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Abstract 

Phoenix/App supports software components whose 
states are made persistent across a system crash via redo 
recovery, replaying logged interactions.  Our initial 
prototype force logged all request/reply events resulting 
from inter-component method calls and returns. This 
paper describes an enhanced prototype that implements: 
(i) log optimizations to improve normal execution 
performance; and (ii) checkpointing to improve recovery 
performance.  Logging is reduced in two ways: (1) we 
only log information required to remove non-
determinism, and we only force the log when an event 
“commits” the state of the component to other parts of the 
system; (2) we introduce new component types that 
provide our enhanced system with more information, 
enabling further reduction in logging.  To improve 
recovery performance, we save the values of the fields of 
a component to the log in an application “checkpoint”.  
We describe the system elements that we exploit for these 
optimizations, and characterize the performance gains 
that result. 

1. Introduction 

1.1 Persistent Stateful Components 

Component-based programming is widely used in 
enterprise applications, such as web services and middle-
ware systems, where high availability is usually a 
requirement [8,9,11,14]. In contrast to fault tolerant 
operating systems [2,3], a common practice here to 
achieve high availability without loss of critical work is to 
enforce a form of “workflow” programming model in 
which stateless components communicate with each other 
through recoverable stateful message queues [4,10]. At 
every invocation, a component must read state 
information from a queue before processing and write it 
back after processing, which is an unnatural model. And 
distributed commits for the distributed message queues 
are potentially expensive.  This stateless programming 
model is the same one supported by traditional TP 
monitors [4]. 

To support natural, stateful components and avoid 
distributed commits, we built Phoenix/App based on the 
recovery guarantees framework in [6], which generalized 
the client-server protocols of [12]. Programmers simply 

specify a component to be persistent. The Phoenix/App 
runtime transparently intercepts and logs incoming and 
outgoing messages of the component in a local log with 
pessimistic logging [1,7]. If the component fails, the 
runtime automatically recovers its state via redo recovery, 
replaying the messages from the local log.  Thus, 
Phoenix/App guarantees exactly-once execution for 
persistent components. 

Our first prototype [5], referred to as the baseline 
system, demonstrated the feasibility of the solution using 
the simplest approach, immediately forcing the log for 
every message between persistent components. Moreover, 
recovering a component state required replaying all the 
messages from the creation of the component, leading to 
potentially high recovery cost for long-lived components.  

1.2 This Paper’s Contributions  

In this paper, we study log optimizations to improve 
normal execution performance and checkpointing to 
improve recovery performance in Phoenix/App.   

We consider two ways to reduce logging cost.   
1. For persistent components in general, we only log 

information required to remove non-determinism and 
only force the log when an event “commits” the state 
of the component to other parts of the distributed 
system.  This is usually at an outgoing message.  

2. We introduce three special types of components 
(subordinate, read-only, and functional components) 
that provide enhanced knowledge about the states of 
the components and their interactions with other 
components in the system. This permits us to further 
reduce logging, sometimes dramatically. 

 
To improve recovery performance, we save the values 

of the fields of a component to the log in an application 
“checkpoint”. We study how to transparently save 
component states, how to coordinate the saving operations 
for component states and the in-memory data structures of 
Phoenix/App runtime, and how to recover from a crash. 

The remainder of the paper is organized as follows. 
We describe the baseline system in section 2. Then we 
discuss log optimization in Section 3 and checkpointing in 
Section 4. We evaluate our approaches with experiments 
in Section 5. Section 6 provides conclusions.   



2. Achieving Persistence in Baseline System 

We first explain the component model and the 
sufficient conditions for persistence. Then we describe 
how these conditions are satisfied in the baseline system. 

2.1 Component Model 

A component is typically a (C++, Java, or C#, etc.) 
object instance, as in CORBA [14], Enterprise Java Beans 
[8], and .NET [9]. Component states are held in object 
fields; operations are provided through methods. 

Components communicate via (remote) method calls. 
As shown in Figure 1, a component sees four kinds of 
messages: an incoming method call from a client 
component; the subsequent reply message to the client; an 
outgoing method call to a server component; and the 
response from the server.1 

2.2 Exactly-once Semantics- Sufficient Conditions 

Phoenix/App is based on .NET remoting [9]. 
Programmers specify a component as persistent using a 
customized attribute. Phoenix/App detects the attribute 
and transparently logs interactions. Unspecified 
components are external components by default, for 
which we take no actions and make no guarantees. For 
persistent components only making method calls to 
persistent components, we guarantee “exactly-once” 
semantics in case of failures, i.e. state changes are exactly 
the same as if there were no failures. “Exactly-once” 
semantics is achieved if the following are satisfied [6]: 
1. When sending a message (message 2 or 3 in Figure 1), 

a persistent component ensures that its state as of the 
send and the message are persistent. 

2. When making a method call, a persistent component 
attaches a globally unique ID to the outgoing method 
call message which is deterministically derived. 

3. When receiving a method call from another persistent 
component, a persistent component checks the 
globally unique ID.  It executes normally if it has not 

                                                           
1 Components must be piece-wise deterministic (PWD) to be replayable 
in [6]. To ensure PWD, Phoenix/App requires components to be single-
threaded, serving one incoming method call at a time. This avoids the 
non-determinism caused by interleaved thread accesses to local data in a 
component. But of course, there can be multiple threads executing in 
multiple different components in a process. 

seen the ID before. Otherwise, it returns the reply of 
the previous method call with the same ID. 

4. A persistent component repeats an outgoing method 
call to a server component until it gets some response. 

5. When recovering from a failure, if a persistent 
component was responding to an incoming method 
call before the failure, it does not send the reply 
(message 2).  Rather, this message is sent upon 
request from the client as in condition 3. 
We assume all the above conditions are satisfied and 

examine how the system ensures “exactly-once” 
semantics for persistent components when external 
components are not servers. Without loss of generality, 
we consider the failures as shown in Figure 2. Suppose a 
persistent component receives an incoming method call 
from a persistent client component. In serving the method 
call, it sends an outgoing call to a persistent server 
component and receives the response for this call. After 
that, it sends the reply for the incoming call to the client. 
As shown in Figure 2, the persistent component may fail 
at three failure points.   (In all cases, the boundaries of the 
failure situations are defined by the interactions that the 
recovering component finds on the log.)  We discuss the 
recovery processing for each failure point:  

 Failure before message 3 is sent:  Component state 
before message 1 can be recovered because either it is 
the state after creation or the component has finished a 
previous incoming call. In the latter case, it has sent a 
reply message and can be recovered according to 
condition 1. If the component has remembered 
message 1, it performs the method call. By condition 
4, the client resends message 1 in case the component 
has not remembered the message. Duplicates are 
eliminated by condition 3. 

 Failure after message 3 is sent but before message 2 is 
sent: By condition 1, the component recovers message 
3 and its state at the send of message 3. By condition 
4, it resends message 3 if it has not yet remembered 
message 4. The ID is the same by condition 2. The 
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server eliminates duplicates by condition 3, returning 
the same message 4, even if message 3 had previously 
been received. Component execution then continues. 

 Failure after message 2 is sent: By condition 1, the 
component can recover message 2 and the state at the 
send of message 2. By condition 5, the component 
does not resend message 2 to the client.  If the client 
has not received message 2, it retries the method call 
by condition 4. The component detects the duplicate 
message by checking its globally unique ID and 
returns message 2 to the client. 

The task of the baseline system is to enforce the five 
conditions to achieve “exactly-once” semantics. Section 
2.3 discusses condition 2 and 3. Section 2.5 describes how 
the other three conditions are satisfied. 

2.3 Runtime Logging 

In .NET remoting, a component resides in a structure 
called a “context”. Within a context, method calls are 
local calls.  Across context boundaries method calls are 
remote procedure calls: method names and parameters are 
packaged (marshalled) into messages and sent to the 
remote contexts, where the messages are unmarshalled, 
etc. After processing, replies are sent back through 
messages in the similar fashion.  Message interceptors at 
context boundaries can intercept all the four kinds of 
messages described in Section 2.1. 

In our baseline system, every persistent component 
resides in its own context. So we can intercept all 
messages of persistent components as shown in Figure 3.  
The baseline system logs and immediately forces every 
message to the log, implementing Algorithm 1. 

A process may host multiple contexts and a machine 
can run many processes. So the globally unique ID of a 
method call consists of: caller’s machine name; unique 
process “logical” ID on that machine, assigned by 
Phoenix/App; unique caller component “logical” ID in the 
process, also assigned by Phoenix/App runtime; and local 
method call ID which is incremented for every outgoing 
method call of a component.  Phoenix/App ensures that 
the logical process IDs and the component IDs remain the 
same in spite of failures. The last local method call ID 
before a failure is obtained from the log. 

On an outgoing method call, a message interceptor 
attaches the globally unique ID to the message, satisfying 
condition 2. On an incoming method call message, a 
message interceptor checks for the ID. If the ID does not 
exist, the caller must be an external component. 

To enforce condition 3 for method calls from 
persistent clients, method call IDs and their replies are 
stored in a last call table indexed by the first three parts of 
the ID.  On an incoming method call message from a 
persistent client, a message interceptor checks the last call 
table and compares the new ID to the last call ID from the 

same component.  If equal, the stored reply is sent back to 
the client. Otherwise, the call is delivered normally to the 
persistent component.  Before sending a reply message, 
the message interceptor updates the last call table.  

We only keep information on the last method calls 
from persistent clients. If we receive a method call from a 
persistent client, the client can independently recover its 
state to the send message time by condition 1. So its 
earlier last call entry is no longer needed. 

2.4 Failure Detection 

Failures are detected in two ways. (1) All processes 
that host persistent components register at start time with 
the Phoenix/App recovery service running on their 
machine, as shown in Figure 4.  The recovery service 
monitors the abnormal exits of the registered processes 
and restarts those processes. It keeps the information of 
registered processes in a table and force writes updates to 
the table to its log to make the table persistent.  (2) In 
.NET, message interceptors can detect exceptions raised 
by outgoing calls.  Phoenix/App handles particular 
exceptions that indicate a component failure.  (Not all 
exceptions indicate failures, e.g., an invalid argument 
exception indicates an error, but the remote component is 
still alive.) 

2.5 Automatic Recovery 

To recover a failed component, the baseline system 
replays all logged incoming method calls from component 
creation until failure.  Since all messages are forced to the 
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log, we can recover the component state to the time of the 
last send message and execution can continue from there. 

As shown in Figure 5, to replay an incoming method 
call, Phoenix/App runtime calls the logged method with 
the logged parameters. An outgoing call is suppressed by 
the message interceptor if a reply to the call is found in 
the log. Instead, the reply is read from the log and 
returned. Otherwise, either the previous send message or 
the last logged outgoing call must be the last send 
message and component state has already been recovered 
to the time of the last send message. We begin normal 
processing and send the outgoing call as in normal 
execution. 

During recovery, the message interceptor rebuilds the 
last call table from incoming call log records. Hence both  
component state and last call table are recovered to the 
time of the last send message, which satisfies condition 1. 

Condition 5 is satisfied because the replies of the 
replays are not sent to any components. Moreover, when a 
message interceptor detects a recognized exception for an 
outgoing method call message, it waits for a while and 
retries the call using the same method call ID.  This 
satisfies condition 4. 

In summary, the baseline system provides sufficient 
conditions for “exactly-once” semantics. It logs and 
forces every message. To recover a failed persistent 
component, it replays all the method calls from the 
creation of a component until the failure. 

3. Improving Logging Performance 

Every method call in the baseline system incurs at 
least two log writes and forces at a persistent component, 

even if no outgoing calls are made. Here we focus on 
reducing log writes and forces to improve performance.  

3.1 Log Optimizations for Persistent Components 

We discuss two situations based on whether external 
components are involved or not. 

 
3.1.1. Interacting components are both persistent. The 
purpose of logging messages is to satisfy condition 1 
(recover a persistent component to the point of the last 
send message). A send message is important because it 
may change the states of other components, hence 
“committing” the component state to other parts of the 
distributed system.  Such “commits” usually need a log 
force. However, forcing receive messages, as the baseline 
system does, is unnecessary. We can log receive messages 
without forcing. The send message log force ensures all 
previous messages (including receive messages) are stable 
in the log. Losing messages received after the last send 
message does not affect correctness since component state 
has not been committed after the last send. 

Moreover, since the last send message can be re-
created in the replay of all the previous messages, it is not 
necessary to write a send message to the log. But we still 
need to force all the previous log records before sending a 
message. This optimization is important as it allows more 
opportunities to combine log forces from multiple 
components that share the same log. 

The improved logging algorithm, shown in Algorithm 
2, saves a log force for every receive message and saves a 
log write for every send message.  

 
3.1.2. Client component is an external component. No 
logging strategy fully masks failures when external 
components are involved. However, we may be able to 
mask failures when persistent and external components do 
not fail simultaneously. For this purpose, we force log 
messages promptly, as in the baseline system. Below we 
analyze when persistent component failures are masked: 
•  If a persistent component fails after it receives and 

immediately force logs a call (message 1) from an 
external component, it recovers and finishes the 
incoming call, masking the failure from the external 
component.  But a call from an external component 
may have to be repeated since the persistent 
component may fail before logging. 

•  If a persistent component fails before force logging a 
reply (message 2) to an external component, it 
recovers, realizes that message 2 has not been sent, 
and proceeds to force log and send it.  But we cannot 
know whether the external component has received 
the output message or not, even if it is logged.  What 
we can mask is persistent component failures before 
the log force.  Failures after log forcing, including 
message delivery failures, may not be masked. 
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Hence there is a “window of vulnerability”, i.e. if a 
persistent component fails during an interaction, before 
the log is forced for message 1, or after the force but 
before the send for message 2, the failure may not be 
masked. Persistent component failures at other times are 
known to be masked, i.e., after logging message 1, we 
know that persistent component failures are masked until 
message 2 is logged.  Masking begins again with the next 
message 1 received from the same external component. 

We can nonetheless improve on the baseline algorithm 
a bit. Since message 2 can be regenerated via replay of the 
component, we do not need to save the whole send 
message contents. We only need to save the fact that the 
message was sent (attempted to be sent). We call a full 
message with all its content a long record, and a message 
with only identity information a short record.  Algorithm 
3 shows this logging discipline.   

3.2 Additional Kinds of Components 

We introduce three additional types of specialized 
components: subordinate, functional, and read-only 
components exploit them to further reduce logging. 

 
3.2.1. Subordinate Components. A subordinate 
component is a persistent component associated with a 
persistent parent component and restricted to only service 
method calls from its parent and other subordinates of its 
parent. Only the parent accepts calls from outside callers. 

Hence execution is single-threaded within a parent and its 
subordinate components.  Only incoming calls are 
restricted; subordinate components can call any 
component.  

Since a persistent component services method calls 
from many persistent and/or external components, we 
must log the calls to capture their non-deterministic 
arrival order. For subordinate components, this non-
determinism is not present. We do not need to log the 
messages among a parent and its subordinate components 
because these messages are fully determined given the 
incoming method call messages to the parent, and reply 
messages for outgoing method calls. 

We could intercept parent-subordinate and 
subordinate-subordinate calls, check component types and 
use different logging algorithms.   But to minimize 
overhead, we instead put a subordinate into the same 
context as its parent component, as shown in Figure 6.  In 
this way, method calls among a parent and its 
subordinates do not cross context boundaries and 
messages are neither seen by message interceptors nor 
logged. This avoids interception overhead as well as 
logging overhead. 

 
3.2.2. Functional Components. Functional components 
are stateless components that either make no calls or call 
only functional components. They do not call components 
of other kinds. Methods of functional components are 
purely functional: given the same parameters, a call 
always returns the same value. 

We needn’t log messages nor maintain last call tables 
at functional components. Moreover, at a persistent 
component, if the server of an outgoing call can be 
determined to be a functional component, we do not need 
to force the log or log the return message. This algorithm 
is shown in Algorithm 4. 
 
3.2.3. Read-only Components. Read-only components 
are also stateless, but unlike functional components, they 
can also call other persistent components. These calls read 
the states of persistent server components and persistent 
component state can change between method calls. So 
generally the reply from calling a read-only component is 
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Log message 1 

Message 2: Reply to incoming call 
Force all the previous messages 

Message 3: Outgoing method call 
Force all the previous messages 

Message 4: Reply from outgoing call 
Log message 4 

Algorithm 2 logging for persistent components 
 Message 1: Incoming method call 

Log message 1 (long record) 
Force all messages 

Message 2: Reply to incoming call 
Log message 2 (short record) 
Force all messages 

Algorithm 3 persistent component logging for  
external client 
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At a functional component:  do nothing
 
At a persistent component: 
Message 3. Outgoing method call 

IF (server is functional) 
  Do nothing 

Message 4. Reply from outgoing call 
IF (server is functional) 

     Do nothing 

Algorithm 4 logging for functional components 



unrepeatable. Motivating examples are statistics collectors 
and meta-search engines.  

Since read-only components are stateless, we do not 
need to recover their states and hence we do not log any 
messages at read-only components.  Further, outgoing 
method calls from read-only components do not change 
server component states.  Thus at a persistent component, 
we do not log calls from read-only components. However, 
persistent component callers of a read-only component 
must log (but not force) the reply message, as it is not 
guaranteed to be recreated via replay.  

A method call to a read-only component does not 
change any state. So a call message from a persistent 
component does not “commit” its state to other 
components.   Thus, we do not force the log when calling 
a read-only component. 

Finally, it is not necessary to detect duplicate calls to 
or from a read-only component because the calls do not 
change any states.  Hence read-only components do not 
have last call table entries at persistent components and 
we do not maintain outgoing call IDs and last call tables 
at read-only components. 

  Algorithm 5 describes the logging associated with 
read-only components. 

3.3 Read-only Methods 

A stateful persistent component may provide 
methods to query its state (without changing it). We call 
such methods read-only methods. More strictly, a read-
only method is a method that neither changes any field of 
the component nor makes a non-read-only outgoing 
method call. Programmers can specify a read-only 
attribute on a method, and message interceptors can check 
for it. 

We treat read-only method calls like method calls to 
read-only components. For a read-only method call, the 
client does not need to force the log, and the server does 
not need to log.  Algorithm 5 also describes this logging. 

3.4 Detecting Component Types 

Programmers specify subordinate, functional, or 
read-only components just as they specify persistent 
components, via a declarative attribute accessible within a 
context. Hence, a message interceptor can obtain 
information about the components inside its context.  

To detect the component types of remote components, 
a message interceptor attaches information about the 
(parent) component of its context to the messages being 
sent. When receiving messages, a message interceptor 
obtains the component information from the messages. In 
this way, client component types can be determined. 

To determine server component types, we keep a 
remote component type table. Initially, the types of server 
components (targets of outgoing calls) are unknown, and 
the most conservative logging algorithms are used.  From 
reply messages, we gradually learn server component 
types and store them in the remote component type table, 
which is checked when sending an outgoing method call. 

3.5 Multi-call Optimization 

Other optimization opportunities exist if we are 
permitted to take into account the effects of multiple calls, 
rather than examining each call in isolation.  The 
optimization described here is not currently supported by 
our Phoenix/App system, but including it is 
straightforward. 

Consider a persistent component that calls multiple 
server components.  Without context information, each of 
these calls commits component state, and hence must 
force the log.  The first force at the first outgoing server 
call captures the nondeterminism associated with the 
incoming method call.  After this first call, our component 
does the force to capture the nondeterminism resulting 
from having read the earlier server replies. 

Each server is responsible for the persistence of its 
reply message.  Thus, the nondeterminism for our 
persistent component that results from reading the replies 
from the outgoing calls is already captured at the 
respective servers in their last call tables.  Recovery can 
exploit those persistent replies to recover our component.   

We can then choose to force the log only when a 
component itself replies to its caller, or when it invokes 
the same server a second time during its method 
execution.  This requires that we remember not only the 
last call for each component, but each server that a 
component has called so far in the execution of a method.  
But saving a log force is a large reward for this extra 
bookkeeping.   

4. Improving Recovery Performance  

The baseline system recovers a failed component by 
replaying all its method calls from component creation 
until the failure.  However, a long-lived component may 

At a read-only component: do nothing
 
At a persistent component: 
Message 1. Incoming method call 

IF (client/method is read-only) 
   Do nothing 

Message 2. Reply to incoming call 
IF (client/method is read-only)  
   Do nothing 

Message 3. Outgoing method call 
IF (server/method is read-only) 
   Do nothing 

Message 4. Reply from outgoing call  
IF (server/method is read-only) 

       Log message 4 

Algorithm 5 logging for read-only components 
and read-only methods 



handle many method calls before failure, leading to very 
high recovery cost. In this section, we describe how to 
take checkpoints to keep recovery cost low. 

4.1 Intra-process Architecture 

Both context states and process data structures must 
be saved in order to recover from a process crash. Figure 
7 shows the Phoenix/App runtime structures inside a 
process. There can be multiple contexts hosting 
components. In a context, there can be a parent persistent 
component and zero or more subordinates, or a functional 
or read-only component.    

Phoenix/App maintains a set of data structures outside 
of all contexts in a process. The context table contains an 
entry for every context hosting Phoenix/App components. 
The component table has an entry for every Phoenix/App 
component in the process. A context entry and entries for 
components of the context are associated through 
pointers. The remote component table contains 
component type information for remote components seen 
so far. As described in Section 3.4, this table saves remote 
server component types so that optimal logging 
algorithms will be chosen. The last call table maintains 
information on the last incoming method calls indexed by 
client component ID, which is used to detect and answer 
duplicate method calls.  The last call table is shared 
among all the contexts in a process so that the entry for a 
client is updated even if the client calls two different 
components in the same process. Moreover, the last call 
table also keeps the list of last call entries associated with 
every context, which is used in context saving.  
Descriptions of the table entries are shown in Table 1. 

Message records and checkpoints are stored in disk 
based log files. We manage disk files on a per-process 
basis to simplify file access. Logging is performed 
through a log manager in a process. 

There is a recovery manager in every process. At 
process start, the recovery manager registers the process 
with the recovery service of the machine to obtain the 
virtual process ID, which is part of a method call ID. If 
the recovery service notifies the recovery manager that 
the process exited abnormally, the recovery manager first 
recovers the process tables, contexts and components. 

In the next two subsections, we study how to save 
context states and process data structures, respectively. 

4.2 Saving Context States 

States of components in a context (parent and 
subordinates) must be saved together because method 
calls inside a context are not intercepted or logged. 
Component state normally includes stack, and virtual 
memory of the process, which could be very expensive to 
save. To avoid this overhead, context states are saved 
only when the context is not “active”, i.e., after an 
incoming method call to a parent finishes and before 
another incoming call is delivered to it. At this moment, 
component state consists only of field values. So it is 
sufficient to save only component fields and context 
related data structures to recover the context. 

To save or restore the internal fields of a component, 
we use the .NET reflection mechanism to obtain its field 
types and values. (Serialization and deserialization 
utilities exist in .NET to save and restore fields of non-
context objects.  But we had to implement the support for 
objects in contexts.)   Because component fields may be 
private and invisible from outside of the component, we 
implemented a “persistent” base class and required all 
Phoenix/App components to inherit from this class. A 
base class can visit all fields in a derived instance and we 
implement the support for saving and restoring a 
component in the base class.  

We specially handle pointer fields referencing 
Phoenix/App components. For a remote component 
reference, we save the component URI; for a local 
component reference (to a component in the same 
context), we store the component ID. When restoring a 
pointer field, we re-obtain the pointer using the saved URI 
or component ID.  

Moreover, we save relevant information from the 
global component and context tables so that the 
component table entries and the context table entry can be 
reconstructed. We combine this information with 
component field values into a context state record.  We 
use the parent component ID to identify a context in log 
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Table 1 Global tables in a process 

Component 
table entry 

component ID, component type (persistent, read-
only, etc.), object type, pointer to the object 
instance, and pointer to its context table entry 

Context 
table entry 

a list of pointers to the component table entries 
for the components in the context, the (parent) 
component ID and URI, a log sequence number 
(LSN) of the latest context state record, and the 
last outgoing method call ID of the context 

Remote 
component 
table entry 

Remote component type information indexed by 
remote component ID 

Last call 
table entry 

method call globally unique ID, a pointer to the 
reply message and/or an LSN for the reply 
message log record 

 



records for messages and context state. Then the saved 
context states can be associated with call message 
records. 

Reply messages (message 2) are not usually logged. 
So the LSNs in the last call table are often empty.  We 
need the reply messages of last calls to recover the last 
call table because, after restoring a saved context state, we 
may not be able to re-create the replies of earlier 
incoming method calls. Therefore before we save a 
context state, we must write the replies of the last call 
table entries associated with the context, which are 
retrieved from the last call table as described in Section 
4.1. We then fill in the LSNs in the last call entries. Next 
time we save the context state, if an LSN is not empty, we 
know the reply message is in the log and needn’t save it 
again. Note that most reply messages are not logged 
because their last call table entries have been replaced by 
later calls from the same clients before we save context 
states. 

In summary, during normal execution, a message 
interceptor can save context state before sending a reply 
message to a client (after processing). It first saves the 
context’s reply messages in the last call table. Then it 
retrieves component fields and meta-information from 
global data structures, combines them into a state record, 
and writes it to the log. After that, it updates the state 
record LSN in the context table entry, which is saved as 
process states and used to retrieve the context state record 
during recovery. If no state record has yet been saved, the 
LSN of the context table entry corresponds to the creation 
record of the (parent) component. 

4.3 Taking Process Checkpoints 

In addition to saving context states, we save process 
state in process checkpoints, which includes the state 
record LSNs from the context table. These LSNs are akin 
to the recovery LSNs for pages in ARIES [13]. The 
relationship of process checkpoints and context state 
records is shown in Figure 8. 

To allow concurrent accesses to the global tables, we 
log a begin checkpoint record before taking the 
checkpoint and log an end checkpoint record after we 
finish. We use sub-range locks to incrementally save 
global tables. When reading a process checkpoint, we 

examine all the log records between the begin checkpoint 
and end checkpoint record. 

There is no need to force the log immediately after 
either a state record or a process checkpoint is written, 
since we can replay all the method calls from the creation 
record or the last forced states.  Once a process 
checkpoint has been flushed to the log (possibly by a later 
send message), the log manager writes and forces the 
LSN of the begin checkpoint record into a well-known 
file. This LSN always points to a process checkpoint (if 
exists). 

We take process checkpoints periodically. Context 
state records are saved independently of other contexts 
and process checkpoints. We will study the runtime 
overhead and the recovery performance in Section 5. 
From the experiments, we will estimate how frequent 
context states should be saved. 

4.4 Recovery Processing 

Figure 8 shows the process checkpoint and context 
state records at the time of a process crash. The well-
known file’s LSN identifies the last process checkpoint. 
The process checkpoint contains the LSNs of each 
context’s last state record saved before the process 
checkpoint. However, more recent context states may 
exist after the last process checkpoint.  We can recover 
contexts from these more recent context state records. 

When a process starts, it registers with the recovery 
service. If it has been started to recover a prior failure, the 
recovery service sends back the original process identity 
information and directs the recovery manager in the 
process to recover. Its task is to recover the process data 
structures and the states of all contexts in the process. 

The recovery manager first reads the LSN from the 
well-known file. This LSN is used as the start point to 
examine the log. If the LSN does not exist, the log is 
examined from the very beginning. 

In the first pass, the log is examined from the start 
point to the end of the log.  The recovery manager finds 
all the contexts that existed when the process crashed. It 
obtains the latest state record LSNs (or creation record 
LSNs) of the contexts by reading the context table records 
in the process checkpoint and by reading the context state 
records and creation records found during the log scan. 
After the first pass, the recovery manager restores the 
context states of all the contexts that have state records. 
Ordinary field’s values are restored. References for 
remote and local components are kept in a list in every 
context, to be resolved later. (Newly created contexts 
without state records are processed in the second pass 
because component construction methods are allowed to 
make method calls to other components.) 

Then the recovery manager reads the log in a second 
pass. It scans from the minimum LSN found in the 
context table to the end of the log. If a message log record 
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Context 1 
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Figure 8 Context states, process checkpoints 



occurs earlier than the latest state record of the same 
context, it is ignored since we have already restored the 
latest context state records. Process checkpoint records 
are also ignored.   All the context states up to the failure 
point are recovered by replaying incoming messages and 
suppressing regenerated outgoing messages. During the 
log scan, we buffer message records or creation records 
for every context until an incoming method call record is 
encountered. At this point the log records for all the 
messages related to the previous incoming method call (or 
creation call) are in the buffer. This previous call is 
replayed with outgoing method calls answered by the 
records in the buffer, similar to replay in the baseline 
system. If this is the first replay for the context, we check 
and resolve pointer fields that are component references 
before the replay.  

After this pass, the recovery manager replays the 
remaining buffered method calls, which are the last 
incoming calls. If the last incoming call is successfully 
replayed to finish, then we set the context interceptors to 
normal execution states and the context begins to wait for 
incoming calls. If the reply to an outgoing call is missing 
from the log, the outgoing call is not suppressed by the 
message interceptor and normal execution begins. Note 
that the last incoming call’s return value is returned to the 
caller, here the recovery manager, which satisfies 
condition 5. 

Furthermore, the last call table is reconstructed from 
the last call records in the two passes. Only LSNs are 
filled in; actual reply messages are only read when they 
are required to reply to a duplicate call. The replays of the 
final incoming calls update the last call table accordingly, 
for the reply messages may not be in the log. 

The above describes how we recover from a process 
crash. Recovering from a context failure is easier. The 
state record LSN can be found in the context table and the 
state record (or creation record) can be read from the log 
and the context restored to the state of the state record.  
Then the log after the state record (creation record) is read 
and incoming method calls for the context are replayed. 

5. Experimental Results 

We evaluated logging and recovery performance 
through experiments.  In our new prototype, log 
optimizations and checkpointing can all be turned on or 
off via switches.  Log records accumulate in a buffer and 
are written at a log force or full buffer. Unless otherwise 
noted, we use unbuffered writes with disk write cache 
disabled to ensure writes actually go to stable media.   

We first describe the experimental setup. Then we 
show the experimental results of micro-benchmarks and 
an example application. 

5.1. Experimental Setup 

Our experiments were run on two identical Compaq 
Evo D500 machines connected via 100MB Ethernet.  
Machines and disks are described in Tables 2 and 3. 

We mainly used micro-benchmarks to show the 
performance of individual operations.  The micro-
benchmark setup consisted of a client component making 
method calls to a server component.  We measured the 
round trip elapsed time of a method call to the server 
component from inside the client component (i.e. from 
inside the client object instance). We turned on or off log 
optimizations and checkpointing and we changed the 
component types of the client and the server to show the 
runtime performance under various situations. Since the 
operating system timer is quite coarse (~15ms resolution), 
we batched multiple calls, measured total elapsed time, 
and divided total time by number of method calls.   Total 
elapsed time was at least 1000 times the timer resolution. 

For recovery performance, we killed the server 
component and measured its recovery time. Because of 
the timer resolution issue, which we found hard to deal 
with here, our results had rather large variances.   

Besides studying individual operations with micro-
benchmarks, we measured the performance of an example 
application — an online bookstore. This application is 
described in Section 5.5. 

We ran every experiment 30 times and report the 
mean value.  Standard deviations are less than 5% of the 
means except for recovery and results marked with *, 
where standard deviations are within 12% of the mean. 

5.2 Runtime Logging Performance 

5.2.1. Log Optimizations for Persistent Components.  
Table 4 shows the effect of our optimizations for 
persistent components. The local column shows the 
performance when both client and server components are 
on the same machine, while the remote column shows the 
results when they are on separate machines. 

Table 2 Test Machines 
CPU One 2.20 GHz Pentium 4 
L1/L2 cache/RAM 20KB/512 KB/512MB 

OS Microsoft Windows XP professional 

.NET framework Version 1.0.3705 

Table 3 MAXTOR 6L040J2 Disks 
Formatted Capacity 40,027 MB 
Nominal RPM 7200 
Average Read Seek Time 8.5 ms 
Average Write Seek Time 10.5 ms 
Track-to-track Seek Time 0.8 ms 
Disk to Read Buffer Transfer Rate 236~472 Mb/s 
Read Buffer to ATA Bus 
(Ultra ATA mode) 

133 MB/s maximum 

 



We compare the performance of a native .Net system, 
the baseline system, and our optimized system.  In .NET, 
a server component must be a MarshalByRefObject or a 
ContextBoundObject.  However, any component can be a 
client. We use “External” to indicate such a simple 
component. Phoenix/App persistent components are all 
derived from PersistentObject, which is in turn derived 
from ContextBoundObject. 
The first four rows in Table 4 show the performance with 
basic .NET components for client and server. We see that 
the performance of using MarshalByRefObject and 
ContextBoundObject are similar. However, installing 
message interceptors (without doing any work in the 
interceptors) incurs a ~0.08ms overhead.  The round-trip 
messages through network add ~0.2ms per call.  

The last four rows in Table 4 show the performance of 
the baseline system and the optimized system. We can see 
their overhead is much higher than the native .NET 
objects because of logging.  When the client is external, 
our optimized system performs the same as the baseline 
system since the same logging algorithm is employed 
under this situation. However, when the client is a 
persistent component, optimized logging achieves about a 
two fold speedup. The optimized system only forces the 
log when sending messages, saving two log forces per 
method call.  In addition, we do not write log records for 
send messages because they can be re-created from 
previous messages during recovery. 

 
5.2.2. Understanding the Performance Numbers. For 
External Persistent interactions, the server performs a 

sequence of log writes and forces, resulting in a sequence 
of unbuffered disk writes (because we make multiple 
method calls and take their average). 

Figure 9 shows the performance of 1KB unbuffered 
disk writes in a loop (log message size in our experiments 
is less than 1KB). We insert some delay after every write 
in the loop body and report the elapsed time per iteration.  
The time per write is about 8.5 ms with no inserted 
delays. This is a little more than a full rotation time (8.33 
ms/rotation for 7200 RPM).   When delay time increases, 
the elapsed time jumps in discrete steps corresponding to 
the number of missed rotations. Thus unbuffered writes 
indeed miss a full rotation. 

Therefore, the elapsed time of External Persistent is 
roughly two unbuffered disk writes (missing two full 
rotations). The local Persistent Persistent cases show 
four unbuffered disk writes for the baseline system and 
two for the optimized system, as expected.1 Note that the 
first log write in the above cases sees a full rotational 
delay because of the way we performed the experiments: 
successive client requests interfere. Were client calls 
spaced out, e.g., with think time inserted, we would 
expect to see, on average, half a rotational delay for the 
first write. 

For remote Persistent Persistent cases, log writing 
and forcing is done at both client and server machines. To 
understand the performance, we inserted delays at both 
client (between method calls) and server (in a method 
call).  For the optimized remote Persistent Persistent 
case, we did not see discrete steps. So the results are not 
caused by full rotational delays. 10.8ms means a delay of 
5~6ms per disk write, which could be explained by the 
average rotational delay of 4.17ms plus some small seek 
times. For the baseline remote Persistent Persistent 
case, there are four writes per method call.  The timings 
for the two writes at the same machine are different. The 
first disk write may follow the 5~6ms as in the optimized 
remote Persistent Persistent case. The second disk write 

                                                           
1 In our “local” experiments, client and server are in different processes, 
using different log files. But we believe newly allocated disk blocks for 
the two files are close enough to incur only small disk seek times. 
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Figure 9 Unbuffered disk write performance 
 

Table 4 Log Optimizations for Persistent 
Components (ms) 

Client / Server Component Types Local Remote 

External    MarshalByRefObject 0.593 0.798 

External    ContextBoundObject 0.598 0.804 
ContextBoundObject 

ContextBoundObject 
0.585 0.808 

ContextBoundObject 
ContextBoundObject(interception) 

0.674 0.870 

External    Persistent (baseline) 17.0 17.3* 

External    Persistent (optimized) 17.1 17.0 

Persistent  Persistent (baseline) 34.7* 28.4 

Persistent  Persistent (optimized) 17.9* 10.8* 

 
Table 5 New Components and Read-only 

Methods (ms) 
Client / Server Component Types Local Remote 
External    Read-only 0.689 0.887 
External    Functional 0.672 0.875 
Persistent  Read-only 1.351 1.495 
Persistent  Functional 1.194 1.414 
Persistent  Subordinate 3.44 x 10-5 
Persistent  Persistent  
(Read-only methods) 

1.407 1.547 

Read-only  Persistent 1.218 1.404 
 



misses a full rotation and costs 8~9ms. Therefore, 
altogether four writes cost ~28ms.  
 
5.2.3. New Component Types and Read-only Methods.  
Table 5 shows the performance when subordinate, read-
only, or functional components are used, or the read-only 
method optimization is enabled. Log forces are then 
eliminated, leading to much better performance than the 
last four rows in Table 4.  The best performance is in the 
Persistent  Subordinate case, where method calls are 
local, without logging and context-crossing overhead. 

In External Read-only, External Functional, 
Persistent Functional, and Read-only Persistent, 
logging is fully eliminated. As expected, the performance 
with external clients is similar to the performance of 
ContextBoundObject with interceptors (4th row in Table 
4). However, there is ~0.5ms more overhead for the other 
two cases. This is due to the attachment to the message of 
information showing the sender’s component type.  In our 
initial experiments, the costs were even higher since we 
sent attachments with all messages. But we made an 
optimization. A client interceptor includes a field in its 
message attachment saying whether it knows the identity 
of the server. If this field is true, the server interceptor can 
omit the attachment in the reply message. The 
performance given includes this optimization. 

For Persistent Read-only and Persistent Persistent 
with read-only methods, reply messages are still written 
to the log buffer (without forces), incurring additional 
overheads of 0.15~0.2ms versus Persistent Functional. 

5.3 Runtime Checkpointing Overhead 

Table 6 shows the runtime checkpoint performance.  
The result of Persistent Persistent with write cache 
disabled is the same as the remote Persistent Persistent 
(optimized) result in Table 4.  To measure context saving 
overhead, we save the server context state after every 
method call.  For the results in the right column, we 
performed the same experiments with disk write caching 
enabled, which removes the disk media costs.  

In both situations, saving context state incurs an 
additional ~1ms overhead, quite reasonable compared to 
the disk media cost as shown in the left column and the 

computational cost (including the delay from memory to 
disk cache) as shown in the right column.  

In our experiments, the size of an incoming message 
record is 186B and a state record 468B.  For many 
components, the states could be substantially larger. Our 
small state in this example was responsible for the small 
computational overhead of saving the state. 

5.4 Recovery Performance 

Table 7 shows the recovery performance with and 
without context states. The elapsed time is measured 
inside the recovering process. But it does include the 
initialization of all the Phoenix/App runtime structure in 
the process. Recovery cost when the log is empty is ~0.5s. 

Recovery processing starts by creating an object when 
no context state record is found. Otherwise the latest 
context state record is used. The recovery performances 
for both cases are shown. We vary the number of method 
calls replayed after the object creation or state restoration.  
The cost of replaying a method is roughly 0.15ms. 
Reading the creation records, creating an object, running 
the object constructor, and registering the object with 
Phoenix cost ~80ms. Restoring the state record costs 
~60ms more.  This 60ms is the cost of the checkpoint 
during recovery.  Once the replay cost exceeds 60ms, 
recovery will be faster with a checkpoint.  60ms are 
approximately equal to the cost of replaying about 400 
method calls, which means context states should be saved 
every 400 calls or more in the micro-benchmark.  

5.5 Application Performance  

5.5.1. On-Line Bookstore. In the previous subsections, 
we measured the runtime and recovery performance of 
Phoenix/App through micro-benchmarks. In this 
subsection, we show the performance improvements of an 
online bookstore (from [5]). 

Figure 10 shows the architecture of the online 
bookstore application. There are six kinds of components. 
The arrows show the directions of method calls between 
components. A Bookstore component maintains the 
inventory of a store. The PriceGrabber component 
supports keyword searches on all the bookstores. The 
TaxCalculator computes sales tax based on total price and 
user information. The BookSeller manages a set of Basket 
Managers, each maintaining a shopping basket for a Book 

Table 6 Checkpointing Performance (ms) 
Client / Server  

Component Types 
Write cache 

disabled 
Write cache 

enabled 
Persistent Persistent  10.8* 2.62 
Persistent Persistent  
(save state on call) 

11.8* 3.82 

Table 7 Recovery Performance (ms) 
Number of method calls replayed 

Recovery Cases 
0 1000 2000 3000 4000 5000 

Empty log 492 
From creation 575 728 868 1007 1100 1199 

From state 638 794 875 1162 1252 1507 
 

 

 

Price  
Grabber  

Book 
store 2 Book 

store 1 
Book  
Seller  

Tax  
Calculator 

Basket  
Manager  

Shopping 
Basket 

Figure 10 Online Bookstore Application 

Book  
Buyer  

e 

r 

p 

f 

s 
p 



Buyer. BookBuyer runs in a console. It displays text 
menus and communicates with the PriceGrabber, 
BookSeller, and TaxCalculator to fulfil user requests.    

For baseline system performance, all components are 
persistent except BookBuyer, which is external. For the 
performance of the optimized system, we specify 
component types with the leading letter of the type in the 
upper-left corners of component boxes in Figure 11. We 
specify read-only methods where appropriate. 

To test performance, we rewrote the BookBuyer client 
to automatically generate inputs. Console outputs from 
the demo are redirected to files. The BookBuyer is run on 
one machine and all server components are run on the 
other machine. We repeatedly run the following set of 
operations: i) Search books with the keyword “recovery”; 
ii) Add a book from each bookstore to the shopping 
basket; iii) Show the shopping basket and compute total 
price including tax; iv) Remove all the books from the 
shopping basket. The performance is shown in Table 8. 

Elapsed times are listed along with the numbers of log 
forces. With the baseline system, there are a total of 64 
log forces. Optimizing logging for persistent components 
cuts 18 forces. Employing specialized components and 
read-only methods save another 12 forces. Note that since 
logging is only on the server machine and the methods are 
all simple, the elapsed times can be well explained by full 
rotational latencies plus small seek times. 

Overall, we cut response time approximately in half 
for this small sample application.  We think that this is 
indicative of the kind of performance gains that should be 
possible using the optimized logging and new component 
types and methods. This kind of performance gain is hard 
to achieve in the transaction processing world, and 
reflects the very real utility of our optimizations. 

 
5.5.2. Multi-call Optimization. The PriceGrabber 
queries a number of Bookstores before rolling up the 
results and returning them to the BookBuyer.  In our 
current prototype, the log is forced by the PriceGrabber at 
every Bookstore reply.  With the multi-call optimization 
in section 3.5, the log would be forced only when the 
PriceGrabber itself returned.   Hence, the PriceGrabber 
forces the log only once, regardless of the number of 
Bookstore’s it queries.  

6. Summary 

In this paper, we have shown that the logging and 
recovery performance of Phoenix/App can be greatly 
improved. We re-examined the logging requirements for 
persistent components and took advantage of special 
component and method types to reduce logging overhead. 
Further, we implemented a checkpointing mechanism to 
reduce the recovery cost. Although our prototype was 
implemented in the .NET framework, our schemes to 
improve logging and recovery performance are applicable 
to other component-based programming environments.  
Importantly, our optimizations apply to a programming 
model that supports persistent stateful applications, a 
more natural model than the stateless, “string of beads” 
model supported by traditional TP monitors and workflow 
systems. 
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Table 8 Performance of Online Bookstore 
Application 

Optimization levels Elapsed Time Number of Forces 
Baseline 589 ms 64 

Optimized logging for  
Persistent Components 

382 ms 46 

Specialized components and  
read-only methods 

296 ms 34 

 


