
QMD: Exploiting Flash for Energy Efficient Disk Arrays

Sean M. Snyder† Shimin Chen? Panos K. Chrysanthis† Alexandros Labrinidis†

†University of Pittsburgh ?Intel Labs

ABSTRACT
Energy consumption for computing devices in general and for data
centers in particular is receiving increasingly high attention, both
because of the increasing ubiquity of computing and also because
of increasing energy prices. In this work, we propose QMD (Quasi
Mirrored Disks) that exploit flash as a write buffer to complement
RAID systems consisting of hard disks. QMD along with par-
tial on-line mirrors, are a first step towards energy proportionality
which is seen as the "holy grail" of energy-efficient system design.
QMD exhibits significant energy savings of up 31%, as per our
evaluation study using real workloads.

1. INTRODUCTION
A growing concern, energy consumption in data centers has been

the focus of numerous white papers, research studies, news reports,
and recent NSF workshops [4, 23, 10, 7, 1, 2]. According to a re-
port to U.S. congress [23], the total energy consumption by servers
and data centers in U.S. was about 61 billion kWh in 2006, and is
projected to nearly double by 2011 [23]. To make matters worse,
global electricity prices increased 56% between 2002 and 2006 [7].
The two trends of growing energy consumption and rising energy
prices lead to increasingly higher electricity bills for data centers.
Energy cost can become a dominant factor in the total cost of own-
ership of computing infrastructure [4], and the annual electricity
cost of data centers in U.S. in 2011 is projected to be $7.4 bil-
lion [23]. Among the components in data centers, it has been shown
that storage experienced the fastest annual growth (20% between
2000 and 2006) in energy consumption [23]. As hard disk drives
(HDDs) are the dominant technology for data storage today, we
are interested in improving energy efficiency for data storage that
consists of mainly HDDs.

A key goal in energy efficient system design is to achieve energy
proportionality [5], i.e., energy consumption being proportional to
the system utilization. Unlike solid state devices, such as micro-
processors, hard disk drives (HDDs) contain moving components,
making it difficult to achieve this goal. For example, for an en-
terprise class disk, the idle power for spinning the disk platters is
often about 60–80% of its active energy [20, 21]. While a disk
can be spun down to standby mode for saving most of this power,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Seventh International Workshop on Data Management
on New Hardware (DaMoN 2011), June 13, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0658-4 ...$10.00.

it takes on the order of 10 seconds to spin up a disk, potentially
incurring significant slowdowns in application response times.

Previous Approach: Exploit Redundancy and NVRAM. One
promising solution is to exploit the inherent redundancy in storage
systems for conserving energy [11, 24, 16]. Today, most storage
systems employ redundancy (e.g., RAID) to achieve high reliabil-
ity, high availability, and high performance requirements for many
important applications. For example, the TPC-E benchmark, which
models transaction processing in a financial brokerage house, re-
quires redundancy for the data and logs [22]. As seen by published
TPC-E reports on the TPC web site, this requirement is typically
achieved by the use of RAID disk arrays.

For saving energy, the idea is to keep only a single copy of the
data active and spin down disks containing redundant copies of the
data under low load. We call the disks containing the active copy of
data, the active disks, and the disks that are spun down, the standby
disks. Note that the approach must guarantee the same level of
reliability for write operations under low load (e.g., writing to two
non-volatile devices). To achieve this, previous studies [11, 24, 16]
propose to use NVRAM (i.e., battery-backed RAM) as non-volatile
write buffers. When the system is under low utilization, reads are
sent to the active disks, while writes are sent to both the active
disks and to the NVRAM buffers. When the system sees high load
or when the NVRAM buffers are full, the standby disks are spun
up and the buffered writes are applied. Depending on the RAID
organization, this approach may potentially save up to 50% energy
when the system is under low utilization.

Limitation of NVRAM-Based Approach. Besides concerns about
correlations between battery failure and power loss, battery-backed
RAM is expensive. The NVRAM write buffer size is often limited
to a few hundred MB for an entire RAID array. Typically, a server-
class disk can support about 100MB/s read/write bandwidth. Sup-
pose that under low load, a disk sees 1MB/s write traffic. Then, a
500MB NVRAM buffer will be filled up for the write traffic of a
single disk in less than 9 minutes. When the buffer is filled, the
standby disks must be spun up to apply the buffered writes. How-
ever, a disk supports only a limited number of spin-up/down op-
erations because they introduce wear to the motor and the heads
in a disk. In particular, server and desktop disks are often rated at
50,000 spin-up/down cycles (a.k.a. start-stop cycles) [19]. Given
a five-year lifetime, this puts a limitation of an average 1.1 spin-
up/down per hour. Therefore, the above example with a single
standby disk will significantly shorten the disk lifetime by about
6 times! Note that in real-world disk arrays, an NVRAM buffer in
a RAID controller often handles tens of disks, and thus the situation
could be an order of magnitude worse.

Our Solution: Exploiting Flash as Write Buffer. We propose to
exploit flash as the write buffer for addressing this problem. There
are several desirable properties of flash: (i) it is non-volatile; (ii)
flash is much cheaper with much larger capacity; and (iii) flash is

U

A

E

B

F

J

N

C

G

K

O

D

H

L

QM

I

R S T

A

C

D

A

B

C

D

EE

B H

P0

R

M

I

E

A

S

N

J

P1

B

T

O

P2

F

C

U

P3

K

G

D

P4

Q

L

(a) RAID 0 (striping) (b) RAID 1 (mirrored disks) (c) RAID 5 (striping with distributed parity)

Figure 1: Basic RAID schemes. (Capital letters represent data blocks; Px represents a parity block.)

energy efficient and supports energy proportionality well. More-
over, flash-based cache products with hundreds of GB capacity are
already available for storage systems [13]. One can utilize the same
flash for saving energy. This nicely shares the resource: the flash-
based cache improves I/O performance under high system load and
saves energy under low load.

In our design, we aim to achieve low spin-up/down counts while
preserving the performance of RAID under low utilization, under
high utilization, and during state transitions. We call the solution
in this paper, QMD (Quasi Mirrored Disks), as we mainly focus
on mirror-based RAID schemes (e.g., RAID 1 and RAID 10), and
we study partial on-line mirrors in order to achieve the ideal goal
of energy proportionality. We present preliminary evaluation of
our solution by simulating I/O traces of real-world applications.
Experimental results show that QMD can save 11%–31% energy,
and reduce the number of spin-up/downs by 80%.
Outline. Section 2 provides background on exploiting redundancy
for RAID arrays. Section 3 presents our solution, QMD, and dis-
cusses our research direction for achieving the energy proportion-
ality goal. Section 4 evaluates QMD using real-world I/O traces.
Section 5 describes related work. Section 6 concludes the paper.

2. EXPLOITING STORAGE REDUNDANCY
FOR SAVING ENERGY

We start by refreshing our memory of the common RAID schemes
in Section 2.1. Then, in Section 2.2, we describe the basic opera-
tions for exploiting RAID redundancy for saving energy.

2.1 Background: Common RAID Schemes
Figure 1 shows three basic RAID schemes [14]. They are widely

used and serve as building blocks for composite RAID schemes.
• RAID 0 (a.k.a. striping) places data blocks across disks in a

round robin fashion for high performance. RAID 0 does not
provide redundancy, and therefore is often combined with other
RAID schemes for reliability and availability.

• RAID 1 (a.k.a. mirrored disks) mirrors data blocks between two
(or more) disks. Every write is sent to both disks, while a read
can be served by either disk. Therefore, RAID 1 of two disks
achieves twice the read bandwidth of a single disk and 100%
data redundancy. It can tolerate one disk failure.

• RAID 5 (a.k.a. striping) stripes data across N (N ≥ 3) disks.
The N blocks at the same disk address form a stripe group. One
of them is a parity block, computed as the bit-wise XOR of the
other N−1 data blocks. RAID 5 places the parity blocks across
disks in a round robin fashion. Every write must modify both
the target data block and the associated parity block, requir-
ing two reads for fetching the two old blocks followed by two
writes. RAID 5 can tolerate a single disk failure. A data block
of the failed disk can be reconstructed as the bit-wise XOR of
the other N − 1 blocks in the same stripe group.

• Composite RAID Schemes: RAID 10 (i.e., 1+0) is a stripe of
mirrors, where every disk in RAID 0 (in Figure 1(a)) is replaced
with a pair of mirrored disks. A RAID 10 of 2N disks can
tolerate N disk failures (each in a disjoint mirror). Similarly,
RAID 50 replaces every disk in RAID 0 with a RAID 5.

Redundancy is achieved by either mirror-based schemes (e.g., RAID
10) or parity-based schemes (e.g., RAID 5). The main advantage of
the latter is that it saves disk capacity; RAID 5 of N disks utilizes
1 − 1

N
of the total capacity, while RAID 1 utilizes only 50%. In

other words, given the same individual disk capacity and the target
total capacity, RAID 5 uses fewer number of disks than RAID 10.
However, as disk capacity has been growing exponentially, total ca-
pacity is less of a concern today. The number of disks in RAID is
often determined by application performance requirements in terms
of throughput and IOs per seconds (IOPS), rather than total avail-
able capacity, as evidenced by many TPC results.

On the other hand, mirror-based schemes have higher write per-
formance than parity-based schemes during normal operations. More-
over, when a disk fails, mirror-based schemes can serve data di-
rectly from good disks, while parity-based schemes suffer from
large performance degradation due to the many I/Os for retrieving
blocks in the same stripe group to reconstruct a block on the failed
disk. As a result, mirror-based schemes become increasingly pop-
ular today. For example, many TPC-E benchmark results that store
data on disks use RAID 10 for reliability.1 We focus on mirror-
based schemes in this paper.

2.2 Basic Operations for Saving Energy
Previous studies [11, 24, 16] propose to exploit the RAID redun-

dancy for saving energy and uses NVRAM for achieving reliability
when the system is under low utilization. The basic operations are:

1. All Disks under High Utilization: The system performs normal
RAID operations with all disks running under high load.

2. Active Disks with NVRAM under Low Utilization: When the
system is under low utilization, a number of disks is spun down
to save energy. This number depends on the RAID scheme. In
mirror-based schemes, one disk in every mirror can be spun
down, thus potentially saving up to 50% energy. In parity-
based schemes (e.g., RAID 5 with N disks), one disk in ev-
ery parity group can be spun down (saving up to 1

N
energy in

RAID 5). Reads are handled by the active disks; parity-based
schemes require the costly XOR computation for reconstruct-
ing disk blocks on the standby disks. Writes are sent to both

1A few published TPC-E results (including the current Watts/Performance
lead, Fujitsu PRIMERGY RX300 S6 12x2.5) store data mainly on arrays of
flash-based SSDs for reducing energy consumption. In such configurations,
SSD capacity is a much more significant concern and therefore RAID 5
is often employed. However, the focus of this paper is on using a small
amount of flash for improving the energy efficiency of disk storage, which
is the dominant storage technology today.

FlashFlash

Flash

(a) Flash per mirror (b) Flash per RAID 10 volume

Flash

(c) Flash for all RAID 10 volumes

Figure 2: Flash-enhanced RAID 10 schemes.

the active disks and the NVRAM to guarantee reliability. Com-
paring mirror-based and parity-based schemes, it is clear that
the approach fits mirror-based schemes better.

3. Flushing NVRAM Data to Standby Disks: When the NVRAM
write buffer is full or when the system transitions from low uti-
lization back to high utilization, the data cached on NVRAM
must be flushed to bring the standby disks up to date.

There are two main problems of this approach. First, the capacity
of NVRAM is typically limited to a few hundred MB, potentially
incurring frequent flushing operations, as shown in the back-of-
envelope computation in the Introduction. Frequent flushing oper-
ations can both dramatically reduce disk lifetimes and reduce the
energy savings because the standby disks must be spun up for writ-
ing the buffered data. In this paper, we address this problem by
exploiting flash as a large-capacity nonvolatile write buffer.

Second, the energy savings are bounded by the RAID schemes,
leaving a big gap to reach the ideal goal of energy proportional-
ity. For example, when the system is under 1% load, RAID 10
still keeps 50% of the disks active. We discuss potential solutions
to this problem, which requires coordination between applications
and storage systems to avoid performance problems.

3. QUASI MIRRORED DISKS
We propose QMD (Quasi Mirrored Disks) that exploits flash for

removing the limitation of NVRAM in Section 3.1, and discuss
partial on-line mirrors as future research direction for achieving
the goal of energy proportionality in Section 3.2.

3.1 Flash-Based Write Cache
We analyze the access pattern of the write cache. Under low uti-

lization, block writes are appended to the write cache, resulting in
sequential writes. During flushing, the write cache must support
random reads for two reasons: (i) we would like to reorder and op-
timize the block writes to disks; and (ii) during the transition from
low utilization to high utilization mode, we want the write cache
to serve incoming I/O requests in order to minimize the impact of
flushing on front-end operations. As flash supports both the above
access patterns well, we propose to use flash as the write cache.

Figure 2 shows three ways to include flash-based write caches
in QMD, using RAID 10 as an example RAID scheme. In (a), we
enhance every pair of mirrored disks with a separate flash device.
In (b), we use a flash device for an entire RAID 10 volume that
stripes data across the mirror pairs. In (c), multiple RAID 10 vol-
umes share the same flash device. From (a) to (c), we reduce the
number of flash devices in the system. The benefits are two folds:
lowering the total cost and allowing dynamic sharing of the flash
capacity across disks. The latter is especially important for multi-
ple RAID 10 volumes because different volumes present separate

Data block Address block Space availableFlash

NVRAM

Mirror 1 Mirror N
Volume info1 1 0 0 0

Flash extent bitmap

Recent
address

buffer

E
x
t
e
n
t
s

Address root Address root Recent
address

buffer

Figure 3: QMD data structures.

I/O address spaces to software and typically store different files.
Therefore, they may see very different utilizations. For example,
some volumes may be under high utilization, while others under
low utilization. The volumes under low utilizations may see dif-
ferent write traffic and thus consume the write cache at different
speeds. Dynamic sharing can balance the spin-up/down (flushing)
frequencies across different volumes and achieve the same maxi-
mum flushing frequency with reduced total write cache size.

However, dynamic sharing introduces complexities in flash cache
management. For example, a naive design may employ a single
log-structured layout for the flash space. However, different vol-
umes may perform the flush operations at different times, leaving
many holes in the log. This either incurs random writes or requires
expensive garbage collection operations. In the following, we de-
scribe our proposal to efficiently address these complexities.

Flash Space Management. Figure 3 illustrates the data struc-
tures of QMD on flash and in NVRAM. Since most functions of
NVRAM (e.g., non-volatile write cache during both high and low
utilizations) can be satisfied by the flash cache, cost-effective stor-
age designs may reduce the size of NVRAM significantly (e.g., by
10X). Therefore, we use only a small amount of NVRAM in our
design mainly as a staging area to reduce wasteful flash writes.

The flash space is divided into fixed sized (e.g., 1GB) extents, as
shown in Figure 3. Extent is the unit of flash space allocation. A
bitmap in NVRAM keeps track of the availability of all extents. A
RAID 10 volume allocates a flash extent at a time. Writes to the
volume are appended to the current extent; only when the extent is
filled does the volume allocates a new extent. Let V be the number
of volumes, C the flash capacity, and E the extent size. We choose
E to satisfy C

E
>> V , i.e., the number of extents is much larger

1: Load address blocks of this mirror into memory and sort the address
entries in disk address order (let A[0..M−1] be the sorted array, where
M is the total number of entries);

2: Queue is the incoming request queue for this mirror;
3: ToWrite = M ; Last = −1; Direction = 1; Bound = M ;
4: while ToWrite > 0 do
5: while Queue.not_empty && Queue.head is a write do
6: R = Queue.dequeue();
7: Record R’s data in flash and R’s target address in NVRAM;
8: end while
9: if Queue.not_empty && Queue.head is a read then

10: R = Queue.dequeue();
11: Search R’s disk address in A[...], using binary search;
12: if there is a match then
13: Complete request R by reading the data block from flash;
14: else
15: Send R to the disk;
16: A[i] is immediately to the left of R;
17: if Last < i then
18: Direction = 1; Bound = M ; Last = i;
19: else
20: Direction = −1; Bound = −1; Last = i + 1;
21: end if
22: end if
23: end if
24: WriteBack = 0;
25: for (j = Last + Direction; (j ! = Bound) &&

(WriteBack < K); j = j + Direction) do
26: if A[j] is valid then
27: Process A[j]: read its data block from flash and send write

request to the disk;
28: Mark A[j] to be invalid;
29: WriteBack + +;
30: end if
31: end for
32: ToWrite = ToWrite−WriteBack; Last = j;
33: end while

Figure 4: Flush operation for a pair of mirrored disks.

than the number of volumes. In this way, the flash space can be
shared to effectively balance the needs of multiple volumes2.

For every volume, we keep a volume info structure in NVRAM.
This structure records all the extents that belong to the volume, the
next flash offset to write, and a 1MB sized staging area for flash
writes. The latter ensures that writes are performed in large sizes,
thereby avoiding the problems of small random flash writes.

Handling Writes under Low Utilization. A write request con-
sists of a data block and the target disk address. We append the
data block to the current flash extent, and generate an address en-
try: (target disk address, flash address of data). However, it
is wasteful to incur a (e.g., 4KB) flash write for the small sized
address entry. Instead, we store it in a recent address buffer in
NVRAM. When this buffer is full, we flush the buffer as an address
block to the current flash extent.

As shown in Figure 3, we use a two-level structure to keep track
of the data blocks. To facilitate the flushing operation for every
pair of mirrored disks, we maintain this structure for every mirror.
The first level is the address root in NVRAM, which records the
flash offsets of the address blocks for the mirror. The second level
consists of the address blocks, which in turn point to the data blocks
in flash extents.

Optimizing the Flushing Operation. The system decides to tran-
sition a RAID volume from low utilization to high utilization mode

2For example, if C = 100GB and V = 10, we can choose E = 1GB.
Then, the scheme can effectively handle even extreme cases such as one
volume seeing 90X write traffic than the other volumes.

of hot data
partial mirror

Flash

Figure 5: QMD partial on-line mirror. (Red/blue/green: ad-
dress range for hot data; gray: address range for cold data)

by monitoring the I/O activities. (The implementation will be de-
scribed in Section 4.) It spins up the standby disks and applies the
buffered writes to bring the disks up to date. We would like to opti-
mize the flushing operation for two goals: (i) efficiently writing the
buffered data blocks; and (ii) servicing incoming requests during
the transition. The key to achieve these goals is to reorder the disk
writes to avoid disk seeks.

Figure 4 shows the algorithm for the flushing operation. We can
run this algorithm for every pair of mirrored disks in parallel. The
algorithm assumes that the volatile DRAM in the storage controller
is large enough to hold all the address entries. At the beginning of
the algorithm (Line 1), it reads all the address blocks of the mir-
ror and sort the address entries. Sorting serves two purposes: (i)
we can easily search incoming read requests to see if there is a hit
(Line 11–13); (ii) schedule the write-backs in a disk friendly man-
ner. The algorithm goes into a loop (Line 4–33), which processes
K write backs in every iteration. (K is an algorithm parameter
that we determine experimentally in Section 4.2.) An iteration first
checks incoming requests. For incoming write requests, we sim-
ply cache them in the flash and NVRAM (Line 5–8). If there is an
incoming read request and it is not a hit, then we send the request
to the disk (Line 15). The algorithm remembers the last disk head
position, and the previous direction of head movement. It chooses
to schedule K write backs from the last head position following the
same head movement (Line 25–31).

Space Requirement. In NVRAM, we keep a 1MB sized buffer per
RAID volume, and a 4KB recent address buffer per mirror. Sup-
pose there are 10 volumes, and 1000 mirrored disk pairs. Then we
require 14MB NVRAM space, which is quite modest.

We also require volatile DRAM for the flushing operation. An
address entry consists of a disk block address, and an offset in the
flash extent. We can use a 32-bit integer for both addresses. For
4KB blocks, this is sufficient to support 16TB capacity. There-
fore, an address entry takes 8 bytes, a 1:512 size ratio to the block
size. Suppose the flash cache is 512GB large, then we require 1GB
DRAM for the flushing operation, which is reasonable for a large
disk array system.

3.2 Partial On-line Mirrors
By exploiting RAID redundancy, we can save at most 50% en-

ergy in mirror-based RAID schemes. (The savings in parity based
schemes are even smaller.) There is still a big gap to the energy
proportionality goal. In this subsection, we discuss our ideas for
closing this gap that we would like to explore in future research.

To further save energy, we have to spin down more disks. There-
fore, not all data can be available on the active disks. While storage
systems may guess the future access patterns based on block-level
access history, the penalty of wrong guesses (i.e., the spin-up delay)
is high especially for latency sensitive applications.

We propose to allow application software (e.g., database sys-
tem) and storage systems to collaborate on addressing this prob-
lem. Compared to a storage-only solution, application software has
higher-level knowledge about data accesses, has more flexibility to
schedule data accesses, and can also make end users aware of the

relationship of energy consumption, performance, and data place-
ment. We propose the following two interfaces between application
software and storage systems:

• Software can divide the address range of a RAID volume
into hot and cold address ranges, as shown in Figure 5. For
example, DBMS can create a hot and a cold table spaces.
It determines the temperature of database objects based on
high-level knowledge of user workloads, then stores them
in corresponding table spaces. DBMS may opt to expose
the choices to the end users (e.g., DBMS admin) showing
also the estimate energy costs and response times for query
workloads. The storage system guarantees that data in the
hot address range will always be available on active disks,
while it may take a spin-up delay to access the cold data.

• Software can use an interface to query the status of a cold
address range, i.e., whether a spin-up will be necessary to
access it. Software may use this information to intelligently
schedule its work. For example, if DBMS finds that a database
query must access both hot and cold data, DBMS can choose
to process the part of the query involving hot data first, and
postpone accessing the cold data to hide the spin-up delay as
much as possible.

Given the above collaboration, we can spin down disks based on
the system utilization. If the system is utilized 50% or more, then
we can exploit redundancy as described previously to spin down at
most one disk per pair of mirror. If the system utilization is below
50%, we will spin down both disks in some mirrors. However, we
must kept the hot data available on active disks.

As shown in Figure 5, we take advantage of the fact that disk ca-
pacity is often under utilized. In many important applications, such
as OLTP, the number of disks is determined mainly by the perfor-
mance requirement rather than capacity demands. Therefore, we
can copy the hot data to the active mirror, essentially creating a
mirrored copy of the hot data. In Figure 5, we plan to spin down
the first and second pairs of mirrored disks, and keep the third pair
active. Therefore, we copy their hot data to the third pairs of mir-
rored disks. We call this approach partial on-line mirrors.

This approach utilizes all disks under peak utilization, and is ca-
pable of spinning down almost all disks for saving energy for low
utilization. One major cost is the overhead for copying the hot data.
The copying may be improved in two ways. First, we can copy hot
data and spin down the mirrors one mirror at a time. For exam-
ple, in Figure 5, we can copy hot data from the first mirror then
spin down it, before copying hot data from the second mirror. This
saves energy during the copying process. Second, we may keep an
old version of the hot data on the third mirror. Then the copying
process needs to only update the old version, potentially avoiding
significant fractions of data copying.

4. EXPERIMENTAL EVALUATION
In this section, we present preliminary evaluation of our pro-

posed QMD solution. In Section 4.1, we perform trace-based simu-
lation study using real-world disk traces for quantifying the overall
benefits of our solution in terms of energy savings, reduced spin-
up/down cycles, and impact on I/O performance. In Section 4.2,
we perform real-machine experiments for understanding the bene-
fits of the proposed flushing operation.

4.1 Simulation Study
We implemented a trace driven RAID controller simulator to

evaluate the effectiveness of QMD. We used three real workload

Table 1: QMD default simulator parameters.
Parameter Default Parameter Default

value value
Disk block size 512B Flash read latency 65 us
RAID Stripe size 128KB Flash write latency 85 us
Power, under load 13.2W Flash read bandwidth 250MB/s
Power, spinning idle 7.7W Flash write bandwidth 70MB/s
Power, spun down 2.5W Epoch length 1 sec
Disk avg. seek time 3.5 ms Spin down utilization thld. 0.10
Disk avg rot. latency 2.0 ms Spin down time threshold 30 epochs
Disk transfer rate 120MB/s Spin up utilization threshold 0.25
Spin up time 10.9 sec Spin up time threshold 2 epochs
Spin down time 1.5 sec Flash buffer size 16GB

traces on RAID10 systems and find that (i) significant energy sav-
ings can be achieved with minimal impact on response times, and
(ii) increasing the non-volatile write buffer size can significantly
reduce the number of disk spin down cycles during a trace.

Simulator Implementation. Our simulator uses block level I/O
traces for its workloads. Traces must have four basic fields for each
request: arrival time at the controller, read or write, start address,
and size. For each request, the simulator progresses time up until
the arrival time of the request, then maps the request or pieces of
the request to appropriate disks and/or flash based on the current
state of the system. When time has progressed to the point that a
request at a disk (or flash) finishes, the controller is notified, and
response time is taken to be the finish time of the last piece of a
request minus the request’s arrival time.

The default parameters for the simulator are shown in Table 1.
The disk parameters are taken either from values measured in [16]
or from the Hitachi Ultrastar 15K600 300GB enterprise drive spec
sheet [8]. The flash parameters are taken from the Intel X-25M
spec sheet [9].

Disks are not modeled in detail; access time is estimated as av-
erage rotational latency plus average seek time plus data transfer
time. Sequential accesses are accounted for by removing rotational
latency and seek time for accesses following the initial one. Flash
access time is similarly modeled as flash read/write latency plus
read/write transfer time, with latency removed for sequential ac-
cesses. Controller processing time is not accounted for, but is as-
sumed to be insignificant.

Disk utilization is tracked in terms of epochs. Utilization is de-
fined as the amount of time during an epoch a disk spent servicing
requests, divided by the total length of the epoch. The threshold for
a mirrored pair to transition to or from the low utilization state is set
in terms of a utilization and a number of epochs. At the end of each
epoch, the state of the system is evaluated to see if any disks should
be transitioned to a different state. To transition to the low utiliza-
tion state, a pair must be below the utilization threshold for the set
number of epochs. A pair transitions to high utilization mode either
when the utilization of the active disk exceeds its threshold for the
set number of epochs, or the space used in the write buffer is above
the buffer fill threshold.

Energy used by a hard disk during a trace is computed from the
time spent in each of three states times the power used in each state.
The states are spinning and serving requests, spinning but idle, and
spun down. The energy used by the flash buffer is computed as
the time spent idle and active times the power used in each state
by the Intel X-25M. Energy savings for the whole system during
a trace is computed as the percent difference in energy used when
compared to a simulation with no energy savings enabled. The
costs due to thermal power (i.e., cooling) are not considered but it
is expected that spinning down disks will lead to additional energy
savings because of reduced demand for running fans.

Table 2: QMD overall energy savings potential.
Trace file Description Length Peak IO Energy

Rate Savings
cambridge-src1_1 enterprise server 7 days 3.5k/s 31%
cambridge-usr2 enterprise server 7 days 2.3k/s 28%

LiveMaps global web service 1 day 4.7k/s 11%

128MB

256MB

512MB

1GB

2GB

0

100

200

300

400

N
u

m
 s

p
in

 u
p

s

Buffer size

0

100

200

300

400

500

600

20 24 28 32

R
e

sp
o

n
se

 t
im

e
s

(m
s)

Number of disks

99.95%

99.9%

99.5%

Figure 6: Impact of number of disks on response time
(cambridge-src1_1)

128MB

256MB

512MB

1GB

2GB

0

100

200

300

400

N
u

m
 s

p
in

 u
p

s

Buffer size

0

100

200

300

400

500

600

20 24 28 32

R
e

sp
o

n
se

 t
im

e
s

(m
s)

Number of disks

99.95%

99.9%

99.5%

Figure 7: Number of spin ups over 7 days varying buffer size
(cambridge-src1_1)

Real-World Traces. We use three real-world traces in our evalua-
tion, as described in Table 2. The first two were recorded on servers
in Microsoft Research Cambridge’s enterprise data center, and we
refer to them as cambridge-src1_1 and cambridge-usr2. The two
traces were taken over seven days. They exhibit clear diurnal us-
age patterns, with peaks during the day and long low utilization
periods between them. (The two traces are described in more de-
tail in [12].) The third trace was taken from production Microsoft
LiveMaps backend servers over one day. As LiveMaps is a global
web service, the third trace shows no diurnal pattern and has very
spiky activity throughout the day with only very short low utiliza-
tion periods.

To evaluate QMD on a given trace, we first perform a range of
simulations varying the number of disks without QMD enabled to
determine the appropriate number of disks to use for this trace. The
number of disks is chosen as the point at which increasing the num-
ber further provides minimal response time improvements. This is
illustrated in Figure 6. The 99.5th percentile, 99.9th percentile, and
99.95th percentile response times are shown as the number of disks
increases for the trace cambridge-src1_1. For this trace, we chose
to use 28 disks for further experiments. We also use the simulation
without QMD enabled to obtain a baseline energy usage which we
use to determine the percent savings when QMD is enabled.

Overall Results. Our overall energy savings results for each trace
are shown in Table 2. The energy savings ranges from about 31%
in the best case to about 11% in the worst case. The cambridge-
src1_1 trace benefits the most from QMD due to its strong diurnal
usage pattern, and the cambridge-usr2 trace similarly has very long
periods of low utilization. The LiveMaps server’s trace has very

0

20

40

60

#
 R
e
q
u
es
ts
 (
x1
0
0
0
0
)

Writes TotalAccesses

12

16

20

24

28

D
is
ks
 S
p
in
n
in
g

Time (7 days total)

Figure 8: Cambridge-src1_1 - Total IO and writes above, aver-
age number of disks spinning below.

0

5

10

15

20

R
eq

u
es
ts
(x
1
0
0
0
0
)

Writes TotalAccesses

6
8
10
12
14
16
18

D
is
ks
 s
p
in
n
in
g

Time (7 days)

Figure 9: cambridge-usr2 - Total IO and writes above, average
number of disks spinning below.

0

20

40

60

80

#
 R
e
q
u
es
ts
 (
x1
0
0
0
0
)

Writes TotalAccesses

8
10
12
14
16
18
20
22

D
is
ks
 S
p
in
n
in
g

Time (1 day total)

Figure 10: LiveMaps - Total IO and writes above, average num-
ber of disks spinning below.

short low utilization periods, and therefore it is much more difficult
for QMD to be effective.

Figure 8, 9, and 10 compare I/O request arrival rates and the av-
erage number of active disks over the duration of the traces for the
three traces, cambridge-src1_1, cambridge-usr2, and LiveMaps, re-
spectively. The number of disks spinning ranges from 14 (half) dur-
ing low utilization to 28 (all) during the peak utilization’s. From the
figures, we see that the spikes of the number of active disks corre-
spond to the spikes in I/O arrival rates in Figure 8 and 9, indicating

0

10000000

20000000

30000000

40000000
Fr
eq

u
e
n
cy

No QMD thresh 0.4 thresh 0.6 thresh 0.8

<
5

<
2
5

<
7
5

<
1
2
5

<
1
7
5

<
2
2
5

<
2
7
5

<
3
5
0

<
5
0
0

<
7
5
0

<
1
2
5
0

<
2
0
0
0

<
3
0
0
0

<
4
0
0
0

<
7
5
0
0

>1
0
0
0
0

Response Time (ms)

No QMD thresh 0.4 thresh 0.6 thresh 0.8

40000
60000

en
cy

0
20000

Fr
eq

u

Response Time (ms)

Figure 11: Cambridge-src1_1 - Overall response time distribution left, close up of tail end of distribution right, both shown while
varying spin up utilization threshold.

0
2000000
4000000
6000000
8000000

10000000

Fr
e
q
u
e
n
cy

No QMD thresh 0.2 thresh 0.4 thresh 0.6

<
5

<
2
5

<
7
5

<
1
2
5

<
1
7
5

<
2
2
5

<
2
7
5

<
3
5
0

<
5
0
0

<
7
5
0

<
1
2
5
0

<
2
0
0
0

<
3
0
0
0

<
4
0
0
0

<
7
5
0
0

>
1
0
0
0
0

Response Time (ms)

No QMD thresh 0.2 thresh 0.4 thresh 0.6

40000
60000

en
cy

0
20000

Fr
eq

u

Response Time (ms)

Figure 12: Cambridge-usr2 - Overall response time distribution left, close up of tail end of distribution right, both shown while
varying spin up utilization threshold.

0

10000000

20000000

30000000

40000000

Fr
e
q
u
e
n
cy

No QMD thresh 0.2 thresh 0.4 thresh 0.6

<
5

<
2
5

<
7
5

<
1
2
5

<
1
7
5

<
2
2
5

<
2
7
5

<
3
5
0

<
5
0
0

<
7
5
0

<
1
2
5
0

<
2
0
0
0

<
3
0
0
0

<
4
0
0
0

<
7
5
0
0

>
1
0
0
0
0

Response Time (ms)

No QMD thresh 0.2 thresh 0.4 thresh 0.6

40000
60000

en
cy

0
20000

Fr
eq

u

Response Time (ms)

Figure 13: LiveMaps - Overall response time distribution left, close up of tail end of distribution right, both shown while varying
spin up utilization threshold.

the effectiveness of QMD for the long periods of low utilization. In
contrast, the LiveMaps trace sees bursty traffic with very short du-
rations of low utilization periods, making it challenging to maintain
response times and save energy at the same time.

Impact of Write Buffer Size on Spin-Up Cycles. Figure 7 shows
the benefit, in terms of disk spin down/up cycles, as the buffer
size increases for the trace cambridge-src1_1. epochs. At 128MB
buffer size, each disk is spun down an average of 360 times over the
seven day trace. As the buffer size is increased to 2GB the num-
ber of spin down cycles is reduced to 60 for 7 days, about an 83%
reduction. This meets our goal for a five year HDD lifespan.

Impact of QMD on I/O Response Times. Figures 11, 12, and 13
show the effect of QMD on the response time distributions for all
three traces. Each figure shows histograms of response time dis-
tributions. The horizontal axis is the upper end of response time
histogram buckets, and the vertical axis is the number of requests
in each bucket. Each figure shows the response time distribution
for the original case where QMD is not enabled, and three curves
for QMD while varying the spin up utilization threshold.

The left graphs show the overall response time distributions. We
see that there is almost no variation at this scale. This means that

QMD has little impact for the majority of I/O requests. The right
graphs examine more closely the tail end of the distributions. We
see that if the spin up utilization threshold is set too high, the
scheme can significantly increase the number of requests with very
high response times for some workloads (e.g. threshold 0.6 in Fig-
ure 13). When the spin up utilization threshold is too high, disks
wait too long to start spinning up as I/O arrival rate increases. The
active disks get overloaded, and there are deep queues by the time
the standby disks have been spun up. However, it is also clear
that we can conservatively choose the spin up utilization threshold
(which we did for Table 2) so that the response time distribution
with QMD enabled almost perfectly follows the distribution with
no QMD.

4.2 Opportunity Study for Flushing Operation
on Real Machine

Figure 14 shows the real machine experimental results on serv-
ing incoming requests while flushing buffered data blocks using the
flushing algorithm in Figure 4. We ran the experiments on a Dell
PowerEdge 1900 server equipped with two Quad-core 2.0GHz Intel
Xeon E5335 CPUs and 8GB memory running 64-bit Ubuntu 9.04

param_K elapsed num_written wIOPS num_read rIOPS

1 1814.910722 100000 55.1 100000 55.1

2 1173.968925 100000 85.2 50000 42.6

4 822.602708 100000 121.6 25000 30.4

6 689.065295 100000 145.1 16667 24.2

8 614.553248 100000 162.7 12500 20.3

10 569.986415 100000 175.4 10000 17.5

20 469.002187 100000 213.2 5000 10.7

40 411.420271 100000 243.1 2500 6.1

60 395.426863 100000 252.9 1667 4.2

80 386.87275 100000 258.5 1250 3.2

100 370.098366 100000 270.2 1000 2.7

200 354.17735 100000 282.3 500 1.4

400 332.957931 100000 300.3 250 0.8

600 323.856845 100000 308.8 167 0.5

800 325.814411 100000 306.9 125 0.4

1000 320.709871 100000 311.8 100 0.3

0
50

100
150
200
250
300
350

K
=
0

K
=
1

K
=
2

K
=
4

K
=
6

K
=
8

K
=
1
0

K
=
2
0

K
=
4
0

K
=
6
0

K
=
8
0

K
=
1
0
0

K
=
2
0
0

K
=
4
0
0

K
=
6
0
0

K
=
8
0
0

K
=
1
0
0
0

K
=
in
f.

IO
P
S

incoming read

write back

0%

20%

40%

60%

80%

100%

K
=
1

K
=
2

K
=
4

K
=
6

K
=
8

K
=
1
0

K
=
2
0

K
=
4
0

K
=
6
0

K
=
8
0

K
=
1
0
0

K
=
2
0
0

K
=
4
0
0

K
=
6
0
0

K
=
8
0
0

K
=
1
0
0
0

IO
P
S

incoming read write back

Figure 14: Opportunity study for serving incoming reads while
flushing buffered writes as in the flushing algorithm in Figure 4.

server with Linux 2.6.28-17 kernel. We used a dedicated Seagate
Barracuda ES.2 [21] enterprise-class drive (750GB, 7200 rpm) as
the target disk. To model the buffered data blocks, we randomly
generate 100,000 target addresses in the entire disk capacity range.
We modeled the worst case for incoming requests: Every iteration
in the algorithm processes an incoming read request. The read tar-
get addresses are randomly generated. All disk reads and writes are
8KB sized. Every experiment performed all the 100,000 writes.

We vary the number of write backs per iteration (i.e. parameter
K) on the X axis in Figure 14. On the Y axis, we report IOs per sec-
ond normalized to the read-only and write-back-only performance,
respectively. We see that as K increases, write-back performance
increases while read performance decreases gracefully. For exam-
ple, at K = 2, the algorithm achieve 54% of the peak read and 25%
of the peak write performance. At K = 10, the algorithm achieve
25% of the peak read, and 48% of the peak write performance. Our
algorithm schedules write backs whose target addresses are close
to every read request for reducing disk seek overhead. Using the
measurements, a storage system can choose a K that balances the
write-backs and incoming request handling for given targets of sys-
tem loads and write-back times.

5. RELATED WORK
Exploiting Redundancy for Saving Disk Energy. As described
in Section 1, several previous studies proposed to exploit redun-
dancy in data storage systems to save energy. EERAID [11] and
RIMAC [24] exploited redundancy in RAID arrays for saving en-
ergy. They focused on request scheduling and storage cache de-
signs. Diverted Access[16] exploited redundancy in a more general
form, where storage systems store (encoded) data in n fragments,
and every subset of m fragments can be used to reconstruct the
data. However, these previous proposals suffer from two problems:
(i) Limited NVRAM capacity forces disks to be frequently spun
up/down, which impacts their lifetimes; and (ii) there is still a sig-
nificant gap to achieve the ideal goal of energy proportionality. In
this paper, we exploited flash as a larger non-volatile write cache to
address (i). For (ii), we proposed partial online mirror and a collab-
oration interface between storage systems and upper-level software
for spinning down more disks while limiting performance impacts.

Migrating or Copying Data for Saving Disk Energy. MAID [6]
maintains a large number of disks in standby mode for archival
purpose. A disk is spun up on demand for serving a request. To
reduce the accesses to standby disks, MAID uses a small number
of disks to cache recently used data. PDC [15] migrates frequently
used data to a subset of all the disks so that other disks can be spun
down. In this paper, we exploit both redundancy and data migra-
tion for achieving energy proportionality. In addition, we propose
to expose energy state information to upper-level software (e.g.,
database systems) so that they can collaborate to hide the spin-up
delays for accessing the cold data.

Exploiting Flash as Write Buffers. Schindler et al. proposed to
use flash as a write cache to optimize storage access patterns that
consist of large sequential reads and random writes [17]. Chen et
al. exploited a flash-based cache for enabling online updates in
data warehouses [3]. While both studies maintain the efficiency of
sequential reads in face of random writes, their focuses are quite
different. Chen et al. developed a MaSM algorithm, for supporting
fine-grain database record updates, minimizing memory footprint
and flash writes, and supporting ACID properties [3]. On the other
hand, storage systems see only block-sized I/Os and do not require
ACID, which simplify the flash management in Schindler et al.’s
solution. Instead, they focus on efficiently migrating the cached
writes back to disks in the middle of large sequential read opera-
tions [17]. In this paper, we also exploit flash as a write cache, but
for a very different purpose: significantly increasing the size of the
non-volatile write cache for reducing the number of spin-up/down
cycles for disks in energy-efficient disk arrays.

Efficient Disk Access Patterns. Sequential accesses and random
accesses are the two access patterns that are studied most for disks.
Because of their mechanical properties, HDDs achieve peak band-
width for sequential access patterns but have poor performance for
random accesses. In between these two extremes, previous work
studied other efficient access patterns for modern disks. Schlosser
et al. exploited the semi-sequential pattern and short seeks for mul-
tidimensional data layout on disks [18]. On modern disks, short
seeks up to a certain number of disk tracks take similar time. A list
of disk blocks on different disk tracks satisfies the semi-sequential
pattern if the next block on the list can be accessed without ro-
tational delay after seeking from the previous block. Combining
these two features, Schlosser et al. identified that from any given
disk blocks, there is a set of disk blocks, called adjacent blocks, that
can be accessed with equally small cost. Then, they placed multidi-
mensional data using adjacent blocks for efficient accesses in every
dimension. Schindler et al. studied proximal I/Os for combining
random writes into large sequential reads [17]. Proximal I/Os are
a set of I/O requests with addresses close to one another. Modern
disks can handle these I/Os with minimal seek overhead. Similar to
both of the studies, we also aim to reduce disk seeks by scheduling
I/Os with close addresses, but for a quite different workload: flush-
ing a large number of buffered writes to disks while serving (ran-
dom) incoming requests. Our proposal balances the two activities,
and supports performance tuning based on a simple parameter, the
number of write backs performed between two incoming requests.

6. CONCLUSION
In this paper, we investigated energy efficiency for HDD-based

data storage in general and RAID systems in particular. We pro-
posed QMD (Quasi Mirrored Disks) to effectively leverage redun-
dancy in storage systems and flash to save significant energy. We
demonstrated this through simulation using real-world workloads,
including systems that experience long periods of low utilization,
i.e. due to diurnal usage patterns. With a sufficiently large non-
volatile write buffer, the number of spin down cycles for disks can
be kept within the average lifetime limit specified by manufactur-
ers. Moreover, we can choose conservative parameters (e.g., spin-
up utilization threshold) so that QMD can achieve the energy sav-
ings with negligible impact on I/O response times.

We find that exploiting redundancy alone still leaves a big gap to
the energy proportionality goal. As future research, we propose two
interfaces that allow applications and storage systems to collaborate
for further saving energy, and Partial On-line Mirrors for effectively
taking advantage of the interfaces.

7. ACKNOWLEDGMENTS
The QMD simulator was initially developed by Katlyn Daniluk

as part of her research experience for undergraduates. This work
was partially supported by National Science Foundation awards
IIS-0746696 and IIS-1050301.

8. REFERENCES
[1] NSF workshop on sustainable energy efficient data

management (SEEDM). http://seedm.org.
[2] NSF workshop on the science of power management.

http://www.cs.pitt.edu/ kirk/SciPM2.
[3] M. Athanassoulis, S. Chen, A. Ailamaki, P. B. Gibbons, and

R. Stoica. MaSM: Efficient online updates in data
warehouses. In SIGMOD, 2011.

[4] L. A. Barroso. The price of performance: An economic case
for chip multiprocessing. ACM Queue, pages 48–53, Sept
2005.

[5] L. A. Barroso and U. Holzle. The case for
energy-proportional computing. IEEE Computer, 40:33–37,
Dec 2007.

[6] D. Colarelli and D. Grunwald. Massive arrays of idle disks
for storage archives. In SC, 2002.

[7] Emerson Network Power. Energy logic: Reducing data
center energy consumption by creating savings that cascade
across systems. http://emersonnetworkpower.com/en-
US/Brands/Liebert/Documents/ White Papers/Energy
Logic_Reducing Data Center Energy Consumption by
Creating Savings that Cascade Across Systems.pdf.

[8] Hitachi Global Storage Technologies. Ultrastar 15k600 data
sheet, Sept 2009.

[9] Intel Corporation. X-25M SATA SSD 34nm product
specification.

[10] J. G. Koomey. Estimating total power consumption by
servers in the U.S. and the world.
http://enterprise.amd.com/Downloads/
svrpwrusecompletefinal.pdf.

[11] D. Li and J. Wang. EERAID: energy efficient redundant and
inexpensive disk array. In ACM SIGOPS European
Workshop, 2004.

[12] D. Narayanan, A. Donnelly, and A. I. T. Rowstron. Write
off-loading: Practical power management for enterprise
storage. In FAST, 2008.

[13] NetApp Corporation. Flash cache.
http://www.netapp.com/us/
products/storage-systems/flash-cache/flash-cache.html.

[14] D. A. Patterson, G. A. Gibson, and R. H. Katz. A case for
redundant arrays of inexpensive disks (RAID). In SIGMOD,
1988.

[15] E. Pinheiro and R. Bianchini. Energy conservation
techniques for disk array-based servers. In ICS, 2004.

[16] E. Pinheiro, R. Bianchini, and C. Dubnicki. Exploiting
redundancy to conserve energy in storage systems. In
SIGMETRICS, 2006.

[17] J. Schindler, S. Shete, and K. A. Smith. Improving
throughput for small disk requests with proximal I/O. FAST,
2011.

[18] S. W. Schlosser, J. Schindler, S. Papadomanolakis, M. Shao,
A. Ailamaki, C. Faloutsos, and G. R. Ganger. On
multidimensional data and modern disks. In FAST, 2005.

[19] Seagate Technology LLC. Barracuda 7200.12 data sheet.
[20] Seagate Technology LLC. Cheetah 15K.4 SCSI product

manual, rev. d edition, May 2005. Publication number:
100220456.

[21] Seagate Technology LLC. Barracuda ES.2 data sheet, 2009.
[22] Transaction Processing Performance Council. TPC

benchmark E standard specification version 1.12.0.
[23] US Environmental Protection Agency. Report to congress on

server and data center energy efficiency: Public law 109-431.
[24] X. Yao and J. Wang. RIMAC: a novel redundancy-based

hierarchical cache architecture for energy efficient, high
performance storage systems. In EuroSys, 2006.

