
Decoupled Lifeguards: Enabling Path Optimizations
for Dynamic Correctness Checking Tools

Olatunji Ruwase1, Shimin Chen2, Phillip B. Gibbons2, Todd C. Mowry1

1Carnegie Mellon University 2Intel Labs Pittsburgh
oor@cs.cmu.edu, {shimin.chen,phillip.b.gibbons}@intel.com, tcm@cs.cmu.edu

Abstract
Dynamic correctness checking tools (a.k.a. lifeguards) can detect
a wide array of correctness issues, such as memory, security, and
concurrency misbehavior, in unmodified executables at run time.
However, lifeguards that are implemented using dynamic binary in-
strumentation (DBI) often slow down the monitored application by
10–50X, while proposals that replace DBI with hardware still see
3–8X slowdowns. The remaining overhead is the cost of perform-
ing the lifeguard analysis itself. In this paper, we explore compiler
optimization techniques to reduce this overhead.

The lifeguard software is typically structured as a set of event-
driven handlers, where the events are individual instructions in the
monitored application’s dynamic instruction stream. We propose
to decouple the lifeguard checking code from the application that
it is monitoring so that the lifeguard analysis can be invoked at
the granularity of hot paths in the monitored application. In this
way, we are able to find many more opportunities for eliminating
redundant work in the lifeguard analysis, even starting with well-
optimized applications and hand-tuned lifeguard handlers. Experi-
mental results with two lifeguard frameworks—one DBI-based and
one hardware-assisted—show significant reduction in monitoring
overhead.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
analysis; D.3.4 [Programming Languages]: Processors—Code
generation, optimization

General Terms Design, Performance, Reliability, Security

Keywords Dynamic code optimizations, Dynamic correctness
checking, Dynamic program analysis

1. Introduction
Dynamic correctness checking tools have become quite popular
thanks to the availability of powerful dynamic binary instrumen-
tation (DBI) frameworks such as Valgrind [21], Pin [17], and Dy-
namoRio [3]. These dynamic tools (a.k.a. lifeguards) have the ad-
vantages that they do not require source code (because they start
with binary executables as input) and they can observe the full dy-
namic behavior of the application as it executes. Lifeguards are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI ’10 June 5–10, 2010, Toronto, Canada.
Copyright c© 2010 ACM 978-1-4503-0019/10/06. . . $10.00

complementary to tools that perform either static analysis [4, 10,
11] or post-mortem crash analysis [18, 36]. Particularly valuable
are sophisticated lifeguards that invoke a lifeguard handler after
nearly every instruction in the monitored application’s dynamic in-
struction stream [21]. Such instruction-grain lifeguards are used to
check a diverse set of correctness issues, including memory [22],
security [24], and concurrency [31] misbehavior.

While instruction-grain lifeguards offer many compelling ad-
vantages, their major disadvantage is runtime overhead: lifeguards
such as MEMCHECK [22] or TAINTCHECK slow down cpu-
intensive benchmarks by 10–50X [21, 24]. Why are the overheads
so large? One reason is that DBI itself imposes a significant over-
head when it is performed at an instruction-by-instruction gran-
ularity. For example, the NULLGRIND “no instrumentation” life-
guard has a slowdown of roughly 4X on SPEC benchmarks [21],
even though it performs no real work. To eliminate the binary in-
strumentation overhead, recent proposals such as DISE [8] and
LBA [5, 6] propose hardware-assisted mechanisms for extracting
the instruction-level information of the monitored application and
feeding it to the lifeguard software as a stream of events. While
these approaches significantly reduce the runtime overhead, there
is still a slowdown of roughly 3–8X [5] for instruction-grain life-
guards, due to the cost of performing the lifeguard analysis itself.
In a recent paper, Chen et al. [5] observe that redundancy often
exists dynamically across lifeguard handlers (e.g., when access-
ing lifeguard state (called metadata), when performing redundant
checks, and when performing unnecessary copying), and they pro-
pose adding hardware accelerators to help reduce these unneces-
sary overheads. In this paper, we explore an alternative approach,
which is to recognize and eliminate this redundancy through soft-
ware.

1.1 Key Optimization Stumbling Block: Performing
Lifeguard Checks Synchronously

For decades, optimizing compilers have successfully improved
software performance by recognizing and eliminating redundant
computations along execution paths [1]. For traditional static anal-
ysis, a control flow graph is typically used to summarize the set
of all possible execution paths; for more recent JIT-style dynamic
code analysis, the optimizations are typically applied to an ob-
served set of hot paths.

Our goal is to apply these types of redundancy-elimination
optimizations across the lifeguard checking code. Unfortunately,
a key structural property of most existing lifeguard frameworks
makes it difficult to do this: their lifeguards perform correctness
checks synchronously such that the checking for a given instruction
(which is typically implemented as a call to an event-driven handler
that handles certain classes of instructions) is completed before that
instruction executes. On the one hand, it makes intuitive sense to
check an application instruction before it executes, because this

makes it straightforward to prevent bad things from happening. On
the other hand, one implication of this synchronous approach is
that the lifeguards behave much like interpreted code, where the
dynamic instruction stream from the monitored application serves
as the input. With this interpreter-like structure, there is little or
no opportunity to optimize across lifeguard handlers to exploit
redundancy caused by the structure and repeated patterns of the
monitored application.

1.2 Our Approach: Decoupling Lifeguard Checks to Enable
Path Optimizations

To enable more aggressive redundancy elimination of lifeguard
checking code, we propose to decouple the lifeguard checking code
from the application that it is monitoring. In contrast to traditional
synchronous frameworks that invoke lifeguard analysis at the gran-
ularity of individual instructions in the monitored application (in-
struction handlers), our decoupled framework makes it possible to
invoke the equivalent lifeguard analysis at the granularity of hot
paths (potentially spanning large numbers of basic blocks) in the
monitored application (path handlers). By exposing the lifeguard
analysis associated with an entire hot path to our optimizer, we can
find many more opportunities for eliminating redundant work in
the lifeguard analysis.

In addition to exploiting the usual forms of redundancy elimi-
nation that are utilized by modern optimizing compilers, we also
use domain-specific knowledge about the lifeguard behaviors to
perform more aggressive optimizations. We incorporate our de-
coupled approach into two diverse lifeguard frameworks: one that
uses DBI [21] and one that uses hardware-assisted logging [5]. Per-
haps surprisingly, we show that, even starting with well-optimized
applications and hand-tuned lifeguard handlers, our optimizations
can find and eliminate significant redundancy in both frameworks,
greatly reducing monitoring overhead.

1.3 How Decoupled Lifeguards Deal with Correctness Issues
that Have Already Happened

While the benefit of our decoupled approach is that it exposes more
opportunities for optimizing the lifeguard code, it also creates a po-
tential complication. Namely, because the lifeguard checks are lag-
ging behind the monitored application, by the time the lifeguard
observes a correctness issue in the running application, the applica-
tion has already continued executing beyond that point. To address
this problem, a decoupled lifeguard framework must be able to (i)
contain the damage to the application caused by such correctness
issues, and (ii) protect the lifeguard state from corruption caused
by such issues.

For requirement (i), we make sure that all remaining lifeguard
checking codes are executed before certain critical events. For ex-
ample, we ensure that all checks are complete before executing
system calls. We also complete all checks before application indi-
rect jumps to ensure that executed application code is well defined.
Thus, the paths selected for path handlers do not cross application
system calls or indirect jumps.

Requirement (ii) is trivially satisfied when a lifeguard and the
monitored application are in separate address spaces, such as in
LBA [5] and Speck [25], where corruption is not possible. How-
ever, when the lifeguard and the application share the same address
space, we must protect three key memory components of this ad-
dress space: the lifeguard code, any dynamically instrumented ap-
plication code, and any metadata maintained by the lifeguard. The
first two can be protected using page protection mechanisms, while
the third is slightly more involved—see Section 2.2.

1.4 Related Work
Our approach builds upon a large body of previous work on opti-
mizing interpreters [15, 28], partial evaluation [14], and dynamic
code optimization [2, 7, 16, 35]. In contrast to this earlier work,
our context is unusual because we are using the runtime behavior
of one program (the monitored application) to optimize something
else (the lifeguard).

Perhaps a more closely related topic is work on optimizing ma-
chine simulators [7, 35] by compiling sequences of simulator code
to match hot paths in the simulated application. In both cases, an
application path is the input to the optimization process; in our case,
however, the lifeguard analysis is more closely connected with the
structure of the monitored application than the work done in a ma-
chine simulator. Hence the lifeguard domain-specific optimizations
that we explore are different from this earlier work.

Finally, there have been a number of proposals for accelerat-
ing lifeguard functionality [5, 9, 25, 29, 30, 32]. Raksha [9] and
Hardgrind [32] accelerate monitoring by implementing most of the
checking and propagation functionality of a particular lifeguard
in hardware and handling exceptional cases in software. Our sys-
tem eliminates redundant checks and propagation in software and
is applicable to all lifeguards. Chen et al. [5] propose hardware
mechanisms for accelerating the most frequent operations com-
monly performed by lifeguards. These include mechanisms for fast
metadata lookup, redundant checks elimination and propagation in-
heritance tracking. Our optimizer similarly eliminates redundant
lookups, checks and propagations, but without the need for such
hardware accelerators. LIFT [29] observed that TAINTCHECK of-
ten performs redundant propagations because the sources and des-
tination were typically untainted. It therefore skips propagation
entirely within a program path if the live-in and live-out regis-
ter/memory data of the path are untainted. In contrast, our opti-
mizations do not rely on the runtime values of metadata for redun-
dancy elimination and are therefore complementary to LIFT. While
our redundant metadata checks elimination within program paths is
similar to LIFT’s, our optimizations go further to eliminate checks
across loop path iterations. Recent works accelerate lifeguards by
parallelizing their monitoring task, either for sequential [25, 30] or
parallel [13, 34] programs; our work is complementary to these ef-
forts.

1.5 Contributions
This paper makes the following main contributions:

• To our knowledge, this is the first study to explore dynamic
code optimization techniques for lifeguards.

• We propose to decouple the lifeguard checking code from the
monitored application so that the lifeguard analysis can be in-
voked at the granularity of hot paths in the monitored applica-
tion for more aggressive redundancy elimination.

• Beyond the usual redundancy elimination optimizations, we
propose and evaluate lifeguard domain-specific optimizations
that improve performance further.

• We evaluate our approach on a diverse set of instruction-grain
lifeguards on top of two lifeguard platforms: a popular DBI
platform, Valgrind, and a simulated hardware-assisted platform,
LBA. For cpu-intensive benchmarks, we observe reductions in
monitoring overhead of up to 31% on Valgrind and 53% on
LBA.

2. Understanding Dynamic Correctness Checking
In this section, we first discuss several representative lifeguards.
We then discuss frameworks for supporting lifeguards, and how
decoupled lifeguards would fit in. Finally, we analyze lifeguards’

mov %eax, [%ebx]
mov %edx, 0x8[%ebx]
add %edx, %ecx
mov 0x8[%ebx], %edx
jmp %eax

(a)

mem_to_reg (eax, [%ebx])
mem_to_reg (edx, 0x8[%ebx])
add_reg_to_reg (edx, ecx)
reg_to_mem (0x8[%ebx], edx)
check_reg_indirect_jmp (eax)

(b)

Figure 1. (a) x86 code trace of a monitored program, and (b) the
corresponding invoked TAINTCHECK instruction handlers.

common characteristics to point out the opportunities for optimiza-
tions.

2.1 Representative Lifeguards
In our study, we focus on the following four instruction-grain life-
guards that represent a wide range of functionality:

• ADDRCHECK [20] checks whether every application memory
access is to an allocated memory area. In particular, for ev-
ery application byte, it maintains a 1-bit “allocated” state as its
metadata. The metadata are updated when ADDRCHECK ob-
serves memory allocation calls such as malloc and free.

• TAINTCHECK [24] detects security exploits by monitoring sus-
pect data in the application’s address space. It maintains for ev-
ery application byte a 1-bit “tainted” metadata, which is ini-
tialized to untainted. Unverified input data, such as those from
network or from untrusted disk files, are marked as tainted.
TAINTCHECK tracks the propagation of tainted data: For each
executed application instruction, TAINTCHECK computes and
updates the tainted state of the destination of the instruction by
performing a logical OR operation on the tainted states of all the
source operands. If tainted data are used in critical ways, such
as in jump target addresses or printf-like calls’ format strings,
then TAINTCHECK flags a violation.

• MEMCHECK [22, 23] enhances ADDRCHECK with protection
against uninitialized values. Such protection is non-trivial be-
cause it is not an error to read an uninitialized value, e.g., when
copying a partially initialized data structure. Instead, errors are
raised only when uninitialized values are actually used improp-
erly: e.g., dereferenced as pointers or passed into system calls.
MEMCHECK maintains a 1-bit allocated state and a 1-bit ini-
tialized state for every application byte. The allocated state is
updated and checked as in ADDRCHECK, while the initialized
state is propagated like the tainted state in TAINTCHECK.

• LOCKSET [31] monitors each application memory access to
detect data races in parallel programs. For each shared mem-
ory location of the application, LOCKSET maintains the set of
common locks held by different application threads when ac-
cessing the location. If the common lock set becomes empty,
LOCKSET reports a potential data race. Since the total number
of possible lock sets is typically much smaller than the number
of memory locations, an optimization is to store the lock sets in
a separate data structure and keep a pointer to the data structure
as the per-location metadata.

2.2 Lifeguard Frameworks and Decoupled Lifeguards
As the monitored application executes, a sequence of application
instruction events occur (conceptually). A lifeguard registers an
event handler for every application event type that it cares about.
For example, ADDRCHECK registers for memory read and write
event types, while TAINTCHECK cares about almost every type
of instruction. On x86, an instruction that performs multiple types
of operations, such as memory access and computation, will be
mapped to multiple event types. For each observed instruction

void mem_to_reg(r,m) {
 taint(r) = taint(m);
}

(a)

 void check_reg_indirect_jmp(r){
 if(taint(r)==tainted){
 error (“....”);
 }
 }

(b)

UChar taint (UINT32 addr) {
 map *mp = level1_index[addr >> 16];
 // mov %ecx, %eax
 // shr %ecx, $16
 // mov %ecx, level1_index[,%ecx,4]
 int idx = (addr & 0xffff) >> 2;
 // and %eax, 0xffff
 // shr %eax, $2
 return mp[idx];
 // movzbl %eax, [%ecx, %eax, 1]
}

(c)

Figure 2. (a) TAINTCHECK propagation handler, (b) TAINT-
CHECK checking handler, and (c) an implementation of the taint()
function for retrieving the taint status of a memory location.

event, the lifeguard framework invokes the registered lifeguard
event handler with the dynamic event values (e.g., the effective ad-
dress for a memory access) as handler arguments. Figure 1 shows
an example application event sequence and the corresponding
TAINTCHECK handler calls. (In this paper, destination operands
appear to the left of source operands.) Implementations of a propa-
gation handler and a checking handler are shown in Figure 2. There
are also special handlers for high-level events such as malloc and
free; these are typically invoked via an instrumentation of the
corresponding library call.

This event-driven model can be supported both in software and
in hardware. The software-only approach is typically based on
Dynamic Binary Instrumentation (DBI) [3, 17, 21], where exe-
cuting application code is modified (instrumented) to insert life-
guard event handlers in between application instructions. Log
Based Architectures (LBA) [5] is a state-of-the-art general-purpose
hardware-assisted design, which runs a monitored application and
a lifeguard on two separate cores in a multi-core system. Instruction
records are extracted at the core running the application, transferred
through a log buffer to the core running the lifeguard, and delivered
in the event-driven fashion. In this design, lifeguard checking can
lag the monitored application (by tens of thousands of instructions).
This is a conscious design choice to enable hardware optimizations
such as compressing sequences of log records prior to transfer.
For correctness, LBA contains detected errors within the applica-
tion’s process boundary by stalling the application at system calls
and waiting for the lifeguard to catch up and complete necessary
checking.

This paper proposes to decouple the lifeguard checking code
from the monitored application so that the lifeguard analysis can be
invoked at the granularity of hot paths in the monitored application
for more aggressive optimizations. Note that this differs from LBA
because LBA does not provide hot-path capabilities and because we
propose to use decoupled lifeguards even within DBI frameworks.

As discussed in Section 1.3, frameworks in which the lifeguard
and the application share the same address space (e.g., DBI, DISE)
raise additional challenges for correct execution of decoupled life-
guards. Namely, we must protect the lifeguard code, the instru-
mented code, and the lifeguard metadata from spurious applica-
tion writes that may arise before the lagging lifeguard analysis de-
tects the problem in the application. The lifeguard code can be
easily protected using page protection mechanisms. Similarly, in-
strumented code pages can be protected after generation. Note that
containment (requirement (i) of Section 1.3) ensures that corrupted
code can never use system calls to remove page protections.

lifeguard data segments
(including metadata of
application data)

application data segments

metadata of
lifeguard data

Data segments
in an address
space that is
shared with a

lifeguard

Figure 3. Metadata maintained by the lifeguard shadow all the
data segments in the shared address space. Metadata either (i)
shadow application data and are accessed by the lifeguard for
correctness checking or (ii) shadow lifeguard data but should never
be accessed because the lifeguard does not self-check.

It is more challenging to protect the lifeguard metadata, which
for instruction-grain lifeguards is primarily a one-to-one mapping
from every memory location/byte in the application’s address space
to a lifeguard-specific shadow value [21] (examples above). This is
because we must ensure that the lifeguard can update this metadata,
but the application cannot. A simple, but costly, approach would be
to insert a range check before every application write to ensure that
it does not fall in the metadata range. A better-performing approach
(see Figure 3) is to observe that, because a lifeguard maps the entire
address space including the monitored application and the lifeguard
to the metadata, the metadata must itself be mapped to a sub-range
of the metadata. The lifeguard would normally never need to access
this self-referenced range, so we can protect the range (e.g., via
mprotect) with little overhead. If the application either directly
accesses the self-referenced range or accesses anywhere else in the
metadata causing the lifeguard to access the corresponding self-
referenced range, an exception will be triggered. We can register a
signal handler to detect and report such application misbehavior.

2.3 Lifeguard Optimization Opportunities
In this section we discuss lifeguard optimization opportunities
when using decoupled lifeguards. The concern is that even de-
coupled lifeguards provide little opportunity for optimization be-
cause (i) lifeguard event handlers are already well optimized by
existing compilers and are sometimes even hand-tuned; and (ii)
the sequence of event handler calls corresponds to the sequence
of application instructions in a well-optimized application, so that
any redundant calls would seem to map back to redundant appli-
cation instructions that would have been optimized away. Fortu-
nately, despite these realities, there remains plenty of optimization
opportunities, because of the following common properties of our
representative lifeguards.

First, a lifeguard’s behaviors are much simpler than the moni-
tored application because an event type often corresponds to many
different instructions. For example, ADDRCHECK and LOCKSET
only care about memory accesses; they do not distinguish the com-
putation operations (e.g., addition or multiplication using a memory
location as a source operand are both regarded as a memory read).
In TAINTCHECK and MEMCHECK, any computation in the appli-
cation is converted into a logical OR of the source(s) metadata.
Because of the many-to-one mapping of operations, even well-
optimized application code sequences can result in sub-optimal
lifeguard code sequences.

Second, metadata accesses are the most important operations
in any lifeguard. Metadata in lifeguards are often constructed as
a two-level data structure [23]. The first level is a pointer array,
pointing to metadata chunks in the second level. The higher part
of an application effective address is used to index the first level,

while the lower part indexes the second level chunk. This organi-
zation saves space and is more flexible than allocating a monolithic
metadata block for the entire application’s virtual address space:
metadata are allocated only when the corresponding virtual mem-
ory space is actually used by the application. Moreover, the mono-
lithic approach may not be feasible for large metadata such as those
in LOCKSET. As a result, any metadata access has to perform an
indirect memory access with several shift and mask operations. For
example, as shown in Figure 2(c) retrieving the taint status of mem-
ory locations in TAINTCHECK requires up to six x86 instructions.
Therefore, reducing metadata accesses may significantly improve
lifeguard performance.

Third, spatial locality of application data accesses results in spa-
tial locality of metadata accesses. The common metadata design
among the four lifeguards we study is that each second level meta-
data chunk shadows a 216 byte range in the application address
space, thus subsequent accesses to a metadata chunk can be done
cheaply (avoiding the five instruction sequence in Figure 2(c)), by
expressing the new location as an offset of a previously accessed
location within the chunk.

Fourth, temporal locality of data accesses in the application
code is mapped to temporal locality of metadata accesses in the
lifeguard code. Given the many-to-one mapping of operations, it is
possible that different or even dependent operations on the same
memory location in the application are mapped to redundant life-
guard operations. For example, for a sequence of application in-
structions with multiple loads/stores to a given location without in-
tervening memory (de)allocation calls, ADDRCHECK will perform
a check per load/store. However, because the checks all read the
same metadata, an optimization is to use only a single check for
that location, removing all the other redundant checks. Perform-
ing such optimizations requires knowledge of both the monitored
program’s control flow and the lifeguard’s checking and/or prop-
agation rules. Unfortunately, existing optimizers are not aware of
either as they see only the lifeguard code.

Finally, most lifeguards (including the four in our study) care
only about the data flow pattern of the application in terms of
the source and destination addresses. They do not care about the
actual data values. Because handlers are insensitive to data values,
they are simple (recall Figure 2(a)) and abundantly reused, making
redundancies more likely.

The key to taking advantage of these opportunities is to bundle
multiple handler calls together and optimize them as a unit, as
enabled by our decoupled lifeguard approach, and described next.

3. Effective Optimization of Lifeguard Code
In this section, we present our solution for effectively optimizing
lifeguard code by exploiting the observations in the preceding sec-
tion. One constraint that we want to satisfy is to keep our solution
generic so that it can be applied to a wide range of lifeguards. In
the following discussions, we present our solution step by step.

Our optimizations rely on the following assumptions on life-
guard instruction event handlers. First, a lifeguard maintains unique
metadata (i.e., shadow values) for each application register/memory
location for the program properties that the lifeguard is monitoring.
Second, the metadata are often organized using a two-level data
structure as discussed in Section 2.3. Third, event handlers that
correspond to application instruction events can access only the
metadata associated with the handler arguments. These instruction
event handlers are frequently executed and are the focus of our
study. Fourth, the checks performed by these instruction event han-
dlers are deterministic functions of the handler arguments and the
metadata states. Two checks with the same handler arguments and
the same associated metadata values are idempotent, giving the
same outcome. Finally, the updates performed by the instruction

application
binary

lifeguard
optimizer

re
ad

 c
o

d
e

p
at

h

w
rite p

ath
h

an
d

lers

Decoupled
Lifeguard
system

Log of PC & effective address values

p
ro

fi
le

 c
o

n
tr

o
l

 f
lo

w

instruction
handlers

path
handlers

lifeguard binary

application
optimizer

static
code

dynamic
code

application binary

re
ad

 c
o

d
e

p
at

h

w
rite

o
p

tim
ized

co

d
e

execution
environment

p
ro

fi
le

 c
o

n
tr

o
l

 f
lo

w

JIT optimization system

(a) (b)

re
ad

in

st
ru

ct
io

n
h

an
d

le
rs instruction

handlers
description

Figure 4. A high level view of how (a) a traditional JIT optimizer
is used on application code, and (b) a JIT lifeguard optimizer would
fit into a decoupled lifeguard system.

event handlers are also deterministic given the handler arguments
and the metadata states. A handler may read source metadata lo-
cations and write to destination metadata locations. If the handler
arguments and the source metadata values are the same, then the
destination metadata values will be the same. (An example of an
event handler not satisfying this assumption is a “profiling” han-
dler that increments a counter each time it is called.) The above
assumptions typically hold for the implementations of instruction-
grain lifeguards [21], including the four in our study as described
in Section 2.1.

3.1 JIT Optimization of Decoupled Lifeguards
We propose dynamic optimization for decoupled lifeguards. In Fig-
ure 4, we show how a JIT “lifeguard” optimizer fits into a decou-
pled lifeguard system in comparison to how traditional JIT optimiz-
ers are used. As shown in Figure 4(a), a traditional JIT optimizer
profiles the execution environment (e.g., using performance coun-
ters, interpreters) to discover the frequently executed code paths of
the application. The optimizer then reads a hot code path from the
application binary, optimizes the hot code path, and dynamically
patches the application binary with the optimized code for future
execution. In contrast, as shown in Figure 4(b), the decoupled life-
guard optimizer obtains hot control flow profiles from a “log” that
streams program counter values and effective addresses from the
application to the lifeguard. It then reads the hot code path from
the application binary, reads the relevant instruction event handlers
from the lifeguard binary, and composes the appropriate sequence
of event handlers into a path handler. (Example path handlers are
shown in Figure 5.) The optimizer then applies the optimizations
described later in this section to the path handler and patches the
lifeguard binary with the optimized path handler, which is used for
analyzing future executions of the hot code path. Note that the op-
timizer is designed to execute off the critical path of application-to-
lifeguard communication and hence should have minimal adverse
impact on application and lifeguard performance.

In this paper, a path is an acyclic sequence of dynamic instruc-
tions that can contain up to a predefined number (e.g., 8 in our
experiments) of forward branches or terminates at the first back-
ward branch, indirect jump, or system call. This not only simplifies
path identification (each path is identified by its starting address and
taken/not taken branch pattern), but also satisfies the containment
requirement as discussed in Section 1.3.
Extending Lifeguard Frameworks to Support Path Handlers.
With the decoupled lifeguard approach, there is an opportunity to
look ahead in the log to see application events that have not yet
been delivered to the lifeguard. Thus, a lifeguard framework can
identify when an application path matches a previously determined

void taintcheck_path_hdlr (){
 mem_to_reg(eax, [%ebx])
 mem_to_reg(edx, 0x8[%ebx])
 add_reg_to_reg(edx, ecx)
 reg_to_mem(0x8[%ebx], edx)
 check_reg_indirect_jmp(eax)
}

(a)

void addrcheck_path_hdlr (){
 check_allocated([%ebx])
 check_allocated(0x8[%ebx])

 check_allocated(0x8[%ebx])

}
(b)

Figure 5. TAINTCHECK and ADDRCHECK path handlers for the
code path in Figure 1(a), before optimizations.

hot path, and invoke the corresponding path handler. If a match
is not found, the framework falls back to invoking an instruction
handler for each event, until the next match.

For correctness, it is required that the lifeguard operations (i.e.,
metadata updates and checks) performed by a path handler must
be equivalent to the operations performed by the individual event
handlers comprising the path handler. Given the way that the path
handler is constructed, it is sufficient to satisfy that the same event
arguments are supplied to the event handler calls inside the path
handler as before. To achieve this, the lifeguard framework is ex-
tended to record in an array all event arguments since the start of the
path. Because the number of event arguments is fixed for any event,
the argument location of a particular event in a path will be found at
a fixed offset from the array start. Therefore, we can supply an array
reference with a constant index for any non-register event argument
in a path handler. Register event arguments can be represented as
small integer constants (i.e., register IDs). Communicating argu-
ments to event handlers in this way enables the composing and in-
lining of non-trivial handlers, in contrast to copy-and-annotate [21]
approaches such as in Pin, which work only for simple handlers.

Traditional Compiler Optimizations on Path Handlers are Sub-
optimal. After constructing a path handler, we could simply use a
traditional compiler to optimize the path handler by inlining the
event handler calls of the path handler. As shown in our experi-
ments in Section 5 (the path(stdopts) bars), this approach indeed
reduces lifeguard overhead in many cases, albeit only modestly.
However, examining the generated lifeguard path handler code, we
find that a lot of redundancy still exists in the code. But why?

3.2 Removing Redundant Lifeguard Operations within
Individual Path Handlers

To understand why traditional compilers fail to remove many re-
dundant lifeguard operations, let us look at the example path han-
dler shown in Figure 5(b). We can see that the third check is clearly
a duplicate of the second check. However, the two-level metadata
structure hinders traditional compilers from recognizing this fact.
Disambiguating the metadata manipulated by lifeguard event han-
dlers is quite difficult because metadata are accessed using indirect
memory references (as discussed in Section 2.3; see Figures 2(c)
and 8(a) for examples), for which existing alias analysis techniques
are quite ineffective. However, without such disambiguations, it
would be impossible to verify that checks or propagations are re-
dundant because potentially any metadata could be read or updated.
Thus, traditional compilers have to conservatively retain the redun-
dant lifeguard operations.

But why do we intuitively know that the third check is a du-
plicate? This is because we understand the mapping from appli-
cation address to metadata address, and we understand the high-
level semantics of the event handlers. check allocated per-
forms a metadata read, and the same application address is mapped
to the same lifeguard metadata address, whose value may change
only upon application memory (de)allocation events. However, this
analysis may not apply to another lifeguard, e.g., TAINTCHECK.
If two propagation handler calls share a common address argu-

void taintcheck_trace_hdlr (){
 mem_to_reg(eax,M1)
 mem_to_reg(edx,M2)
 add_reg_to_reg(edx,ecx)
 reg_to_mem(M2,edx)
 check_reg_indirect_jmp(eax)
}

(a)

void addrcheck_trace_hdlr (){
 check_allocated(M1)
 check_allocated(M2)

 check_allocated(M2)

}
(b)

Figure 6. Applying our alias analysis to the path handlers in Fig-
ure 5. Symbolic address expressions expose potential redundancies.

ment, the determination of whether the second is a duplicate must
distinguish between cases where the common address is used in
a source or destination operand in each respective call. In other
words, detecting redundant checks and propagations requires rea-
soning about the runtime effects of the event handler calls on meta-
data. To do this analysis at compile time, there are two challenges:
(i) understanding the effects of each lifeguard event handler, e.g.,
whether it performs propagations or checks; and (ii) disambiguat-
ing which metadata are manipulated.

We tackle the first challenge by using an “instruction handlers
description” configuration file written by the lifeguard writer that
describes how each handler manipulates (reads/writes) the meta-
data of its arguments, and whether the handler obeys the assump-
tions (idempotency, determinism) on common handlers that were
listed at the beginning of Section 3. The configuration file also in-
dicates the size of metadata values, e.g., ADDRCHECK maintains 1
bit for each application byte.

For the second challenge, we exploit the 1-1 mapping from ap-
plication addresses to lifeguard metadata addresses. Rather than
disambiguating metadata references in a path handler, we disam-
biguate the corresponding memory and register references in the
corresponding hot code path in the monitored application. We ex-
pect reasonable success with this approach because (i) registers are
trivial to disambiguate and (ii) memory references in the applica-
tion code are often dominated by direct memory references, for
which alias analysis is more effective. In this way, we convert the
difficult task of disambiguating indirect memory references in the
lifeguard code into a much easier task of disambiguating registers
and direct memory references in the monitored application code.

We analyze the hot path in the monitored application code. By
keeping track of expressions used for forming addresses (i.e., base
register, index register, offset field, and scale field), we determine
effective address arguments in the path handler that always-alias
or may-alias with others. An address argument always-aliases with
another address argument that is formed using the same expres-
sion, and it may-aliases with other address arguments. Note that,
as in traditional JIT optimizers, our JIT lifeguard optimizer is per-
forming alias analysis based on a static analysis of the hot path
(and not the effective addresses in a dynamic instance of the path),
so that the dynamically compiled path handler can be applied to
any instance of the path. Figure 6 shows the outcome of apply-
ing our alias analysis to the path handlers in Figure 5; effective
address arguments that are always-aliased are replaced with the
same symbol. For example, the two address arguments formed us-
ing 0x8[%ebx] are replaced with M2 since they always resolve to
the same effective address and are used to access the same metadata
location at runtime. The analysis also notes that M1 and M2 are eight
bytes apart and hence the corresponding metadata accesses can be
optimized using the technique described in Section 3.4.

Detecting redundant checks and propagations is much easier in
this representation. For example, given the above configuration file,
it is easy to determine that the check performed by the third handler
call in Figure 6(b) is redundant to that performed by the second call.

In addition to removing redundant events, we can further lever-
age the descriptions in the configuration file. For propagation-style

lifeguards, such as TAINTCHECK and MEMCHECK, a propagation
event handler performs a logical OR of the source operands’ meta-
data. There are frequent opportunities to short circuit this operation
to improve lifeguard performance. For example, in TAINTCHECK,
a destination is tainted if at least one of the sources is tainted regard-
less of the status of the other source(s). In contrast, short circuiting
opportunities are far less common in more general programs, where
operands (e.g., integers) have significantly larger value ranges and
participate in the full set of arithmetic/logical operations.

3.3 Exploiting Knowledge Beyond Individual Paths for
Further Optimizations

The optimizations described above are fundamentally limited by
the path boundaries. Here, we extend our optimizations to consider
the context of individual paths within enclosing loops.

We observe that paths inside an application loop translate into
event sequences that get repeated each loop iteration and conse-
quently into repeated invocations of the same lifeguard path han-
dler. Although the original application loop code is generated by
traditional compilers that already perform loop optimizations (e.g.,
loop-invariant code motion), the resulting lifeguard operations of-
ten still have many redundancies across loop iterations because of
the many-to-one mapping of application operations to lifeguard op-
erations. To exploit this observation, we require the underlying life-
guard framework to remember the path delivered prior to the cur-
rent path, as well as to support looking ahead in the application
event sequence for one more path beyond the current path. This is
a reasonable requirement. For example, LBA uses a log buffer that
can contain tens of thousands of instruction events. In this way, a
given instance of a loop path can be identified as the first, the last,
or some middle iteration of the loop path.

We optimize loop path handlers by eliminating loop redundan-
cies in a manner similar to that in traditional compilers. We analyze
a loop path handler to detect lifeguard operations that perform loop-
invariant checks/propagations and loop-dead propagations. It is im-
portant to note that because we are dealing with paths, the propa-
gation/check only has to be invariant on iterations of that particular
loop path, and might be variant on other paths in the loop [12]. Sim-
ilarly, loop-dead propagations are propagations that are only live on
the exit of the loop path. During the monitoring run, the path han-
dler invokes loop-invariant handlers only on the first iteration and
loop-dead handlers only on the last iteration.

Figure 7 shows an example of eliminating redundancies in loop
path handlers. The path in Figure 7(a) is a hot loop path from
181.mcf, a SPEC2000 benchmark. As shown in Figure 7(b), the
TAINTCHECK path handler contains 12 instruction handlers before
metadata disambiguation. We focus on Figure 7(c), which shows
the handler after all the optimizations in Section 3.2. The first
event handler call, which merges the taint status of memory M1
into that of register esi, is loop-invariant, because both of their
taint metadata are read-only otherwise in the path. Handler call (7),
which propagates the status of M2 into ebx, is loop-dead, because
the status of ebx is live only at the loop exit. Figure 7(d) shows
the actual generated path handlers. In this case, our optimizations
successfully detect that all the handlers are either loop-invariant or
loop-dead, thus eliminating the need for a loop body handler!

3.4 Exploiting Spatial Locality for Cheap Metadata Access
After eliminating redundant event handler calls, the remaining
event handler calls are inlined to enable a cheap metadata access
optimization described next. As discussed in Section 2.3, a com-
mon metadata design for lifeguards is to shadow each 216 byte
aligned region in the application address space with a second meta-
data level chunk. This implies that repeated data accesses in this
byte range result in accesses to different locations of this metadata

0x804d085:
jz 0x0804D090
cmp %ebx, 0x02
jz 0x0804D0C4
lea %esi, [%esi]
add %esi, ­0x24[%ebp]
mov %edx, %edi
mov %edi, %esi
sub %edi, ­0x24[%ebp]
cmp %edi, 0x10[%ebp]
jbe 0x0804D0F3
mov %ecx, ­0x24[%ebp]
lea %edi, [%edx,%ecx,1]
mov %ebx, 0x1c[%edx]
test %ebx, %ebx
jle 0x0804D090
mov %eax, [%edx]
mov %ecx, 0x10[%edx]
sub %ecx, 0x2c[%eax]
mov %eax, 0x4[%edx]
add %ecx, 0x2c[%eax]
cmp %ecx, 0x00
jge 0x0804D085

(a)

void taint_loop_hdlr (){

1: add_mem_to_reg(esi, M1)
2: reg_to_reg(edx, edi)
3: reg_to_reg(edi, esi)
4: sub_mem_from_reg(edi, M2)

5: mem_to_reg(ecx, M3)
6: add_2reg_to_reg(edi,edx,ecx)
7: mem_to_reg(ebx, M4)

8: mem_to_reg(eax, M5)
9: mem_to_reg(ecx, M6)
10: sub_mem_from_reg(ecx, M7)
11: mem_to_reg(eax, M8)
12: add_mem_to_reg(ecx, M9)

 }
(b)

void taint_loop_hdlr (){

1: add_mem_to_reg(esi, M1)
2: reg_to_reg(edx, edi)
3:
4:

5:
6: add_mem_to_reg(edi, M1)
7: mem_to_reg(ebx, M2)

8:
9:
10: sub_2mem_to_reg(ecx,M4,M5)
11: mem_to_reg(eax, M6)
12: add_mem_to_reg(ecx, M7)

 }
(c)

void taint_loop_entry () {
1: add_mem_to_reg(esi, M1)
6: add_mem_to_reg(edi, M1)
}

void taint_loop_exit () {
2: reg_to_reg(edx, edi)
7: mem_to_reg(ebx, M2)
10: sub_2mem_to_reg(ecx,M4,M5)
11: mem_to_reg(eax, M6)
12: add_mem_to_reg(ecx, M7)
}

(d)

Figure 7. (a) A hot loop path from the 181.mcf benchmark, (b) the TAINTCHECK path handler after alias analysis but before metadata
disambiguation, which translates to 81 x86 instructions after inlining, (c) the path handler after metadata disambiguation and intra-path
redundancy elimination, which results in 54 x86 instructions after inlining, and (d) the entry and exit path handlers containing the loop
invariant and loop-dead handler calls, which results in 12 and 43 x86 instructions, respectively, after inlining. Because all the handler calls in
(c) are in either the entry or exit path handlers, the path handler for the body of the loop is empty.

chunk. If the optimizer could identify accesses to the same meta-
data chunk, it could avoid the five instructions required for com-
puting a metadata address for all but the first access and perform
the remaining accesses as offsets of the first one. However, because
this is as difficult as directly disambiguating metadata accesses, our
optimizer instead identifies application memory references in the
code path that are likely to be in the same 216 byte address range.
It employs the heuristic that memory references that are formed us-
ing a “base register + offset” addressing mode and that differ only
in the offset are often shadowed by the same metadata chunk. Our
evaluations confirm this to be a highly accurate heuristic.

Having identified a set of memory references that are likely to
be shadowed by the same metadata chunk, the optimizer derives the
relative distance of the corresponding metadata in the chunk using
the size of metadata values and optimizes the path handler as shown
in Figure 8. Figure 8(a) shows an excerpt of the TAINTCHECK path
handler from Figure 6(a) after inlining of event handlers, showing
the accesses to taint values of two memory locations M1 and M2.
Because both memory references are formed in the application hot
path using addressing modes targeted by our heuristic, the second
taint read is performed using the address of the first one, as shown
in Figure 8(b). Here, the second taint value is a 1 byte offset from
the first because M1 and M2 are 8 bytes apart and a metadata
value is 1 bit for every application byte. This optimized sequence
is executed only after a three instruction runtime check is used
to determine when the metadata accesses are indeed to the same
metadata chunk and hence the optimization is safe. If the check
fails, the unoptimized sequence in Figure 8(a) is executed as a fall
back. For applications with good spatial locality, the overheads of
this optimization are amortized across multiple metadata accesses
that fall within the same chunk, as shown by our experiments.

3.5 Summary of Optimizations
In summary, we optimize decoupled lifeguard code by (i) automat-
ically constructing path handlers from lifeguard event handlers, (ii)
performing alias analysis on every hot path of the monitored appli-
cation code for disambiguating the metadata manipulated by event
handlers in the corresponding path handler, (iii) eliminating redun-
dant event handler calls in the context of individual paths within

.

.

.

/* compute taint address */
mov %esi, %edi
shr %esi, $16
mov %esi, level_1_index[, %esi, 4]
and %edi, 0xffff
shr %edi, $2
/* read taint value */
movzbl %eax, [%esi, %edi, 1]
.
.
.

/* compute taint address */
mov %esi, %ebx
shr %esi, $16
mov %esi, level_1_index[, %esi, 4]
and %ebx, 0xffff
shr %ebx, $2
/* read taint value */
movzbl %edx, [%esi, %ebx, 1]

(a)

.

.

.

/* compute taint address */
mov %esi, %edi
shr %esi, $16
mov %esi, level_1_index[, %esi, 4]
and %edi, 0xffff
shr %edi, $2
/* read taint value */
movzbl %eax, [%esi, %edi, 1]
.
.
.

/* reuse address to read taint value */
movzbl %edx, 0x1[%esi, %edi, 1]

(b)

Figure 8. (a) An excerpt from the TAINTCHECK path handler from
Figure 6(a) after inlining of event handlers, showing the accesses to
taint values of two memory locations M1 (passed to the path handler
in edi) and M2 (passed to the path handler in ebx) that are 8 bytes
apart. (b) The path handler after our metadata address computation
optimization: the second taint access is performed as an offset of
the first one, because the memory locations are shadowed by the
same metadata chunk.

enclosing loops, including loop-invariant and loop-dead handler
optimizations, and finally (iv) eliminating expensive metadata ad-
dress computations by exploiting the spatial locality of metadata
accesses. Experimental evaluation in Section 5 shows that it is sub-
optimal to employ only traditional compiler optimizations (includ-
ing inlining) after step (i), and that our new, lifeguard domain-
specific optimizations, i.e., steps (ii)–(iv), lead to significant ben-
efits beyond traditional optimizations.

4. Implementation
We implemented our proposed lifeguard path optimizer in two
frameworks: Valgrind and LBA. We describe the two implemen-
tations in Section 4.1 and 4.2, respectively.

4.1 Extending Valgrind for Lifeguard Path Optimizations
Valgrind [21] is a state-of-the-art dynamic binary instrumentation
framework. Given an application executable, Valgrind disassem-
bles up to three branches from the application x86 code at a time
into the Valgrind intermediate representation (IR). Then, it inserts
the relevant lifeguard code before the associated application in-
structions in the IR. After that, it optimizes and converts the IR
back to x86 code, caches the code in a hash-indexed code cache,
then executes the instrumented code. This instrumentation process
is performed only when code to execute is not found in the code
cache. The overhead is further reduced by recording the starting ad-
dresses of the most frequently used codes in a small array for fast
lookup and dispatch. Valgrind directly manages shadow registers.
The IR optimizations eliminate redundant checks and propagation
among shadow registers. Therefore, we mainly focus on reducing
redundant memory events for Valgrind lifeguards.

Starting from Valgrind-3.4.0, we implemented decoupled life-
guards and path optimizations as follows. First, we extend Valgrind
to disassemble up to eight branches from the application code at
a time in order to form a path. Second, unlike the original Val-
grind, we insert a lifeguard path handler only at the end of the IR
of a path. Third, we instrument the application code path to gen-
erate a log of the effective addresses of the memory operations.
This log is consumed by the lifeguard path handler. We do not log
program counter values because Valgrind already keeps track of
them. Fourth, we reduce the logging overhead by (i) logging one
address for each set of aliasing memory references, and (ii) logging
loop-invariant memory addresses only in the first loop iteration. Fi-
nally, we perform path-based lifeguard handler optimizations and
replace the original Valgrind instrumentation only when the esti-
mated benefit of the optimizations (i.e., the number of eliminated
handler calls) outweighs the logging overhead.

Our current Valgrind extension is limited in three ways. First,
for every path starting address, it can optimize only a single hot
path, which reduces the coverage of the optimizations because mul-
tiple hot paths (such as in a hot loop) may share the same starting
address. Second, there is no mechanism for detecting the last itera-
tion of a self-loop. This prevents loop-dead handler elimination as
described in Section 3.3. Third, memory event handlers are not in-
lined, thus our metadata address optimization cannot be performed.
Fixing these three limitations, which is part of our future work, will
only increase the performance benefits of our techniques relative to
the original Valgrind.

4.2 Extending LBA for Lifeguard Path Optimizations
As described in Section 2.2, LBA is a state-of-the-art design for a
hardware-assisted lifeguard framework. It exploits multi-core pro-
cessors to run a monitored program and its lifeguard on separate
cores. A log buffer is maintained in the last level on-chip cache
for transferring event records from the application core to the core
running the lifeguard. At the lifeguard core, a hardware dispatch
mechanism efficiently supports event-driven lifeguard execution.

We extended the baseline LBA simulator with hardware mech-
anisms for (i) detecting paths in the log record sequence that match
registered path handlers; (ii) logging effective address arguments
from the instruction records into a dedicated hardware table for
communicating to the path handlers; (iii) dispatching path han-
dlers; and (iv) remembering the previous path and looking ahead
in the log to identify the next path for supporting our optimiza-
tions for loop path handlers. If there is no matching path or the log

Table 1. Simulation Setup for LBA.
Simulator description

Simulator Virtutech Simics 3.0.22
Extensions Log capture and dispatch
Processor cores Two in-order scalar cores
Cache model g-cache module
Target OS Fedora Core 5 for x86

Simulation parameters
Private L1I 16KB, 64B line, 2-way, 1-cycle access lat.
Private L1D 16KB, 64B line, 2-way, 1-cycle access lat.
Shared L2 512KB, 64B line, 8-way, 10-cycle access lat.

4 banks
Main Memory 200-cycle latency
Log buffer 1/8 of L2 size, assuming 1B per compressed

record [5]

buffer is not full enough to form a path, we fall back to the baseline
LBA approach of using instruction handlers to consume the log
record sequence. However, note that the log buffer is usually full
because the application is typically faster than the lifeguard. With
these mechanisms, we implemented all the path optimizations de-
scribed in Section 3.

5. Performance Evaluation
We begin by presenting the experimental methodology in Sec-
tion 5.1. We study the effectiveness of our solution in reducing re-
dundant events in Section 5.2. Then, we study the impact of our
techniques on lifeguard performance for both our Valgrind (Sec-
tion 5.3) and LBA (Section 5.4) implementations.

5.1 Experimental Setup

Lifeguards and Benchmarks. We use four lifeguards in our eval-
uation that perform a diverse range of checking functionality:
ADDRCHECK, LOCKSET, TAINTCHECK, and MEMCHECK. We
implemented three versions of our lifeguard optimizer by gradually
applying our proposed optimization techniques, for the purpose of
quantifying the incremental benefits of our techniques:
(i) path(stdopts): applying standard compiler optimizations on

path handlers in the decoupled lifeguards (Section 3.1);
(ii) path+lgopts: in addition to (i), applying domain knowledge to

reduce redundant lifeguard handler calls (Sections 3.2, 3.3);
(iii) path+lgopts+maddropts: in addition to (i) and (ii), optimizing

metadata accesses (Section 3.4).
Our evaluation focuses on CPU-intensive applications, which
are known to incur the largest lifeguard overheads, as opposed
to I/O-intensive applications. ADDRCHECK, MEMCHECK, and
TAINTCHECK all monitor single-threaded applications. We use ten
SPEC2000 integer benchmarks for evaluating them. The bench-
marks use test inputs for our augmented LBA running on a simu-
lator, and use reference inputs for our augmented Valgrind frame-
work running on a real machine. LOCKSET is a data race detector.
Therefore, we evaluate it using four multi-threaded applications,
as shown in Table 2. All the experiments are run to completion.
We report execution time normalized to a “baseline” execution that
runs on our augmented frameworks but without any path handlers.
We observe that this baseline execution performs comparably to
the original Valgrind and LBA, incurring 4–38X slowdowns for
Valgrind and 1.3–13.3X slowdowns for LBA, when compared to
benchmark execution without any lifeguard monitoring.
Decoupled-Valgrind on a Real Machine. We extend Valgrind
as described in Section 4.1, and evaluate our optimization tech-
niques using two lifeguards, ADDRCHECK and MEMCHECK, that
are available on Valgrind. We run the experiments on an x86-64
machine with dual 2.33GHz quad-core Intel Xeon E5345 CPUs,

Table 2. Multithreaded Benchmarks for LOCKSET.
Benchmark Description and Input

blast v2.2.16 [19] Searching a nucleotide and protein
database of 134K sequences

pbzip2 v1.0.1 [26] Parallel data compressor, compress half
of CPU2000’s ref input.source

pbunzip2 v1.0.1 [26] Decompress pbzip2’s output in parallel
zchaff 2002.7.15 [27] SAT (Boolean Satisfiability Problem)

solver, circuit fault analysis

30

40

50

60

70

80

90

100

32 64 128 256 512 1024%
 c

o
ve

ra
ge

 o
f

ex
e

cu
ti

o
n

 t
im

e

Number of Paths

gzip

vpr

gcc

mcf

crafty

parser

gap

vortex

bzip2

twolf

Figure 9. Path coverage for SPEC2000 benchmarks with ref input.

8MB L2 cache, and 16GB RAM, running the unmodified 64-bit
Fedora Core 5 with Linux 2.6.19 kernel. gcc-3.2.3 is used to com-
pile Valgrind and the lifeguards. The default compilation settings
in Valgrind are used. Denote this set-up as Decoupled-Valgrind.

Decoupled-LBA Simulation Platform. We extend LBA [5] as de-
scribed in Section 4.2. The LBA hardware is simulated on the Vir-
tutech Simics [33] full-system simulator. We use the same simu-
lation parameters as in [5], as shown in Table 1. The monitored
application and the lifeguard are running as two processes on two
separate cores. The simulated 32-bit Fedora Core 5 operating sys-
tem is modified to recognize the association between the lifeguard
process and the application process. The application core stalls
if the log buffer is full, while the lifeguard core stalls if the log
buffer is empty. The detailed cache contention effects between the
application and the lifeguard is modeled by the simulator. Life-
guard binaries are generated using gcc-3.4.6. Denote this set-up as
Decoupled-LBA.

Hot Path Detection and Path Handler Generation. To sim-
plify the prototyping effort, we use offline profiling to detect
hot paths of up to 8 branches for both Decoupled-Valgrind and
Decoupled-LBA. Moreover, we generate the path handlers offline
for Decoupled-LBA. However, we ensure that when running the
path handlers, the implementations mimic a JIT-based approach by
limiting the total number of hot path handlers over an entire appli-
cation to be at most 128 for any one lifeguard. We believe that the
offline simplification is reasonable because hot path detection and
optimization overheads have been shown to be small [2, 17].

Figure 9 shows the cumulative coverage of paths for the
SPEC2000 benchmarks in our study. We see that 128 (256) hot
paths cover over 85% (90%) of the execution times in 7 out of the
10 benchmarks. Therefore, we generate path handlers as follows.
For each benchmark, the path optimizer estimates and ranks the
optimization benefits for the 256 hottest paths. Then it generates
path handlers for the 128 paths with the most benefit. The han-
dler generation is performed offline for Decoupled-LBA, while it is
performed as part of the initialization step in Decoupled-Valgrind,
loading the path handlers into the code cache.

0

10

20

30

40

50

60

70

bz
ip

2

cr
af

ty

gc
c

ga
p

gz
ip

m
cf

p
ar

se
r

tw
o

lf

vo
rt

ex vp
r

A
vg

b
la

st

p
b

u
n

zi
p

2

p
bz

ip
2

zc
h

af
f

A
vg

AddrCheck Lockset

%
 r

e
d

u
n

d
an

t
e

ve
n

ts

path-static-alias path-ideal-alias
path*-ideal-alias hw filter

Figure 10. Impact of aliasing on redundant check detection for
ADDRCHECK and LOCKSET on Decoupled-LBA.

5.2 Effectiveness in Reducing Redundant Events
We start by evaluating how aliases affect the effectiveness in elimi-
nating redundant checks. As discussed in Section 3.2, disambigua-
tion of the metadata that are manipulated by the lifeguard event
handlers in a path handler plays an essential role. Rather than
directly disambiguating the indirect memory accesses to meta-
data, our solution statically analyzes the application path to dis-
ambiguate the application’s direct memory accesses and then lever-
ages the one-to-one mapping from data to metadata to disambiguate
the metadata accesses.

Figure 10 compares our static alias analysis solution against
more idealized techniques representing upper-bounds that can be
achieved, which use different amounts of dynamic information for
disambiguating metadata accesses, on Decoupled-LBA. The figure
shows, for the two checking lifeguards ADDRCHECK and LOCK-
SET, the percentage of dynamic lifeguard events in each bench-
mark that are identified as redundant by the different schemes. Our
scheme, path-static-alias, represents the results of analyzing the
path handlers corresponding to the selected hot paths of the mon-
itored programs. We estimate the number of detected dynamic re-
dundant events by computing the sum of the number of redundant
events detected per path handler multiplied by the execution fre-
quency of the paths. path-ideal-static is similar to path-static-alias
except that it is enhanced with dynamic runtime information about
metadata accesses that always alias, even though they could not be
determined statically by our algorithm. path∗-ideal-static further
extends path-ideal-static to detect aliases that span 2, 4 and 8 it-
erations of loop paths and the best results are reported. hw filter is
similar to the proposal in [5], which uses a hardware filtering mech-
anism to avoid redundant metadata checks. This represents the most
ideal setting since all aliases are resolved at runtime. We achieve a
tighter upper bound by enabling the hardware filter only in the hot
paths that were considered for static analysis. Infinite filter size is
used to avoid overflows. The hardware filter states are preserved
across loop path iterations but are flushed at the beginning of other
new paths.

Compared to the various upper bounds, we see that our solu-
tion is quite close to the upper bounds in almost all cases. On av-
erage, path-static-alias detects 15% and 29% redundant checks for
ADDRCHECK and LOCKSET, respectively. In the case of pbunzip2,
it detects that over 50% of LOCKSET events are redundant. On av-
erage, path-ideal-static detects 19% and 30% redundant checks for
ADDRCHECK and LOCKSET, respectively. path-ideal-static and
path∗-ideal-static achieve similar benefits, suggesting that there is
little additional benefits from statically detecting aliases across loop
paths iterations. This is because we already take advantage of inter-
iteration knowledge in our optimizations. Finally, hw filter is the

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
al

iz
e

d
 T

im
e

Valgrind AddrCheck path(stdopts) path+lgopts

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
a

liz
e

d
 T

im
e

Valgrind MemCheck

Figure 11. Lifeguard acceleration on Decoupled-Valgrind.

best performer on average, since it makes full use of runtime in-
formation. Interestingly, hw filter was outperformed by path-ideal-
static and path∗-ideal-static for LOCKSET monitoring zchaff. This
is because checks on loads do not make checks on stores redundant
in LOCKSET, but not vice versa. hw filter has to treat loads and
stores as entirely separate events. Consequently, given a path with
a load preceding a store to the same address, hw filter cannot fil-
ter either of them. In contrast, static analysis can eliminate the load
since it can scan forwards and backwards in the path.

5.3 Lifeguard Acceleration on Decoupled-Valgrind
We now evaluate how much ADDRCHECK and MEMCHECK life-
guards are accelerated using optimized path handlers on Decoupled-
Valgrind. As described earlier in Section 4.1, our optimizations are
limited in our current implementation in the following ways: (i)
only one hot path is supported per path address, (ii) loop-dead
handler calls are not eliminated, and (iii) our metadata access opti-
mization cannot be performed. In addition, we observe that simply
using path handlers without our optimizations enables the Valgrind
IR optimizer to eliminate more shadow register operations.

Figure 11 shows the execution times of path(stdopts) and
path+lgopts versions of each lifeguard normalized to the execu-
tion time of the baseline lifeguard not using path handlers. Every
reported result is the best of five runs on a real machine. Because
non dedicated systems were used for the experiments, the best,
rather than average, results are presented to limit the unpredictable
effects of OS and network activities.

For ADDRCHECK, we observe that despite the limitations de-
scribed above, path+lgopts is faster than the baseline on eight of the
ten SPEC2000 benchmarks, with up to 31% reduction in the over-
head of monitoring gzip. Loops account for over 95% of gzip exe-
cution on reference input. The significant improvement on gzip was
due to loop-invariant handler optimizations. However, we see that
without domain-knowledge optimizations, path(stdopts) is slower
than the baseline, up to 12% on vpr, because the overhead of log-
ging outweighs the code improvements made by Valgrind due to
longer paths.

On the other hand, path+lgopts results in modest MEMCHECK
improvements for only four benchmarks (up to 6% on gzip). Our

0.2
0.4
0.6
0.8
1.0
1.2
1.4

blast pbunzip2 pbzip2 zchaff AvgN
o

rm
al

iz
e

d
 T

im
e LBA Lockset

0.4

0.6

0.8

1.0
N

o
rm

al
iz

e
d

 T
im

e LBA TaintCheck

0.4

0.6

0.8

1.0

1.2

N
o

rm
al

iz
e

d
 T

im
e

LBA AddrCheck
paths(stdopts)
paths+lgopts
paths+lgopts+maddropts

0.5

0.6

0.7

0.8

0.9

1.0

N
o

rm
al

iz
ed

 T
im

e

LBA MemCheck

Figure 12. Lifeguard acceleration on Decoupled-LBA.

investigations identified the following reasons why path+lgopts
is less effective on MEMCHECK compared to ADDRCHECK: (i)
loop-invariant optimizations are currently not implemented for
MEMCHECK, (ii) for a MEMCHECK handler call to be eliminated,
both its check and propagation must be redundant, and (iii) the
shadow register optimizations performed by the Valgrind IR opti-
mizer overlap with that of our technique, on the other hand ADDR-
CHECK has no shadow register operations. Due to the third reason,
we observe that path(stdopts) for MEMCHECK is faster (by 5%)
than the baseline on gzip and vortex. This is a result of increasing
the length of paths from 3 branches to 8, which enables the Valgrind
optimizer to eliminate more redundant shadow register operations.
However, path(stdopts) is slower on six of the benchmarks (up to
15% on vpr), while path+lgopts is always comparable or faster
than the baseline because it selects only profitable path handlers.

The lifeguard accelerations obtained using our techniques on
Decoupled-Valgrind are infact conservative because the framework
is currently lacks the features to support our remaining optimiza-
tions. For example, the lack of support for inlining path handlers
prevents metadata optimizations.

5.4 Lifeguard Acceleration on Decoupled-LBA
We now evaluate the lifeguard performance gains from our opti-
mizations on Decoupled-LBA. Compared to Decoupled-Valgrind,
Decoupled-LBA has the following advantages: (i) hardware log-
ging with no runtime penalty, (ii) support for multiple paths per
path address leading to better coverage, (iii) a look-ahead mecha-
nism for detecting last loop iterations, thus enabling loop-dead han-
dler optimizations, and (iv) inlining of path handlers enabling our

metadata access optimization. Consequently, it is a better platform
for demonstrating the full potential of our optimizations. Figure 12
shows the relative lifeguard performance gains of path(stdopts),
path+lgopts, and path+lgopts+maddropts over the baseline.

As shown in Figure 12, path+lgopts+maddropts is consis-
tently the fastest version, followed by path+lgopts indicating that
our domain-knowledge and metadata access optimizations offer
complimentary lifeguard accelerations. Compared to the baseline,
path+lgopts+maddropts reduces monitoring overhead by up to
50% for single threaded programs(ADDRCHECK on gzip) and 53%
for multithreaded programs(LOCKSET on pbunzip2). In addition,
average overhead reductions of about 30% are observed for both
monitoring scenarios. On the other hand, path(stdopts) without the
domain-specific optimization techniques achieves much smaller
gains or even incurs worse performance than the baseline.

Overall, our optimizations reduce monitoring overhead on
Decoupled-LBA by 19–50% for ADDRCHECK, 14–38% for MEM-
CHECK, 10–42% for TAINTCHECK, and 9–53% for LOCKSET.

6. Conclusion
This paper presented a novel approach to optimizing lifeguards:
decoupling the lifeguard code from the monitored program to en-
able hot-path lifeguard optimizations. Our solution leverages sim-
ple knowledge about lifeguards to reduce redundant lifeguard han-
dler calls and to accelerate metadata accesses. We implemented our
techniques on both a software-only lifeguard platform (Valgrind)
and a hardware-assisted lifeguard platform (LBA). On Valgrind,
our techniques reduce monitoring overhead by 2–31% compared
to baseline lifeguards. As LBA factors out the runtime overhead of
software logging and other limitations of the Valgrind implemen-
tation, our techniques achieve even better performance on LBA.
The overhead of lifeguard monitoring on LBA is reduced from 1.3–
13.3X down to 0.8–10.5X for single threaded programs and from
3.5–4.9X down to 1.9–4.1X for multithreaded programs. Based
on the experimental results, we conclude that path optimizations
enabled by decoupled lifeguards significantly reduce monitoring
overhead.

References
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-

niques, and Tools. Addison Wesley, 1986.
[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Transparent

Dynamic Optimization System. In PLDI, 2000.
[3] D. Bruening. Efficient, Transparent, and Comprehensive Runtime

Code Manipulation. PhD thesis, MIT, 2004.
[4] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding

dynamic programming errors. Software – Practice and Experience, 30
(7), 2000.

[5] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C.
Mowry, V. Ramachandran, O. Ruwase, M. Ryan, and E. Vlachos.
Flexible Hardware Acceleration for Instruction-grain Program Mon-
itoring. In ISCA, 2008.

[6] S. Chen, M. Kozuch, P. B. Gibbons, M. Ryan, T. Strigkos, T. C.
Mowry, O. Ruwase, E. Vlachos, B. Falsafi, and V. Ramachandran.
Flexible hardware acceleration for instruction-grain lifeguards. IEEE
Micro, 29(1), 2009. Top Picks from the 2008 Computer Architecture
Conferences.

[7] B. Cmelik and D. Keppel. Shade : a Fast Instruction Set Simulator for
Execution Profiling. In SIGMETRICS, 1994.

[8] M. L. Corliss, E. C. Lewis, and A. Roth. DISE: A programmable
macro engine for customizing applications. In ISCA, 2003.

[9] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: a Flexible Informa-
tion Flow Architecture for Software Security. In ISCA, 2007.

[10] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules
using system-specific, programmer-written compiler extensions. In
OSDI, 2000.

[11] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for Java. In PLDI, 2002.

[12] A. Gal and M. F. C. W. Probst. Hotpathvm: an effective JIT compiler
for resource-constrained devices. In VEE, 2006.

[13] M. L. Goodstein, E. Vlachos, S. Chen, P. B. Gibbons, M. Kozuch,
and T. C. Mowry. Butterfly analysis: Adapting dataflow analysis to
dynamic parallel monitoring. In ASPLOS, 2010.

[14] N. D. Jones. An introduction to partial evaluation. ACM Comput.
Surv., 28(3):480–503, 1996.

[15] I. H. Kazi, H. H. Chen, B. Stanley, and D. J. Lilja. Techniques for
obtaining high performance in java programs. ACM Comput. Surv., 32
(3):213–240, 2000.

[16] P. Lee and M. Leone. Optimizing ML with Runtime Code Generation.
In PLDI, 1996.

[17] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation. In PLDI, 2005.

[18] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Continuously
recording program execution for deterministic replay debugging. In
ISCA, 2005.

[19] National Center for Biotechnology Information.
ftp://ftp.ncbi.nih.gov/blast/.

[20] N. Nethercote. Dynamic Binary Analysis and Instrumentation. PhD
thesis, U. Cambridge, 2004. http://valgrind.org.

[21] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In PLDI, 2007.

[22] N. Nethercote and J. Seward. Valgrind: A program supervision frame-
work. Electronic Notes in Theoretical Computer Science, 89(2), 2003.

[23] N. Nethercote and J. Seward. How to shadow every byte of memory
used by a program. In VEE, 2007.

[24] J. Newsome and D. Song. Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on Com-
modity Software. In NDSS, 2005.

[25] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn. Parallelizing
security checks on commodity hardware. In ASPLOS, 2008.

[26] Parallel Bzip2. http://compression.ca/pbzip2/.
[27] Princeton Zchaff. http://www.princeton.edu/∼chaff/zchaff.html.
[28] T. A. Proebsting. Optimizing an ANSI C interpreter with superopera-

tors. In POPL, 1995.
[29] F. Qin, C.Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu. LIFT: A

low-overhead practical information flow tracking system for detecting
security attacks. In MICRO-39, 2006.

[30] O. Ruwase, P. B. Gibbons, T. C. Mowry, V. Ramachandran, S. Chen,
M. Kozuch, and M. Ryan. Parallelizing Dynamic Information Flow
Tracking. In SPAA, 2008.

[31] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic race detector for multi-threaded programs. ACM
TOCS, 15(4), 1997.

[32] M. Tiwari, S. Mysore, and T. Sherwood. Quantifying the potential of
program analysis peripherals. In PACT, 2009.

[33] Virtutech Simics. http://www.virtutech.com/.
[34] E. Vlachos, M. L. Goodstein, M. A. Kozuch, S. Chen, B. Falsafi, P. B.

Gibbons, and T. C. Mowry. ParaLog: Enabling and Accelerating On-
line Parallel Monitoring of Multithreaded Applications. In ASPLOS,
2010.

[35] E. Witchel and M. Rosenblum. Embra: Fast and Flexible Machine
Simulation. In SIGMETRICS, 1996.

[36] M. Xu, R. Bodik, and M. D. Hill. A ’Flight Data Recorder’ for
enabling full-system multiprocessor deterministic replay. In ISCA,
2003.

