
Efficient Partitioning and Query Processing of
Spatio-Temporal Graphs with Trillion Edges

Mengsu Ding
State Key Laboratory of Computer Architecture

Institute of Computing Technology, CAS
University of Chinese Academy of Sciences

dingmengsu@ict.ac.cn

Shimin Chen*
State Key Laboratory of Computer Architecture

Institute of Computing Technology, CAS
University of Chinese Academy of Sciences

chensm@ict.ac.cn

Abstract—Real-world graphs often contain spatio-temporal
information and evolve over time. Compared with static graphs,
spatio-temporal graphs present more significant challenges in
data volume, data velocity, and query processing. In this paper,
we define a formal spatio-temporal graph model based on
real-world applications, and propose PAST, a framework for
efficient PArtitioning and query processing of Spatio-Temporal
graphs. Our experimental results show that PAST improves
query performance by orders of magnitude compared to state-
of-the-art solutions.

Index Terms—Spatio-temporal graphs, partitioning for spatio-
temporal graphs, graph query processing, PAST

I. INTRODUCTION

Graphs have been widely used to represent real-world enti-
ties and relationships. Real-world graphs often contain spatio-
temporal information generated by a wide range of hardware
devices (e.g., sensors, POS machines, traffic cameras, barcode
scanners) and software systems (e.g., web servers).

A. Representative Applications

Understanding customer behaviors is helpful for detecting
fraud and providing personalized services. For example, credit
card companies track their customers’ credit card uses for
fraud detection. Internet companies track their users’ browsing
behaviors to achieve personalized recommendations. In a cus-
tomer behavior tracking and mining application, people and
locations can be modeled as graph vertices, while an edge
linking a person vertex to a location vertex represents the
event that the person visits the location at a certain time,
as illustrated in Fig.1. This forms a spatio-temporal graph.
People who visit similar locations around the same time period
may have similar personal interests. Therefore, it is desirable
to discover groups of people vertices that have similar edge
structures in the spatio-temporal graphs.

Other representative applications include clone-plate car
detection and shipment tracking. Recognizing car plates at
traffic cameras in clone-plate car detection (scanning shipment
packages with barcode scanners in shipment tracking) can
be represented in spatio-temporal graphs similar to Fig.1, by
replacing people with car plates (packages) and replacing
locations with traffic cameras (barcode scanners).

*Corresponding Author

Shop B

Movie D

Restaurant C

Hotel A

Fig. 1. Customer behavior tracking and mining.

B. Challenges of Supporting Spatio-Temporal Graphs

Compared with static graphs, spatio-temporal graphs pose
more significant challenges in data volume, data velocity, and
query processing:

Data Volume: ∼10 billion object vertices, ∼10 million
location vertices, and ∼100 trillion edges. First, we refer
to a vertex that represents a person, a car plate, or a package
as an object vertex. The requirement of ∼10 billion object
vertices is based on the fact that there are about 7.5 billion
people in the world. Second, according to booking.com, there
are about 1.9 million hotels and other accommodations in the
world. Suppose there are 5 times more shops, restaurants, and
theatres than hotels. Then the total number of locations can be
on the order of 10 million. Finally, suppose an object vertex
generates about 10 new edges per day. If we store the edges
generated in the recent 3 years in the graph, there can be about
100 trillion edges in the graph. As a result, the data volume of
a spatio-temporal graph can be much larger than static graphs.
Suppose the properties of a vertex require at most 100B. Then
the object vertices and the location vertices require about 1TB
and 1GB space, respectively. An edge is a triplet (object ID,
timestamp, location ID). Suppose each field takes 8B. Then
an edge can be represented in 24B. Then 100 trillion edges
require 2.4PB space. The 3-replica redundancy policy requires
a total 7.2PB storage space, or roughly 10PB.

Data Velocity: up to 1 trillion new edges per day. Compared
with static graphs, spatio-temporal graphs must support a large
number of new edges per day. In the above, we estimate an
average of 10 new edges per object vertex daily. Suppose peak

cases (e.g., Black Friday shopping) can see ten times more
activities. Therefore, we would like to support 100 new edges
per object vertex daily, i.e. 1 trillion new edges per day. This
means 24TB new ingestion data per day, which requires a
solution to support 290MB/s ingestion throughput.

Query Processing: prohibitive communication cost. The
data volume and velocity challenges entail a distributed so-
lution that stores the graph data on a number of machines.
However, without careful designs, processing queries (e.g.,
customer behavior analysis) can easily lead to significant
cross-machine communication. For example, in order to find
subgroups of people with similar interests (i.e. visiting similar
locations at similar time), it is necessary to combine the spatial
information in location vertices, the temporal information in
edges, and properties of person vertices in the computation.
As the data volume is huge, the cross-machine communication
cost can be prohibitively high.

C. Related Work

Existing graph partitioning solutions [1]–[5] focus mostly
on static graphs, trying to minimize the number of cut edges
across partitions and balance the partition sizes. However,
these solutions do not take into account spatio-temporal char-
acteristics, which are important for query processing in spatio-
temporal graphs.

We compare several existing solutions for storing and
processing spatio-temporal graphs in this paper: (i) Janus-
Graph [6], a state-of-the-art distributed graph database system;
(ii) Greenplum [7], a state-of-the-art MPP relational database
system; and (iii) Spark [8], a state-of-the-art big data analytics
system. Unfortunately, their data storage / partition schemes
cannot support spatio-temporal queries well. JanusGraph and
Spark store data in key-value stores or distributed file systems
(e.g., HDFS). The partition scheme is often random in such
systems. Greenplum supports multi-dimensional partitioning.
However, the data is first partitioned by the first partition
dimension. Then the second partition dimension is applied to
each first-level partition to obtain a set of second-level parti-
tions, so on and so forth. Consequently, queries without filters
on the first partition dimensions still incur significant cost.
The experimental results in Section IV show that our proposed
solution can achieve significantly better query performance.

D. Our Solution: PAST

We define a formal model for spatio-temporal graphs based
on the representative applications. In this model, a spatio-
temporal graph is a bipartite graph with a set of location
vertices and a set of object vertices such that every edge
connects an object vertex to a location vertex. Then, we present
and evaluate PAST, a framework for efficient PArtitioning and
query processing of Spatio-Temporal graphs. We vary par-
titioning and replication methods for location vertices, object
vertices, and edges. Moreover, we exploit the multiple replicas
of edges to design spatio-temporal partitions and key-temporal
partitions. Our partitioning methods can efficiently support
graph data storage and query processing. The experimental

results show that PAST can successfully achieve the above
goals. It improves query performance by orders of magnitude
compared to state-of-the-art solutions, including JanusGraph,
Greenplum, and Spark.

II. SPATIO-TEMPORAL GRAPHS

We define a formal model for spatio-temporal graphs based
on the representative applications:

Definition 1 (Spatio-temporal Graph): A spatio-temporal
graph G = (VL, VO, E). VL is a set of location vertices.
Every location vertex contains a location property. VO is a set
of object vertices that represent objects being tracked. Every
vertex in VL and VO is assigned a globally unique vertex ID.
E is a set of edges. Every edge in E connects an object vertex
to a location vertex, and contains a time property.

In customer behavior tracking and mining, location vertices
represent the locations that customers visit, and object vertices
represent people. Every location vertex contains a location
property such that given two location vertices u and v,
their distance dist(u, v) is well defined. For example, if the
application is concerned about geographic locations, then the
location property is the latitude and longitude of the location
vertex. An edge is a (object ID, timestamp, location ID) triplet.

In essence, a spatio-temporal graph as defined in Defini-
tion 1 is a bi-parity graph. That is, we do not consider edges
between object vertices and edges between location vertices.
This abstraction captures the key characteristics and the main
challenges of the representative applications.

A. Query Workload
We consider the following four types of queries based on

the representative applications:
• Q1: object trace: Given an object and a time range, list

the locations visited by the object during the time range.
For example, Q1 can display activities of a customer or
the trace of a shipment package in a period of time.

• Q2: trace similarity: Given two objects and a time range,
compute the similarity of the two object traces during
the time range. Consider edge (o1, t1, l1) in object o1’s
trace and edge (o2, t2, l2) in object o2’s trace. The
two edges are considered similar if |t2 − t1| ≤ THtime

and dist(l2, l1) ≤ THdist, where THtime and THdist

are predefined thresholds on time and location distance,
respectively. The similarity of the two traces is the count
of similar edge pairs in the two traces.

• Q3: similar object discovery: Given an object o and
a time range, list the objects that have similar traces
compared to o. Display the list in the descending order of
trace similarity with o. Q3 can be used to discover people
with similar interests in the customer behavior tracking
and mining application.

• Q4: clone object detection: Given a time range, discover
all the clone objects. An object o is a clone object if there
exists two incident edges (o, t1, l1) and (o, t2, l2) such
that the computed velocity is beyond a predefined thresh-
old: dist(l2,l1)

|t2−t1| > THvelocity. Q4 supports detection of

duplicate credit cards in customer behavior tracking and
mining or cloned car plates in clone-plate car detection.

III. PAST OVERVIEW

We propose PAST, a framework for efficient PArtitioning
and query processing of Spatio-Temporal graphs. The system
architecture of PAST is shown in Fig.2.

There is a coordinator machine and a large number of
(e.g., 1000) worker machines. The coordinator keeps track of
meta information of the graph partitions and coordinates data
ingestion. The workers store the graph data, handle incoming
updates, and process queries.
Graph Partitioning and Storage. The GraphStore component
in Fig.2 implements PAST’s graph partitioning methods and
supports compressed storage of the main graph data. The
GraphStore utilizes an underlying DB/storage system (e.g., the
Cassandra key-value store in our implementation).

The number of location vertices is 1/1000 of that of object
vertices. As the spatio-temporal graph is a bipartite graph, the
average degree of a location vertex is 1000 times of that of an
object vertex. Consequently, they have very different impact
on the communication patterns in query processing. We choose
different partition methods for the two types of vertices. For
location vertices, we replicate all the location vertices at every
worker so that location lookup and computation can be fast.
For object vertices, we employ hash-based partitions.

The number of edges is 4 orders of magnitude higher than
the number of vertices. Therefore, edges consume much more
space than vertices, and are often the performance critical
factor in query processing. Consider the four query types. All
four queries filter the edges with a given time range. Therefore,
the storage of edge data should support time range filters
efficiently. Q1, Q2, and Q4 access edges for a given object,
two objects, and all objects, respectively. Hence, it would be
nice to organize edges according to object IDs. On the other
hand, Q3 can be more efficiently computed if edges are stored
in spatio-aware orders. In this way, the system can filter out a
large number of edges that are not relevant to the trace of the
given object. It seems that the requirements of the four query
types are contradicting.

We solve this problem by taking advantage of the multiple
replicas of edges. For the purpose of fault tolerance, PAST
stores multiple replicas for edges (e.g., 3 replicas). Therefore,
we propose a spatio-temporal edge partition method and a key-
temporal edge partition method for different edge replicas.
High-throughput Streaming Edge Ingestion. New edge
updates are streamed in rapidly. As shown in Fig. 2, the
IngestStore component maintains an in-memory staging buffer
for incoming new edges. All the worker machines handle
incoming edges in rounds. They keep loosely synchronized
clocks. In every round, the IngestStores collect the incoming
edges in the current round. At the same time, IngstStores
send edges collected in the previous round to their destination
GraphStores based on the partitions computed by PAST’s
partition methods. We design an efficient algorithm to perform
the data ingestion in the paper.

Coordinator

Metadata
Management

Periodic
Synchronization

Control
Load Balance

Monitor

Ingest Store

Graph Store
Ingest Store

Graph StoreIngest Store

Graph Store

Ingest Store

Graph Store

Ingest Store

Graph Store

Ingest Store

Graph Store

Coordinator

Data Center Network

Worker

Ingest Store

Ingestion Buffer

Graph Partitioning

Chunk Buffer

Graph Store

CacheDB

Row-Column
Format

Compressor

Query Processor

Spatio-temporal
Processing

Key-temporal
Processing

Fig. 2. PAST system architecture.

Query Processing and Optimization. Given PAST’s partition
methods, we design a cost-based query optimizer to choose the
best partitions for an input query. Our goal is to reduce cross-
machine communication and edge data access as much as
possible. Our edge partitions divide the spatio-temporal space
and key-temporal space into discretized blocks. We perform
block-level filtering to avoid reading irrelevant edge data. Then
we also take advantage of triangle inequalities for finer-grain
filtering if geographic locations are used in the application.

IV. EXPERIMENTAL EVALUATION

In this section, we present preliminary evaluation results for
understanding the performance of PAST. We study (i) edge
ingestion throughput and (ii) query performance.

A. Experimental Setup

Machine Configuration. The experiments are performed on
a cluster of 11 nodes. Each machine is a Dell PowerEdge
blade server equipped with two Intel(R) Xeon(R) E5-2650
v3 2.30GHz CPUs (10 cores/20 threads, 25.6MB cache),
128GB memory, a 1TB HDD and a 180GB SSD, running 64-
bit Ubuntu 16.04 LTS with 4.4.0-112-generic Linux kernel.
The blade servers are connected through 10Gbps Ethernet.
We use Oracle Java 1.8, Cassandra 2.1.9, JanusGraph 0.2.1,
Greenplum 5.9.0, Spark 2.2.0 in our experiments.
Workload Generation. We generate a synthetic data set of
customer shopping events. The goal to support 10 billion
object vertices and 10 million location vertices is designed
for clusters with 1000 machines. Given the machine cluster
size in our experiments, we scale down the number of vertices
by a factor of 100. Therefore, we would like to generate 100
million object vertices and 100 thousand location vertices.

First, we crawled 450 thousand hotel locations in China
from ctrip.com (a popular travel booking web site in China).
The locations are distributed across about 1100 areas (cities /
counties / districts). We randomly choose 10 thousand loca-
tions from the real-world hotel locations as shopping locations.
Second, we generate 100 million customers. As the number
of shopping locations and the population of an area are often
correlated, we assign customers to areas so that the number
of customers is proportional to the number of locations in an

area. Third, we would like to generate a data set that covers
a 2-3 year period and can be stored in the cluster in the
experiments. We assume 40% people are frequent shoppers
and 60% people are infrequent shoppers. A frequent shopper
and an infrequent shopper visit a randomly chosen shopping
location in his or her area every week with probability 0.8
and 0.2, respectively. (Note that the week period is necessary
to reduce the total data volume to fit into the cluster storage
capacity. Our ingestion experiments will send the edge data as
fast as possible to saturate the system.) Finally, we produce a
small number of cloned objects that visit shopping locations in
far-away areas. The resulting graph contains 57 billion edges,
which cover 800 days.

B. Edge Ingestion Throughput and Scalability

The edge ingestion throughput is the number of new edges
streamed into the GraphStores per second. We send edges in
the data set as fast as possible, and measure the sustained
ingestion throughput. We vary the number of worker machines
from 1 to 10 in PAST to study the scalability of our solution.

Fig. 3. Ingestion throughput.

In Fig.3, the Y-axis is the throughput in million edges per
second) and the X-axis is the number of workers. The higher
the better. From the figure, we see that the sustained ingestion
throughput increases linearly as the worker number grows. The
PAST design achieves good scalability for new edge ingestion.
Every worker in PAST can support an additional 1 million new
edges per second. As an edge takes 24 bytes, every worker
in PAST can support additional 24MB/s ingestion bandwidth.
Therefore, the design goal of 1 trillion new edges per day
(or 290MB/s) for a full-scale spatio-temporal graph can be
achieved with about 12 machines. This gives a lower bound
of the actual number of nodes in a design, whose choice must
also consider the performance of query processing.

C. Query Performance

In the next set of experiments, we compare the query
performance for four solutions: (1) JanusGraph, where spatio-
temporal graph data is stored as a property graph; (2) Green-
plum, where graph data is stored as relational tables, and multi-
dimensional partitioning is used (vertex ID is the first dimen-
sion, and time is the second dimension); (3) Cassandra+Spark,
where data is stored in Cassandra and loaded into Spark for
query processing; and (4) our solution PAST.

We run Q1–Q4. We set the time range to be 32 days. For Q2
and Q3, we set the thresholds on time and location distance

Fig. 4. Comparison with state-of-the-art systems.

to be 7 hours and 100 meters, respectively. For Q4, we set the
velocity threshold to be 120km/h.

Fig.4 compares the query performance for the four solu-
tions. The Y-axis is the execution time in the logarithmic scale.
We do not run Q3 and Q4 on JanusGraph as it mainly focuses
on simple traversal queries and employs Spark for complex
queries, which can be represented by Cassandra+Spark. From
the figure, we see that PAST achieves 1–4 orders of magnitude
better performance compared with the three existing solutions.
The partition and query processing schemes in PAST can
effectively reduce the amount of data accessed from the
underlying storage and the data communication cost.

V. CONCLUSION

In conclusion, we define a bipartite graph model for spatio-
temporal graphs based on the commonalities of representa-
tive real-world applications, i.e., customer behavior tracking
and mining, clone-plate car detection, and shipment tracking.
We propose and evaluate PAST, a framework for efficient
PArtitioning and query processing of Spatio-Temporal graphs.
Our preliminary experimental evaluation shows that PAST can
meet the requirements of the above applications. For typical
queries on spatio-temporal graphs, PAST can outperform state-
of-art platforms (e.g., JanusGraph, Greenplum, Spark) by 1–4
orders of magnitude.

ACKNOWLEDGMENT

This work is partially supported by NSFC project
No. 61572468, by Huawei collaboration project No.
HO2017050001B5, and by K.C.Wong Education Foundation.

REFERENCES

[1] Metis, http://glaros.dtc.umn.edu/gkhome/metis/metis/overview.
[2] R. L. B. Hendrickson, “The chaco user’s guide, version 2.0,” Sandia

National Labs, Albuquerque, NM, Tech. Rep. SAND95-2344, 1995.
[3] Scotch, http://www.labri.u-bordeaux.fr/perso/pelegrin/scotch.
[4] B. Hendrickson and T. G. Kolda, “Graph partitioning models for parallel

computing,” Parallel Computing, vol. 26, pp. 1519–1534, Jun. 2000.
[5] S. Verma, L. M. Leslie, Y. Shin, and I. Gupta, “An experimental

comparison of partitioning strategies in distributed graph processing,”
PVLDB, vol. 10, pp. 493–504, Aug. 2017.

[6] JanusGraph, http://janusgraph.org/.
[7] Greenplum, https://greenplum.org/.
[8] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.

Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing,” in NSDI 2012, San
Jose, CA, USA, Apr. 2012, pp. 15–28.

