM implementation. For Intel Optane DCPMM in our experimental machine,

we set the bucket size to 256B. This can be adjusted to optimize for different internal data transfer

sizes in other future NVM implementations.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 108. Publication date: May 2023.



108:16 Zhuoxuan Liu and Shimin Chen

(a) Load factor (b) Insert (c) Delete

(d) Positive Search (e) Negative Search (f) Memory utilization for 200M records

Fig. 4. Comparison with state-of-the-art NVM-optimized hashing indices (single thread).

4 EVALUATION
We describe the experimental setup in Section 4.1. Then, we evaluate the overall performance

of NVM-optimized and DRAM-based Pea Hash in Section 4.2, and study the benefits of the two

proposed optimization techniques in Section 4.3.

4.1 Experimental Setup

Machine configuration. We run experiments on a server equipped with two Intel Xeon Gold

5218 CPUs (2.3GHz, 16 cores/32threads, 22MB L3 cache), 2×192GB DRAM, and 2×768GB Optane

DCPMM in App Direct mode. The server runs Linux 4.15 and PMDK 1.7. All the code is compiled

using GCC 7.5 with all optimization enabled. Experiments are run on a single CPU socket with its

associated NVM and DRAM to avoid NUMA effects.

Solutions to compare.We compare NVM-optimized Pea Hash with three NVM-optimized hashing

indices: 1) CCEH [37], 2) Level Hash [52], and 3) Dash [33].We obtain Dash from its github repository

(https://github.com/baotonglu/dash). Since the original CCEH and Level Hash implementations are

based on DRAM emulation [37, 52], we use the versions found in the Dash repository, which are

ported to run on DCPMM using PMDK. Pea Hash uses 512KB segments and 256B buckets. We use

the parameters of CCEH, Level Hash, and Dash in their original papers [33, 37, 52] for fairness.

Specifically, Dash (denoted Dash-16) uses 16KB segments and 256B buckets. Each segment of Dash

has two stash buckets. CCEH uses 16KB segments and 64B (one cache line) buckets. Level Hash

uses 128B buckets. To explore the effect of various segment sizes, we also evaluate a variant of

Dash with 512KB segments (denoted Dash-512). We choose Dash because it outperforms CCEH

and Level Hash.

We compare theDRAM-based PeaHashwith 1) Level Hash, which has shown better in-DRAMper-

formance than previous hash tables (e.g., BCH [19]), 2) CLHT [14], a CPU cache optimized hash table,

3) CCEH, 4) Dash-16, and 5) Dash-512. We obtain the DRAM-based Level Hash (https://github.com/

Pfzuo/Level-Hashing) and CLHT (https://github.com/LPD-EPFL/CLHT) from github. Both CLHT and

Level Hash use cache-line-sized 64B buckets, following their default source code for fairness. CLHT

resizes to 4x its original size when on average there are 1.5 buckets in its linked lists. The resulting

maximum load factor is 55.4%. For 3)–5), we remove the NVM features of CCEH and Dash.
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Data sets. Both keys and values are 8B integers. For unique key experiments, we follow previous

work [33] to generate uniformly distributed keys. For duplicate key experiments, we use both

synthetic data sets following the zipfian distribution, and real-world graph data sets obtained from

SNAP [45], as shown in Table 2.

Table 2. Graph data sets used in duplicate key experiments.
Name Type Nodes Edges

wiki-Talk Directed 2394385 5021410

cit-Patents Directed 3774768 16518948

soc-LiveJournal Directed 4847571 68993773

com-Orkut Undirected 3072441 117185083

4.2 Overall Performance

NVM-optimized Pea Hash: single-threaded performance. We initialize the hash tables to be

roughly 5MB large, then insert 10M index entries so that the hash tables naturally grow into a

steady state before running the actual experiments. (We use “M” as an abbreviation for million

for concise presentation). Then, we insert 190M random entries into the hashing indices. After

inserting every 10M entries, we measure the average latency of 100 random point operations: 1)

insert a new entry; 2) delete an existing entry; 3) positive search for existing entries; and 4) negative

search for nonexistent entries.

Figure 4(a) reports the instantaneous load factors as the index sizes grow. The curves show

sawtooth shapes. The load factors grow as the index sizes increase until resizing. After resizing, the

load factors drop drastically. We see that Pea Hash attains similar maximum load factors compared

to Level and Dash, while CCEH has poor memory utilization.

Figure 4(b)–(e) show the average latencies of the four index operations as the index sizes grow.

There are interesting correlations between the latency curves and the load factor curves. When

the load factors are low, the hash tables often have good performance (which is quite clear at

20M and 60M points for Pea Hash). This verifies the conflict between memory utilization and

performance. Pea Hash exploits adaptive hashing strategy to mitigate the problem. We see that

Pea Hash outperforms the other hash tables for all four operations in most cases. Compared to

Dash-16/Dash-512/CCEH/Level, Pea Hash achieves 1.1–4.9x/1.1–2.9x/2.3–7.6x/3.4–9.1x speedups

for insert, respectively. Similarly, Pea Hash accelerates deletion by 1.2–3.2x/1.3–2.9x/ 1.7–3.9x/1.8–

4.0x, and positive search by 1.7–3.2x/1.6–2.8x/1.8–3.2x/1.8–3.9x. For negative search, Pea Hash

achieves 3.4–6.0x/5.8–12.0x speedups compared to CCEH/Level. Compared to Dash-16/Dash-512,

Pea Hash has similar negative search latencies.

Comparing the four types of operations, we see that insertion and deletion often take longer

than search because they perform NVM writes and persists. Negative search in Pea Hash is faster

than positive search because negative search often stops after checking the bucket header and

hence read fewer cache lines.

Memory utilization. Figure 4(f) plots the maximum load factor and average utility of the hashing

indices. As defined in Section 2.2.2, average utility captures the dynamic behavior of the hash tables.

From the figure, we see that the adaptive hashing strategy in Pea Hash achieves similar maximum

load factor and average utility compared to Level and Dash.

CCEH’s memory utilization is significantly lower. CCEH employs linear probing with bounded

probe distance, while the other three hash tables all employ some form of 2-choice hashing, which

provides higher memory utilization.

Figure 4(f) mainly considers NVM space utilization. As for DRAM footprints, we find that all

the persistent hash tables barely use DRAM. We consider the DRAM space overhead for a Pea
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Table 3. Resizing operations during 200M inserts.

Level CCEH Dash-16 Dash-512 Pea

Count 11 525328 262301 16367 2728

Min Lat 85.8ms 44.6us 46.1us 1.78ms 2.76ms

50% Lat 2.79s 62.7us 65.3us 1.99ms 4.97ms

90% Lat 44.5s 80.9us 88.4us 4.96ms 5.15ms

99% Lat 89.4s 148us 101us 5.22ms 5.37ms

Max Lat 89.4s 25.1ms 10.6ms 7.12ms 6.17ms
Total time 178s 45.2s 24.0s 43.4s 12.4s

Hash table containing 200 million 16B entries. The hash table takes at least 3.2GB of NVM to store

the index entries. After inserting 200 million entries, there are 8192 segments. As described in

Section 3.4, there is a segment lock and b=8 bucket locks per segment. Each lock entry takes 4

bytes. Hence, the size of the lock table is 8192 × (8 + 1) × 4 = 295KB. The rest of the auxiliary data

structure in Figure 1 takes less than 10KB. Hence, DRAM space/NVM space ≤ 295KB+10KB
3.2GB = 0.009%.

The DRAM space overhead is negligible.

Performance vs. memory utilization. Figure 4(b)–(e) show that compared to state-of-the-art

NVM-optimized hash tables, Pea Hash improves performance. This is because adaptive hashing

strategies allow the use of simpler and more efficient hashing strategies for different load factors.

Figure 4(f) shows that Pea Hash maintains good average utility. Taking Figure 4 as a whole picture,

we conclude that Pea Hash has achieved the goal of optimizing performance while maintaining

good memory utilization.

Resizing latency. Table 3 shows the statistics about resizing operations (which incur rehashing,

segment splits, and/or directory expansion) during the single-threaded insert experiments in

Figure 4(b). First, CCEH, Dash, and Pea employ extendible hashing to amortize the resizing overhead

across multiple segments. Compared to Level, we see that they perform much higher numbers of

resizing operations, but the latency of individual resizing is much lower. Second, segment sizes have

significant impact on resizing operations. Compared to Dash-16 with 16KB segments, Dash-512

and Pea with 512KB segments see smaller count but higher cost of resizing operations. Third, Pea

Hash achieves the smallest total resizing time because of the optimized segment split and directory

expansion implementation. Its resizing latency is 2.76–6.17ms, which is good even for interactive

queries.

Scalability. Figure 5 compares the NVM-optimized hashing indices while increasing the number

of threads from 1 to 16. We initialize the hash tables to be roughly 5MB large, then insert 10M index

entries before running the actual experiments. For Figure 5(a)-(d), we perform four experiments

in the following order (a) 190M inserts; (b) 190M positive searches; (c) 190M negative searches;

and (d) 190M deletes. For Figure 5(e)-(f), we perform 190M mixed operations. The figures report

operation throughput. The higher the better. According to Figure 4(a), after inserting 10M+190M

index entries, all hash tables except Dash-512 are under relatively high load factors (compared with

their maximum load factors). Specifically, search and deletion of Pea Hash are tested under the

most sophisticated strategy, i.e. 2-choice with stash.

We see that Pea Hash scales significantly better than the other hashing indices. Using 16 threads,

Pea Hash improves insertion, deletion, and positive search throughput by 1.13x–13.8x compared

with Level, CCEH, Dash-16, and Dash-512. For positive search with 16 threads, Dash supports ∼41

Mops/s. Pea Hash improves this to ∼48 Mops/s. While 48/41=1.17 looks small, we believe this is

quite significant improvement. For negative search with 16 threads, Pea Hash outperforms Level

and CCEH by a factor of 3.6x and 5.1x, respectively. Compared to Dash-16 and Dash-512, Pea Hash
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(a) Insert (b) Positive Search

(c) Negative Search (d) Delete

(e) 90% insert and 10% positive search (f) 10% insert and 90% positive search

Fig. 5. Comparison with state-of-the-art NVM-optimized hashing indices varying the number of threads.

Table 4. Recovery time of NVM-optimized hashing indices.

Index entries Level CCEH Dash-16 Dash-512 Pea

100M

total 35.0ms 140.4ms 34.7ms 34.9ms 2.8ms
logic < 1ms 106.8ms < 1ms < 1ms < 1ms

200M

total 35.3ms 253.8ms 35.4ms 35.4ms 2.7ms
logic < 1ms 217.7ms < 1ms < 1ms < 1ms

300M

total 36.0ms 302.8ms 36.3ms 38.0ms 3.0ms
logic < 1ms 268.2ms < 1ms < 1ms < 1ms

400M

total 39.0ms 480.6ms 35.2ms 38.9ms 2.9ms
logic < 1ms 435.2ms < 1ms < 1ms < 1ms

is similar or slightly better. For the mixed workloads, Pea Hash achieves the best performance

among all hashing indices. In summary, Pea Hash scales well for all kinds of workloads.

Recovery time.We allocate 30GB NVM memory for each NVM-optimized index. After loading

100M, 200M, 300M, or 400M 16-byte entries, we kill the process. Then we rerun the code to measure

the time until the system starts handling requests. The recovery is performed by a single thread.
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(a) Insert (b) Positive search (c) Negative search (d) Delete

Fig. 6. Comparison with DRAM-based hashing indices.

(a) Load Factor (b) Insert (c) Delete

(d) Positive Search (e) Negative Search (f) Memory utilization for 200M records

Fig. 7. Comparison of different hashing strategies (single thread).

(a) Insert skew data (b) Skew search on skew data (c) Unique search on skew data (d) Unique delete on skew data

Fig. 8. Performance varying the skew factor of key’s zipf distribution (single thread).

Table 4 reports both the total recovery time and the time to recover the hash table structures (denoted

logic). The difference of the two is spent in initializing/recovering NVM allocation structures.

As shown in Table 4, the recovery time of Pea Hash is at least one order of magnitude lower

compared to the other designs. Pea Hash recovers in about 3ms in total, which is fast enough for

most practical use scenarios. We find that our lightweight NVM space manager recovers faster than

the epoch-based NVM allocator used in Dash. The allocator of Dash spends about 35ms recovering
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its epoch manager and garbage list, which dominates the recovery time of Dash and Level. In

contrast, the NVM space manager of Pea Hash recovers in about 2ms.

Moreover, the logic recovery procedure of Pea Hash is also lightweight. It reads the directory and

the metadata in NVM to reconstruct the auxiliary structure in DRAM. Only bucket compactions

perform logging, and all other normal operations perform NVM atomic writes. Hence, the only

data to recover are the buckets being compacted. Recovering these buckets is fast because the

number of concurrent bucket compactions is bounded by the number of threads. Compared to the

logic recovery time of Pea Hash, Level and Dash, CCEH spends over 100ms recovering its hash

table. It suffers from scanning the segment metadata for checking whether the crash occurs during

a segment split. The scan visits the segment metadata stored along with the allocated buckets,

incurring a large number of random NVM accesses.

DRAM-based Pea Hash. Figure 6 reports the throughput of DRAM-based hashing indices varying

the number of threads. The workload is the same as Figure 5(a)-(d). For insertion, deletion, and

negative search, Pea Hash outperforms the other hash indices by 1.1x–4.9x with a single thread,

and 1.1x–7.0x with 16 threads. For positive search, Pea Hash achieves 2.3x/1.02x/1.4x/1.4x/1.3x

speedups compared with Level/CLHT/CCEH/Dash-16/Dash-512. As for memory utilization, CLHT

can store at most three 16-byte entries in every 64B bucket. The actual maximum load factor in

the experiments is 55.4%, and average utility is 29.8%. In comparison, Pea Hash achieves good

performance without compromising the memory utilization.

4.3 Benefits of Individual Techniques

Adaptive hashing strategy. Figure 7 compares 1) the three pure hashing strategies, i.e., single

hashing, 2-choice hashing, and 2-choice with stash, in the sequence of Pea Hash’s adaptive hash-

ing strategy, 2) an adaptive strategy consisting of single and then 2-choice, and 3) Pea Hash’s

adaptive strategy. All implementations are based on the NVM-optimized Pea Hash using the same

configuration of bucket and segment sizes. We repeat the same experiments as in Figure 4.

Figure 7(a) reports the load factors as the hash tables grow, and Figure 7(f) shows the maximum

load factor and average utility of five schemes. We see that single hashing has the lowest memory

utilization. Single to 2-choice improves the average utility of single hashing by over 2x. The

adaptive transition effectively improves memory utilization. Interestingly, single to 2-choice’s

memory utilization is slightly worse than pure 2-choice. This is because at the strategy transition

time, the buckets resulting from the single-hashing are less balanced than those in pure 2-choice.

Adding a third strategy as in Pea Hash leads to better memory utilization. The stash buckets help

tolerate imbalanced and overflowed buckets, and avoid premature rehashing.

Figure 7(b)-(e) compare the operation latency for the five hashing strategies as the hash tables

grow. Among the three pure hashing strategies, single hashing has the lowest latency, which is

around half of the latencies of pure 2-choice and 2-choice-with-stash. The latency of adaptive

strategies follow the fluctuation of load factors. For insertion, deletion, and positive search, the

performance of adaptive strategies is similar to the respective pure strategies currently in use. As

for negative search, the performance of pure 2-choice and 2-choice-with-stash are poor, since they

have to probe 2 and 4 candidate buckets, respectively.

Overall, we see that the three pure strategies have different trade-offs betweenmemory utilization

and performance. The two adaptive strategies, especially Pea Hash, effectively reduce the operation

latency without sacrificing high memory utilization.

Data-aware adaptive buckets: duplicate key support.We test the data-aware adaptive bucket

optimization for duplicate keys on NVM. As Dash performs better than CCEH and Level hash, we

compare Pea Hash with Dash for this set of experiments. We use default Dash configuration (i.e.
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(a) Average utility of hash tables (b) Memory used after insertion

Fig. 9. Memory utilization for zipf distributed keys.

Dash-16) and modify it to support duplicate keys by storing (key, pointer) entries in the buckets,

where the pointer points to a buffer of values for the same key. The initial buffer has a capacity

of 4 values. It doubles its size when there is no room for an incoming insertion of the same key.

We test the operations of inserting a key-value pair, and searching/deleting all values of a given

key. A search copies all values of a given key from NVM to a value array in DRAM. Obtaining all

values of a given key is frequently used in secondary indices and in hash-based query processing

algorithms in database systems.

After inserting 10M entries in a 5MB hash table, we insert 190M zipfian distributed key-value

pairs. As shown in Figure 8, the X-axis shows the skew factor of the Zipfian distribution varying

from 0.0 to 0.8. The Y-axes show throughput in the number of operations per second (Mops/s) and

the number of entries retrieved or deleted per second (M entries/s). The two are different since a

search/delete returns/removes all the entries of a given key. Figure 8(a) shows the throughput of

inserting 190M skew entries. Figure 8(b) shows the throughput of search on the inserted data. The

distribution of search keys is the same as the insert keys. Figure 8(c) shows the performance of

searching unique keys on inserted skew data. The X-axis refers to the skew factor of inserted keys.

Figure 8(d) reports the performance of deleting unique keys on inserted skew data. Both search

and deletion keys are shuffled randomly to avoid any influence of the spatial locality because of

the key order.

For insertion and deletion, Pea Hash outperforms Dash by a factor of 3.0–4.9x. Pea Hash places

as many pairs as possible in main buckets, thereby reducing the overhead of NVM allocation. Skew

search tends to emphasize the search for popular duplicate keys, while unique search treats both

frequent and infrequent keys similarly. Search throughput of Pea Hash is 1.4–1.5x higher than that

of Dash in all search experiments except skew search with 0.8 skew factor. The improvement is

mainly because a large fraction of search in Pea Hash visits only the main bucket without pointer

dereference. In the case of skew search with 0.8 skew factor, this advantage weakens as a small

number of popular keys tend to be searched, and temporal locality dominates the throughput. This

is why skew search of both hash tables show similar results.

We evaluate memory utilization by calculating the average utility of each hash table during the

insertion experiments varying skew factor from 0.0 to 0.8. As shown in Figure 9(a), the average

utility of Pea Hash is around 50% and is quite stable for different skew factors, while the average

utility of Dash increases from 25% to 37%. Figure 9(b) break downs the memory used after the

insertion process. Each key in Dash occupies a slot in a main bucket and a value array, resulting in

higher NVM consumption. The memory utilization of Pea Hash is consistent regardless of the skew

factor, since Pea Hash balances the number of duplicate keys in each main bucket. The data-aware

adaptive bucket design saves redundant pointers for unique keys or keys with only a few duplicates,

bringing benefit to both performance and memory utility.

Figure 10 shows the performance on the four real-world graph data sets. We perform four

experiments. 1) SI (insert skew data): insert all (src-node, dest-node) entries into an empty 5MB
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Fig. 10. Performance for graph datasets.

hash table; 2) SS (skew search on skew data): search, where the distribution of search keys is the

same as the inserted keys; 3) US (unique search on skew data): search for unique keys; and 4) UD
(unique delete of skew data): delete unique keys. Overall, Compared with Dash, Pea Hash achieves

1.8x/1.1x/1.2x/1.5x speedups on average for skew insert / skew search / unique search / unique

delete, respectively. In several cases, we see very significant speedups, e.g., 2x for skew insert on

cite-Patents, 1.9x for skew insert on liveJournal.

5 CONCLUSION
In this paper, we propose Pea Hash, a novel performant extendible adaptive hashing index. We

identify the conflict between performance and memory utilization, and propose adaptive hashing

strategy to address the problem. We design data-aware adaptive buckets to efficiently support

duplicate keys. Experiments on real Intel Optane DCPMM show that both NVM-optimized Pea

Hash and DRAM-based Pea Hash index achieve significantly better performance than prior state-of-

the-art hashing indices, while maintaining desirable memory utilization. In conclusion, we believe

that Pea Hash is a promising hashing index solution.
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