
STEED: An Analytical Database System for
TrEE-structured Data

Zhiyi Wang Dongyan Zhou Shimin Chen
State Key Laboratory of Computer Architecture

Institute of Computing Technology, Chinese Academy of Sciences
{wangzhiyi,zhoudongyan,chensm}@ict.ac.cn

ABSTRACT
Tree-structured data formats, such as JSON and Protocol Buffers,
are capable of expressing sophisticated data types, including nested,
repeated, and missing values. While such expressing power con-
tributes to their popularity in real-world applications, it presents
a significant challenge for systems supporting tree-structured data.
Existing systems have focused on general-purpose solutions either
extending RDBMSs or designing native systems. However, the
general-purpose approach often results in sophisticated data struc-
tures and algorithms, which may not reflect and optimize for the
actual structure patterns in the real world.

In this demonstration, we showcase Steed, an analytical database
System for tree-structured data. We use the insights gained by an-
alyzing representative real-world tree structured data as guidelines
in the design of Steed. Steed learns and extracts a schema tree
for a data set and uses the schema tree to reduce the storage space
and improve the efficiency of data field accesses. We observe that
sub-structures in real world data are often simple, while the tree-
structured data types can support very sophisticated structures. We
optimize the storage structure, the column assembling algorithm,
and the in-memory layout for the simple sub-structures (a.k.a. sim-
ple paths). Compared to representative state-of-the-art systems (i.e.
PostgreSQL/JSON, MongoDB, and Hive+Parquet), Steed achieves
orders of magnitude better performance for data analysis queries.

1. INTRODUCTION
Tree-structured data formats, such as JSON and Protocol Buffers,

have numerous applications in a wide variety of real scenarios, in-
cluding social network data feeds, online data services, communi-
cation protocols, publicly available data sets, and sensor data. A
tree-structured data model can be recursively defined as follows:

Tvalue = Tobject | Tarray | Tprimitive

Tobject = {key1 : Tvalue1 , ..., keyn : Tvaluen}
Tarray = [Tvalue, ..., Tvalue]
Tprimitive = string | number | boolean | null
key = string
Ttree = Tobject

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

A tree-structured data type can be viewed as a schema tree. The top
level type is the root of the tree. An object contains a list of key-
value pairs, while an array consists of a list of values. A value type
is recursively defined as an object, an array, or a primitive type. An
object is a non-leaf node. A primitive value is a leaf node. An array
is combined with its child node to make the child node a repeated
node. (An example tree is shown in Figure 1.)

Compared to the traditional relational data model, tree-structured
data formats are capable of expressing much more sophisticated
data types, including nested, repeated, and missing values. Data
structures (e.g., struct, class, arrays) in high-level programming
languages (e.g., C/C++ and Java) can be easily presented as tree-
structured data. Such expressing power is one of the main reasons
for the popularity of tree-structured data formats. However, the
complexity presents a significant challenge in efficiently supporting
tree-structured data formats.

Note that there is a large body of work in the literature on storing
and querying XML documents [2, 6]. However, JSON and Protocol
Buffers have significantly different characteristics from XML. A
single XML document often contains a great many repeated tags.
DTDs can allow recursions and cycles [5]. In contrast, records in
JSON-like formats are often much lighter weight. The record size
is often comparable to that of a relational record. Therefore, while
we build on learnings from research on XML, the design focus for
JSON-like tree-structured data is on processing a large number of
relatively small records, rather than processing complex structures
inside a single document as in the case of XML.

We have designed and implemented an analytical database sys-
tem, called Steed (System for tree-structured data) (which is de-
scried in detail in our SIGMOD’17 [12] paper). The baseline Steed
design supports general-purpose data storage and query process-
ing of tree-structured data in both row and column formats. Based
on our analysis of representative real-world use cases of tree struc-
tured data, we observe that a majority of the sub-structures in the
real-world trees are quite simple: most root-to-leaf paths contain
no repeated node or only one repeated node. We call such paths
simple paths. We propose and implement optimized column stor-
age, column assembling process, and in-memory data layouts for
simple paths. Moreover, we compare Steed with State-of-the-art
systems that support either JSON or Protocol Buffers, including
PostgreSQL with JSON support, MongoDB (which supports JSON
natively), and Hive using Parquet file formats for storing colum-
nar Protocol Buffers data. Experimental results show that Steed
achieves 4.1–1294x speedups over the state-of-the-art systems run-
ning SQL-like data analysis queries.

In this demonstration, we would like to explain the inner working
of Steed, compare the performance of Steed with State-of-the-art
systems, and invite audience to try out Steed.

Text

Data

Data Parser

Schema Treeroot

retweet_count user

idlangstatuses_count favourites_count

followers_count

retweeted_status

user

idlangstatuses_count

entities

media

id

user_mentions

idindices

R
ec

o
rd

 B
u

ff
er

Query Engine

Row

Reader

Row Filter

Projector

Column

Reader

Column

Filter
Column

Reader

and

Assembler

Schema Read Path

Join Row Filter Group By

AggregationSorting
Output

Operator

{"geo":{"coordinates":[-7.1,13.4]},"retweet_count":0, "entities":{"media":[{"id":24}]},

"user":{"statuses_count":28156,"favourites_count":0, "listed_count":109,"lang":"ja",

"followers_count":5740,"id":32}}

{"geo":{"coordinates":[38,20.9]},"retweet_count":3295,"entities":{"media":[{"id"::26}],

"user_mentions":[{"indices":[3,16],"id":27}, {"indices":[4],"id":30}]},

"retweeted_status":{"user":{"statuses_count":32,"lang":"en","id":27,"listed_count":1}},

"user":{"statuses_count":387,"favourites_count":21, "listed_count":1,

"lang":"en","followers_count":94,"id":15}}

Volcano-style Query
Execution

Multithreading
support

Data Storage
Binary Row Format Binary Column Format

Binary Converter

AssemblerData Schema

listed_count

listed_count

geo

coordinates

Figure 1: Architecture of Steed. (Two JSON records are used as the running example. The highlighted red nodes are repeated.)

2. RELATED WORK
Previous work has focused on general-purpose support for tree-

structured formats either (i) by extending RDBMSs or by (ii) de-
signing native systems.

Extending RDBMSs. A tree-structured data record is stored either
as shredded fields, or as a whole in a single attribute, or a combi-
nation of the two in RDBMSs. Chasseur et al. proposed Argo, a
mapping layer that splits a JSON record into a set of (object ID,
key, value) tuples corresponding to the leaf nodes in the tree, and
stores the shredded fields in the RDBMS [4]. In contrast, Liu et
al. proposed to store a JSON record in a varchar/BLOB/CLOB,
and use various functions (e.g., extracting scalar values) to work
with JSON records in SQL queries [8]. This is the approach taken
in the SQL/JSON standard effort and by Oracle [8]. PostgreSQL
also stores an entire JSON record into a text or a binary field, but
designs a different syntax to use JSON in SQL queries [1]. On the
other hand, Tahara et al. proposed a hybrid approach, where a sub-
set of the attributes are materialized as columns and the remainder
is serialized into a single binary column in the RDBMS [11]. Re-
cently, Liu et al. proposes to enhance the JSON support in Oracle
with an OSON binary format [9], where every OSON document
contains a mapping from string field keys to field IDs.

Designing Native Systems. NoSQL document stores (e.g., Mon-
goDB and CouchDB) provide native storage and query support for
JSON data. JSON data are stored in row formats. MongoDB
defines a binary JSON row format, called BSON, and supports
Javascript based query APIs. Moreover, Melnik et al. [10] pro-
posed Dremel, a system that supports general-purpose column data
layouts and SQL-like queries for Protocol Buffers data. Column
layouts can significantly improve the performance of data analy-
sis. Apache Parquet is an open-source Java-based implementation
of Dremel’s columnar design. It can be integrated into the Hadoop
ecosystem (e.g., Hive) as an input/output format. Furthermore, As-
terixDB [3] supports a tree-structured data model, called ADM, and
a query language, called AQL, on ADM.

Challenge of General-Purpose Designs. Previous work provides
general-purpose designs for various tree-structured formats. How-
ever, such designs must consider arbitrarily sophisticated types.
Conceptually, trees can range from shallow trees with primitive
leaf nodes, to very deep trees with many nested levels and repeated

fields. Therefore, a general-purpose solution has to support any
kind of tree-structured data, no matter how simple or or complex it
is. For example, functions that work with JSON records in RDBMSs
must be able to parse arbitrarily complex JSON records. The col-
umn design in Dremel must be able to encode and assemble Proto-
col Buffers data with arbitrarily large number of nested levels and
repeated nodes. As a result, these solutions require sophisticated
algorithms and data structures, which may not reflect the actual use
patterns in the real world and thus may be less efficient.

3. OUR SOLUTION: STEED
Real-World Data Patterns. We have performed an in-depth study
of the tree-structured data patterns in the real world by analyz-
ing the tree structures in representative use cases in social net-
work data feeds, online data services, communication protocols in
distributed systems, web sites providing downloading services for
publicly available data sets, and sensor data [12]. While the num-
bers of leaf nodes in the tree structures vary greatly, from less than
10 to a few hundred, we find interesting common patterns across
the cases. First, the records in a data set typically have similar
tree structures. In other words, it makes sense to extract and use
schemas even in schema-less data types, such as JSON. Second,
the heights of the trees are often not very large, varying from 1 to 8
levels. Third, more importantly, a majority of the root-to-leaf paths
are simple paths, containing no repeated node or only one repeated
node. Steed aims to optimize for the common patterns.

Steed Architecture. We have designed and implemented Steed, an
analytical database System for tree-structured data. Figure 1 shows
the architecture of Steed. It consists of mainly three parts: (i) the
data parser, (ii) the data storage, and (iii) the query engine.

The data parser takes tree-structured data in text formats as in-
put, such as JSON in the example, or Protocol Buffers. It parses
the input and constructs a schema tree. In some cases, such as Pro-
tocol Buffers, a data schema is provided along with the data. Thus,
Steed constructs the schema tree from the provided data schema. In
other cases, such as JSON, there is no explicit data schema. There-
fore, Steed learns the schema while reading the data records, and
constructs the schema tree on the fly.

The data storage stores binary data and schemas as files in the
underlying file system. It supports both binary row format and bi-

nary column format for tree-structured data. The binary row layout
faithfully stores the nested structure of a record. It uses the node
IDs in the schema tree to replace the string keys in the records in or-
der to save space and improve access efficiency. In contrast, BSON
stores string keys in the records. On the other hand, OSON also
tries to reduce space by storing field IDs [9]. However, OSON’s
field IDs are local within a record, thus OSON has to store a map-
ping table (a.k.a. field-ID-name dictionary) in every record. In
comparison, the node IDs in the schema tree in Steed are global for
all JSON records in the same collection. As a result, Steed can save
more space than both BSON and OSON.

In the column data layout, every leaf node in the schema tree is
stored as a column data file. During query processing, one has to
assemble relevant columns to reconstruct the trees (or sub-trees).
However, this task is non-trivial, for root-to-leaf paths may con-
tain multiple repeated nodes, and there may be missing branches
as well. Therefore, it is important to store not only the values in
the column but also the tree structure for correctly assembling the
columns. Our baseline scheme is based on Dremel [10]. The en-
coding scheme in Dremel stores two additional values, a repetition
level(rep) and a definition level (def), for every column value (as
well as every missing branch). The column assembling algorithm
is sophisticated. It constructs a finite state machine, where state
transitions are based on rep and def values. The assembling al-
gorithm essentially traverses the schema tree from left to right, and
may jump back to repeatedly visit repeated nodes.

The query engine supports SQL-select-like queries with select,
from, where, group-by, having, and order-by clauses. We have im-
plemented a Volcano-style query execution engine [7], and multi-
threading support for common relational operators. Steed can pro-
cess both row data and column data. The main difference is in the
implementation of the filter operators. In the case of the binary
row format, the row filter operator processes the records one by
one, applying the filtering predicates. Then, the projector preserves
only the attributes that are relevant to the query. In the case of
the binary column format, Steed instantiates a column reader and
a column filter for every column in the query. Then the columns
are assembled for the records that satisfy all the filter predicates.
As a result, after the selection and the projection, the records are
in the baseline binary row layout (regardless of the original stor-
age formats). The remaining operators, including join, group-by,
aggregation, and sorting, all process data in the row layout. We
assume that main memory is large enough to hold all the data af-
ter filtering. Therefore, we employ main memory algorithms for
the operators, including a hash-based join operator, a hash-based
group-by operator, and a quick-sort based sorting operator.

Optimizations for Simple Paths. We leverage the knowledge of
the simple path to simplify the column layout, accelerate the col-
umn assembling process, and design more compact and more ef-
ficient in-memory record structures. Note that the complexities of
the baseline implementation are mainly required to handle the po-
tential sophistication of the tree structures. For the simple paths,
such complexities are often not necessary. First, for the column
data layout, we can omit or reduce the size of ref and/or def
if the column corresponds to a simple path. Second, for the col-
umn assembling process, we propose a flat column assemble algo-
rithm that does not require a finite state machine. Third, for the
in-memory row layout, we propose a flat structure to reduce the
number of nested levels. Note that every nested level introduces a
level of indirection. A (binary) search is performed at every level
to determine the child node to follow next. Therefore, reducing
the number of levels can significantly reduce the cost of accessing
individual fields in a record during query processing in memory.

Figure 2: Data parsing.

4. DEMONSTRATION PLAN
The demonstration is structured in three parts to showcase the

functionality, the inner working, and performance of Steed high-
lighted in Section 3.

Part 1: Data Parsing. We offer a gentle introduction to tree-
structured data formats and demonstrate the data parsing function-
ality of Steed. As shown in Figure 2, a user can select a data set
and specify its type, i.e. JSON or Protocol Buffers. Several exam-
ple data sets, including Twitter data sets (downloaded using Twitter
API in 2012), will be available. For Protocol Buffers, the user can
specify an input schema file, while JSON is schema-less. Then, the
user can choose either the row or the column storage format, and
press the “Begin” button to start parsing all records. Alternatively,
the user can parse record by record. After parsing, we will show the
schema tree of the parsed data set and summary statistics about the
schema. In this part of the demonstration, audience can examine
tree-structured text records in the selected data set, compare them
with the schema tree of the data set to get a better understanding of
tree-structured data, and study the storage layout of the generated
row or column storage format.

Part 2: Query Composition and Processing. We invite the audi-
ence to try out the query processing of Steed. As shown in Figure 3,
a user can select a dataset that has already been parsed and stored in
binary formats. Then, the schema tree of the selected data set will
be shown in the UI. The user can compose a SQL-like query state-
ment, where the attributes in the SQL-like statement can be path
expressions. A click on a node in the schema tree will add the cor-
responding path expression to the end of the query statement being
composed. The “Add More Dataset” button is used in the composi-
tion of join queries. The “Explain” button shows the execution plan
for the query, explaining how the query is supported. The “Run”
button runs the query. Query results can be shown by pressing the
“Show Result” button.

Part 3: Performance Comparison. We showcase the performance
of Steed by comparing Steed with row layouts, baseline Steed with
column layouts, optimized Steed with column layouts, with the fol-
lowing State-of-the-art systems:

• PostgreSQL: PostgreSQL has been extended with JSON support
recently. A JSON record is stored either as text (in the json type)

Figure 3: Query composition and processing.

or as binary data (in the jsonb type). We use jsonb because
it is more efficient for query processing. PostgreSQL provides
a set of operators and functions to access JSON data in SQL
queries. In our experiments, we use PostgreSQL 9.5 and issue
SQL queries to process JSON data.
• MongoDB: MongoDB is an open-source database system that

provides native support for JSON documents. It is written in
C/C++. MongoDB users include Adobe, Craigslist, eBay, LinkedIn,
Foursquare, and so on1. MongoDB stores JSON records in a
binary format called BSON. We use MongoDB 3.2.8. We load
JSON data sets using mongoimport, and use MongoDB’s Javascript
interface to submit queries.
• Hive+Parquet: Apache Parquet implements the Dremel design

of storing and assembling columns for tree-structured data. Apache
Hive is a popular analytical big data processing system that sup-
ports SQL-like queries on top of MapReduce. In this demon-
stration, we use Hive 1.2.2 on Hadoop 2.6.0 with Parquet as the
underlying storage format. Hadoop, Hive, and Parquet are all
implemented in Java. Note that Parquet requires the declaration
of the data schema. We manually create the required schema and
load the data into Hive using a tool called Kite. Then we submit
SQL queries using Hive’s query interface.
• MongoDB+Steed: In addition to the three systems, we also im-

plemented a hybrid system that runs MongoDB on top of Steed.
MongoDB stores binary JSON records (a.k.a. BSON) in an un-
derlying storage management system, called wired tiger. We
have modified the calling interface between MongoDB and wired
tiger to redirect the retrieval of records to Steed. To take advan-
tage of the column layout in Steed, we parse the MongoDB com-
mands to extract all the fields used in a query. The fields are then
communicated to Steed for reading only the relevant columns.
After obtaining the records, MongoDB performs the actual query
processing operations.

As shown in Figure 4, we specify a query in the text box at the
top left corner, and press the “Run” button to start the experiments.
Then, the query is automatically run on each system one by one.
For systems that have finished the query, the figure shows the ex-
ecution times. For the system that is currently running the query,
the figure shows its progress. In this way, audience can easily try
different query types and compare the performance of Steed and
the state-of-the-art systems.

Acknowledgments. This work is partially supported by the CAS
Hundred Talents program, by NSFC project No. 61572468, and by

1According to db-engines.com, in February 2017, PostgreSQL and Mon-
goDB were ranked the 4th and the 5th most popular databases.

Figure 4: Comparison with state-of-the-art systems.

NSFC Innovation Research Group No. 61521092. Shimin Chen is
the corresponding author.

5. REFERENCES
[1] PostgreSQL’s JSON Support. https://www.postgresql.org/

docs/9.4/static/datatype-json.html.
[2] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web:

From Relations to Semistructured Data and XML. Morgan
Kaufmann, 1999.

[3] A. Behm, V. R. Borkar, M. J. Carey, R. Grover, C. Li,
N. Onose, R. Vernica, A. Deutsch, Y. Papakonstantinou, and
V. J. Tsotras. ASTERIX: towards a scalable, semistructured
data platform for evolving-world models. Distributed and
Parallel Databases, 29(3):185–216, 2011.

[4] C. Chasseur, Y. Li, and J. M. Patel. Enabling JSON document
stores in relational systems. In WebDB, 2013. Extented
version: http://pages.cs.wisc.edu/∼chasseur/argo-long.pdf.

[5] B. Choi. What are real dtds like? In WebDB, pages 43–48,
2002.

[6] A. Eisenberg and J. Melton. Advancements in SQL/XML.
SIGMOD Record, 33(3):79–86, 2004.

[7] G. Graefe. Volcano - an extensible and parallel query
evaluation system. IEEE Trans. Knowl. Data Eng.,
6(1):120–135, 1994.

[8] Z. H. Liu, B. Hammerschmidt, and D. McMahon. Json data
management: Supporting schema-less development in
rdbms. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, 2014.

[9] Z. H. Liu, B. C. Hammerschmidt, D. McMahon, Y. Liu, and
H. J. Chang. Closing the functional and performance gap
between SQL and nosql. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 - July
01, 2016, pages 227–238, 2016.

[10] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: Interactive analysis of
web-scale datasets. PVLDB, 3(1):330–339, 2010.

[11] D. Tahara, T. Diamond, and D. J. Abadi. Sinew: A sql
system for multi-structured data. In Proceedings of the 2014
ACM SIGMOD International Conference on Management of
Data, pages 815–826.

[12] Z. Wang and S. Chen. Exploiting common patterns for
tree-structured data. In ACM SIGMOD international
conference on Management of data, 2017 (to appear).

