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Abstract—As new data and updates are constantly arriving, the results of datamining applications become stale and obsolete over

time. Incremental processing is a promising approach to refreshingmining results. It utilizes previously saved states to avoid the expense

of re-computation from scratch. In this paper, we propose i2MapReduce, a novel incremental processing extension toMapReduce, the

most widely used framework for mining big data. Compared with the state-of-the-art work on Incoop, i2MapReduce (i) performs key-value

pair level incremental processing rather than task level re-computation, (ii) supports not only one-step computation but alsomore

sophisticated iterative computation, which is widely used in datamining applications, and (iii) incorporates a set of novel techniques to

reduce I/O overhead for accessing preserved fine-grain computation states.We evaluate i2MapReduce using a one-step algorithm and

four iterative algorithmswith diverse computation characteristics. Experimental results on Amazon EC2 show significant performance

improvements of i2MapReduce compared to both plain and iterativeMapReduce performing re-computation.

Index Terms—Incremental processing, MapReduce, iterative computation, big data
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1 INTRODUCTION

TODAY huge amount of digital data is being accumulated
in many important areas, including e-commerce, social

network, finance, health care, education, and environment.
It has become increasingly popular to mine such big data in
order to gain insights to help business decisions or to pro-
vide better personalized, higher quality services. In recent
years, a large number of computing frameworks [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10] have been developed for big data
analysis. Among these frameworks, MapReduce [1] (with
its open-source implementations, such as Hadoop) is the
most widely used in production because of its simplicity,
generality, and maturity. We focus on improving MapRe-
duce in this paper.

Big data is constantly evolving. As new data and
updates are being collected, the input data of a big data
mining algorithm will gradually change, and the com-
puted results will become stale and obsolete over time. In
many situations, it is desirable to periodically refresh the
mining computation in order to keep the mining results
up-to-date. For example, the PageRank algorithm [11]
computes ranking scores of web pages based on the web
graph structure for supporting web search. However, the
web graph structure is constantly evolving; Web pages
and hyper-links are created, deleted, and updated. As the
underlying web graph evolves, the PageRank ranking

results gradually become stale, potentially lowering the
quality of web search. Therefore, it is desirable to refresh
the PageRank computation regularly.

Incremental processing is a promising approach to
refreshing mining results. Given the size of the input big
data, it is often very expensive to rerun the entire computa-
tion from scratch. Incremental processing exploits the fact
that the input data of two subsequent computations A and B
are similar. Only a very small fraction of the input data has
changed. The idea is to save states in computation A, re-use
A’s states in computation B, and perform re-computation
only for states that are affected by the changed input data. In
this paper, we investigate the realization of this principle
in the context of theMapReduce computing framework.

A number of previous studies (including Percolator [12],
CBP [13], and Naiad [14]) have followed this principle and
designed new programming models to support incremental
processing. Unfortunately, the new programming models
(BigTable observers in Percolator, stateful translate opera-
tors in CBP, and timely dataflow paradigm in Naiad)
are drastically different from MapReduce, requiring pro-
grammers to completely re-implement their algorithms.

On the other hand, Incoop [15] extends MapReduce to
support incremental processing. However, it has two main
limitations. First, Incoop supports only task-level incremen-
tal processing. That is, it saves and reuses states at the gran-
ularity of individual Map and Reduce tasks. Each task
typically processes a large number of key-value pairs (kv-
pairs). If Incoop detects any data changes in the input of a
task, it will rerun the entire task. While this approach easily
leverages existing MapReduce features for state savings, it
may incur a large amount of redundant computation if only
a small fraction of kv-pairs have changed in a task. Second,
Incoop supports only one-step computation, while important
mining algorithms, such as PageRank, require iterative
computation. Incoop would treat each iteration as a separate
MapReduce job. However, a small number of input data
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changes may gradually propagate to affect a large portion of
intermediate states after a number of iterations, resulting in
expensive global re-computation afterwards.

We propose i2MapReduce, an extension to MapReduce
that supports fine-grain incremental processing for both one-
step and iterative computation. Compared to previous solu-

tions, i2MapReduce incorporates the following three novel
features:

� Fine-grain incremental processing using MRBG-Store.
Unlike Incoop, i2MapReduce supports kv-pair level
fine-grain incremental processing in order tominimize
the amount of re-computation asmuch as possible.We
model the kv-pair level data flow and data depen-
dence in a MapReduce computation as a bipartite
graph, called MRBGraph. A MRBG-Store is designed
to preserve the fine-grain states in the MRBGraph and
support efficient queries to retrieve fine-grain states
for incremental processing. (cf. Section 3)

� General-purpose iterative computation with modest exten-
sion to MapReduce API. Our previous work proposed
iMapReduce [10] to efficiently support iterative com-
putation on the MapReduce platform. However, it
targets types of iterative computation where there is
a one-to-one/all-to-one correspondence from
Reduce output to Map input. In comparison, our cur-
rent proposal provides general-purpose support,
including not only one-to-one, but also one-to-many,
many-to-one, and many-to-many correspondence.
We enhance the Map API to allow users to easily
express loop-invariant structure data, and we pro-
pose a Project API function to express the correspon-
dence from Reduce to Map. While users need to
slightly modify their algorithms in order to take full
advantage of i2MapReduce, such modification is
modest compared to the effort to re-implement algo-
rithms on a completely different programming para-
digm, such as in Percolator [12], CBP [13], and Naiad
[14]. (cf. Section 4)

� Incremental processing for iterative computation. Incre-
mental iterative processing is substantially more
challenging than incremental one-step processing
because even a small number of updates may propa-
gate to affect a large portion of intermediate states
after a number of iterations. To address this problem,
we propose to reuse the converged state from the
previous computation and employ a change propa-
gation control (CPC) mechanism. We also enhance
the MRBG-Store to better support the access patterns
in incremental iterative processing. To our knowl-
edge, i2MapReduce is the first MapReduce-based
solution that efficiently supports incremental iterative
computation. (cf. Section 5)

We implemented i2MapReduce by modifying Hadoop-

1.0.3. We evaluate i2MapReduce using a one-step algorithm
(A-Priori) and four iterative algorithms (PageRank, SSSP,
Kmeans, GIM-V) with diverse computation characteristics.
Experimental results on Amazon EC2 show significant per-

formance improvements of i2MapReduce compared to both
plain and iterative MapReduce performing re-computation.
For example, for the iterative PageRank computation with

10 percent data changed, i2MapReduce improves the run
time of re-computation on plain MapReduce by an eight
fold speedup. (cf. Section 6)

2 MAPREDUCE BACKGROUND

A MapReduce program is composed of a Map function and
a Reduce function [1], as shown in Fig. 1. Their APIs are as
follows:

mapðK1; V 1Þ ! ½hK2; V 2i�

reduceðK2; fV 2gÞ ! ½hK3; V 3i�:

The Map function takes a kv-pair hK1; V 1i as input and
computes zero or more intermediate kv-pairs hK2; V 2is.
Then all hK2; V 2is are grouped by K2. The Reduce function
takes aK2 and a list of fV 2g as input and computes the final
output kv-pairs hK3; V 3is.

A MapReduce system (e.g., Apache Hadoop) usually
reads the input data of the MapReduce computation
from and writes the final results to a distributed file sys-
tem (e.g., HDFS), which divides a file into equal-sized
(e.g., 64 MB) blocks and stores the blocks across a cluster
of machines. For a MapReduce program, the MapReduce
system runs a JobTracker process on a master node to
monitor the job progress, and a set of TaskTracker pro-
cesses on worker nodes to perform the actual Map and
Reduce tasks.

The JobTracker starts a Map task per data block, and
typically assigns it to the TaskTracker on the machine
that holds the corresponding data block in order to mini-
mize communication overhead. Each Map task calls the
Map function for every input hK1; V 1i, and stores the
intermediate kv-pairs hK2; V 2is on local disks. Intermedi-
ate results are shuffled to Reduce tasks according to a
partition function (e.g., a hash function) on K2. After a
Reduce task obtains and merges intermediate results
from all Map Tasks, it invokes the Reduce function on
each hK2; fV 2gi to generate the final output kv-pairs
hK3; V 3is.

3 FINE-GRAIN INCREMENTAL PROCESSING FOR

ONE-STEP COMPUTATION

We begin by describing the basic idea of fine-grain incre-
mental processing in Section 3.1. In Sections 3.2 and 3.3,
we present the main design, including the MRBGraph
abstraction and the incremental processing engine. Then
in Sections 3.4 and 3.5, we delve into two aspects of the
design, i.e., the mechanism that preserves the fine-grain
states, and the handling of a special but popular
case where the Reduce function performs accumulation
operations.

Fig. 1. MapReduce computation.
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3.1 Basic Idea

Consider two MapReduce jobs A and A0 performing the
same computation on input data set D and D0, respectively.
D0 ¼ Dþ DD, where DD consists of the inserted and deleted
input hK1; V 1is1. An update can be represented as a dele-
tion followed by an insertion. Our goal is to re-compute
only the Map and Reduce function call instances that are
affected by DD.

Incremental computation for Map is straightforward. We
simply invoke the Map function for the inserted or deleted
hK1; V 1is. Since the other input kv-pairs are not changed,
their Map computation would remain the same. We now
have computed the delta intermediate values, denoted DM,
including inserted and deleted hK2; V 2is.

To perform incremental Reduce computation, we need to
save the fine-grain states of job A, denoted M, which
includes hK2; fV 2gis. We will re-compute the Reduce func-
tion for eachK2 in DM. The otherK2 inM does not see any
changed intermediate values and therefore would generate
the same final result. For aK2 in DM, typically only a subset
of the list of V 2 have changed. Here, we retrieve the saved
hK2; fV 2gi from M, and apply the inserted and/or deleted
values from DM to obtain an updated Reduce input. We
then re-compute the Reduce function on this input to gener-
ate the changed final results hK3; V 3is.

It is easy to see that results generated from this incremen-
tal computation are logically the same as the results from
completely re-computing A0.

3.2 MRBGraph Abstraction

We use a MRBGraph (Map Reduce Bipartite Graph) abstrac-
tion to model the data flow in MapReduce, as shown in
Fig. 2a. Each vertex in the Map task represents an individual
Map function call instance on a pair of hK1; V 1i. Each vertex
in the Reduce task represents an individual Reduce function
call instance on a group of hK2; fV 2gi. An edge from a Map
instance to a Reduce instance means that the Map instance

generates a hK2; V 2i that is shuffled to become part of the
input to the Reduce instance. For example, the input of
Reduce instance a comes fromMap instance 0, 2, and 4.

MRBGraph edges are the fine-grain states M that we
would like to preserve for incremental processing. An edge
contains three pieces of information: (i) the source Map
instance, (ii) the destination Reduce instance (as identified
by K2), and (iii) the edge value (i.e., V 2). Since Map input

key K1 may not be unique, i2MapReduce generates a
globally unique Map key MK for each Map instance. There-

fore, i2MapReduce will preserve (K2, MK, V 2) for each
MRBGraph edge.

3.3 Fine-Grain Incremental Processing Engine

Fig. 3 illustrates the fine-grain incremental processing
engine with an example application, which computes the
sum of in-edge weights for each vertex in a graph. As
shown at the top of Fig. 3, the input data, i.e., the graph
structure, evolves over time. In the following, we describe
how the engine performs incremental processing to refresh
the analysis results.

Initial run and MRBGraph preserving. The initial run per-
forms a normal MapReduce job, as shown in Fig. 3a. The
Map input is the adjacency matrix of the graph. Every
record corresponds to a vertex in the graph. K1 is vertex id
i, and V 1 contains “j1:wi;j1 ; j2:wi;j2 ; ...” where j is a destina-

tion vertex and wi;j is the weight of the out-edge ði; jÞ. Given
such a record, the Map function outputs intermediate kv-
pair hj; wi;ji for every j. The shuffling phase groups the
edge weights by the destination vertex. Then the Reduce
function computes for a vertex j the sum of all its in-edge
weights as

P
i wi;j.

For incremental processing, we preserve the fine-grain
MRBGraph edge states. A question arises: shall the states be

Fig. 2. MRBGraph.

Fig. 3. Incremental processing for an application that computes the sum
of in-edge weights for each vertex.

1. We assume that new data or new updates are captured via incre-
mental data acquisition or incremental crawling [16], [17]. Incremental
data acquisition can significantly save the resources for data collection;
it does not re-capture the whole data set but only capture the revisions
since the last time that data was captured.
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preserved at the Map side or at the Reduce side? We choose
the latter because during incremental processing original
intermediate values can be obtained at the Reduce side
without any shuffling overhead. The engine transfers the
globally unique MK along with hK2; V 2i during the shuffle
phase. Then it saves the states (K2;MK; V 2) in a MRBGraph
file at every Reduce task, as shown in Fig. 2b.

Delta input. i2MapReduce expects delta input data that
contains the newly inserted, deleted, or modified kv-pairs
as the input to incremental processing. Note that identifying
the data changes is beyond the scope of this paper; Many
incremental data acquisition or incremental crawling tech-
niques have been developed to improve data collection per-
formance [16], [17].

Fig. 3b shows the delta input for the updated application
graph. A ‘þ’ symbol indicates a newly inserted kv-pair,
while a ‘�’ symbol indicates a deleted kv-pair. An update is
represented as a deletion followed by an insertion. For
example, the deletion of vertex 1 and its edge are reflected
as h1; 2:0:4;‘�’i. The insertion of vertex 3 and its edge leads
to h3; 0:0:1;‘þ’i. The modification of the vertex 0’s edges are
reflected by a deletion of the old record h0; 1:0:3;2:0:3;‘�’i
and an insertion of a new record h0; 2:0:6;‘�’i.

Incremental map computation to obtain the delta MRBGraph.
The engine invokes the Map function for every record in the
delta input. For an insertion with ‘þ’, its intermediate
results hK2;MK; V 20is represent newly inserted edges in
the MRBGraph. For a deletion with ‘�’, its intermediate
results indicate that the corresponding edges have been
removed from the MRBGraph. The engine replaces the V 20s
of the deleted MRBGraph edges with ‘�’. During the Map-
Reduce shuffle phase, the intermediate hK2;MK; V 20is and
hK2;MK;‘�’is with the same K2 will be grouped together.
The delta MRBGraph will contain only the changes to the
MRBGraph and sorted by theK2 order.

Incremental reduce computation. The engine merges the
delta MRBGraph and the preserved MRBGraph to obtain
the updated MRBGraph using the algorithm in
Section 3.4. For each hK2;MK;‘�’i, the engine deletes the
corresponding saved edge state. For each hK2;MK; V 20i,
the engine first checks duplicates, and inserts the new
edge if no duplicate exists, or else updates the old edge if
duplicate exists. (Note that (K2, MK) uniquely identifies
a MRBGraph edge.) Since an update in the Map input is
represented as a deletion and an insertion, any modifica-
tion to the intermediate edge state (e.g., h2; 0; �i in the
example) consists of a deletion (e.g., h2; 0;‘�’i) followed
by an insertion (e.g., h2; 0; 0:6i). For each affected K2, the
merged list of V 2 will be used as input to invoke the
Reduce function to generate the updated final results.

3.4 MRBG-Store

The MRBG-Store supports the preservation and retrieval of
fine-grain MRBGraph states for incremental processing. We
see two main requirements on the MRBG-Store. First, the
MRBG-Store must incrementally store the evolving
MRBGraph. Consider a sequence of jobs that incrementally
refresh the results of a big data mining algorithm. As input
data evolves, the intermediate states in the MRBGraph
will also evolve. It would be wasteful to store the entire

MRBGraph of each subsequent job. Instead, we would like
to obtain and store only the updated part of the MRBGraph.
Second, the MRGB-Store must support efficient retrieval of
preserved states of given Reduce instances. For incremental
Reduce computation, i2MapReduce re-computes the
Reduce instance associated with each changed MRBGraph
edge, as described in Section 3.3. For a changed edge, it
queries the MRGB-Store to retrieve the preserved states of
the in-edges of the associated K2, and merge the preserved
states with the newly computed edge changes.

Fig. 4 depicts the structure of the MRBG-Store. We
describe how the components of the MRBG-Store work
together to achieve the above two requirements.

Fine-grain state retrieval and merging. A MRBGraph file
stores fine-grain intermediate states for a Reduce task, as
illustrated previously in Fig. 2b. In Fig. 4, we see that the
hK2;MK; V 2is with the same K2 are stored contiguously as
a chunk. Since a chunk corresponds to the input to a Reduce
instance, our design treats chunk as the basic unit, and
always reads, writes, and operates on entire chunks.

The contents of a delta MRBGraph file are shown on the
bottom left of Fig. 4. Every record represents a change in the
original (last preserved) MRBGraph. There are two kinds of
records. An edge insertion record (in green color) contains a
valid V 2 value; an edge deletion record (in red color) con-
tains a null value (as marked by ‘�’).

The merging of the delta MRBGraph with the MRBGraph
file in the MRBG-Store is essentially a join operation using
K2 as the join key. Since the size of the delta MRBGraph is
typically much smaller than the MRBGraph file, it is waste-
ful to read the entire MRBGraph file. Therefore, we con-
struct an index for selective access to the MRBGraph file:
Given a K2, the index returns the chunk position in the
MRBGraph file. As only point lookup is required, we
employ a hash-based implementation for the index. The
index is stored in an index file and is preloaded into mem-
ory before Reduce computation. We apply the index nested
loop join for the merging operation.

Can we further improve the join performance? We
observe that the MapReduce shuffling phase will sort the
intermediate keys. As seen in Section 3.3, the records in

Fig. 4. Structure of MRBG-store.
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both the delta MRBGraph and the MRBGraph file are in the
order generated by the shuffling phase. That is, the two files
are sorted inK2 order. Therefore, we introduce a read cache
and a dynamic read window technique for further optimi-
zation. Fig. 4 shows the idea. Given a sequence ofK2s, there
are two ways to read the corresponding chunks: (i) perform-
ing an individual I/O operation for each chunk; or (ii) per-
forming a large I/O that covers all the required chunks. The
former may lead to frequent disk seeks, while the latter may
result in reading a lot of useless data. Fortunately, we know
the list of sorted K2s to be queried. Using the index, we
obtain their chunk positions. We can estimate the costs of
using a large I/O versus a number of individual I/Os, and
intelligently determine the read window size w based on
the cost estimation.

Algorithm 1 shows the query algorithm to retrieve the
the chunk k given a query key k and the list of queried keys
L ¼ fL1; L2; . . .g. If the chunk k does not reside in the read
cache (line 1), it will compute the read window size w by a
heuristic, and read w bytes into the read cache. The loop
(line 4–8) probes the gap between two consecutive queried
chunks (chunk Li and chunk Liþ1). The gap size indicates
the wasted read effort. If the gap is less than a threshold T
(T ¼ 100 KB by default), we consider that the benefit of
large I/O can compensate for the wasted read effort, and
enlarge the window to cover chunk Liþ1. In this way, the
algorithm finds the read window size w by balancing the
cost of a large I/O versus a number of individual I/Os. It
also ensures that the read window size does not exceed the
read cache. Then the algorithm read the next w bytes into
the read cache (line 9) and retrieves the requested chunk k
from the read cache (line 11).

Algorithm 1. Query Algorithm in MRBG-Store

Input queried key: k; the list of queried keys: L
Output chunk k
1: if ! read cache.contains(k) then
2: gap 0, w 0
3: i k’s index in L == That is, Li ¼ k
4: while gap < T and wþ gapþ lengthðLiÞ < read cache:

size do
5: w wþ gapþ lengthðLiÞ
6: gap posðLiþ1Þ � posðLiÞ � lengthðLiÞ
7: i iþ 1
8: end while
9: starting from posðkÞ, read w bytes into read cache
10: end if
11: return read cache.get_chunk(k)

Incremental storage of MRBgraph changes. As shown in
Fig. 4, the outputs of the merge operation, which are the up-
to-date MRBGraph states (chunks), are used to invoke the
Reduce function. In addition, the outputs are also buffered
in an append buffer in memory. When the append buffer is
full, the MRBG-Store performs sequential I/Os to append
the contents of the buffer to the end of the MRBGraph file.
When the merge operation completes, the MRBG-Store
flushes the append buffer, and updates the index to reflect
the new file positions for the updated chunks. Note that
obsolete chunks are NOT immediately updated in the

file (or removed from the file) for I/O efficiency. The
MRBGraph file is reconstructed off-line when the worker is
idle. In this way, the MRBG-Store efficiently supports incre-
mental storage of MRBGraph Changes.

As a result of the incremental storage, the MRBGraph file
may contain multiple segments of sorted chunks, each
resulting from a merge operation. This situation frequently
appears in iterative incremental computation, for which we
enhance the above query algorithm with a multi-window
technique to efficiently process the multiple segments. We
defer the in-depth discussion to Section 5.

3.5 Optimization for Special Accumulator Reduce

We study a special case that appears frequently in applica-
tions and is amenable to further optimization. Specifically,
the Reduce function is an accumulative operation ’�’:

fðfV 20; V 21; . . . ; V 2kgÞ ¼ V 20 � V 21 � � � � � V 2k;

which satisfies the distributive property:

fðD [ DDÞ ¼ fðDÞ � fðDDÞ;

and the incremental data set DD contains only insertions
without deletions or updates. This property allows us to
process the two data set D and DD separately and then to
simply combine the results by the ’�’ operation to obtain
the full result. We call this kind of Reduce function accumu-
lator Reduce. For this special case, it is not necessary to pre-
serve the MRBGraph. The engine will optimize the special
case by only preserving the Reduce output kv-pairs
hK3; V 3i. Then it simply invokes the accumulator Reduce to
accumulate changes to the result kv-pairs.

Many MapReduce algorithms employ accumulator
Reduce. A well-known example is WordCount. The Reduce
function of WordCount computes the count of word
appearances using an integer sum operation, which satisfies
the above property. Other common operations that directly
satisfy the distributive property include maximum and
minimum. Moreover, some operations can be easily modi-
fied to satisfy the requirement of accumulator Reduce. For
example, average is computed as dividing sum by count.
While it is not possible to combine two averages into a sin-
gle average, we can modify the implementation to allow/
produce a partial sum and a partial count in the function
input and the output. Then the implementation can accu-
mulate partial sums and partial counts in order to compute
the average of the full data set.

To use this feature, a programmer should declare the
accumulative operation ’�’ using a new interface Accumu-

latorReducer in the MapReduce driver program (see
Table 2).

4 GENERAL-PURPOSE SUPPORT FOR

ITERATIVE COMPUTATION

We first analyze several representative iterative algorithms
in Section 4.1. Based on this analysis, we propose a general-
purpose MapReduce model for iterative computation in
Section 4.2, and describe how to efficiently support this
model in Section 4.3.
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4.1 Analyzing Iterative Computation

PageRank. PageRank [11] is a well-known iterative graph
algorithm for ranking web pages. It computes a ranking
score for each vertex in a graph. After initializing all ranking
scores, the computation performs a MapReduce job per iter-
ation, as shown in Algorithm 2. i and j are vertex ids, Ni is
the set of out-neighbor vertices of i, Ri is i’s ranking score
that is updated iteratively. ‘j’ means concatenation. All Ri’s
are initialized to one.2 The Map instance on vertex i sends
value Ri;j ¼ Ri=jNij to all its out-neighbors j, where jNij is
the number of i’s out-neighbors. The Reduce instance on
vertex j updates Rj by summing the Ri;j received from all
its in-neighbors i, and applying a damping factor d.

Algorithm 2. PageRank in MapReduce

Map Phase input: < i, NijRi >
1: output < i, Ni >
2: for all j inNi do

3: Ri;j ¼ Ri
jNij

4: output < j, Ri;j >
5: end for

Reduce Phase input: < j, fRi;j; Njg >
6: Rj ¼ d

P
i Ri;j þ ð1� dÞ

7: output < j, NjjRj >

Kmeans. Kmeans [18] is a commonly used clustering algo-
rithm that partitions points into k clusters. We denote the ID
of a point as pid, and its feature values pval. The computa-
tion starts with selecting k random points as cluster cent-
roids set fcid; cvalg. As shown in Algorithm 3, in each
iteration, the Map instance on a point pid assigns the point
to the nearest centroid. The Reduce instance on a centroid
cid updates the centroid by averaging the values of all
assigned points fpvalg.

Algorithm 3. Kmeans in MapReduce

Map Phase input: < pid, pvaljfcid; cvalg >
1: cid find the nearest centroid of pval in fcid; cvalg
2: output < cid, pval >

Reduce Phase input: < cid, fpvalg >
3: cval compute the average of fpvalg
4: output < cid, cval >

GIM-V. Generalized Iterated Matrix-Vector multiplica-
tion (GIM-V) [19] is an abstraction of many iterative graph
mining operations (e.g., PageRank, spectral clustering,
diameter estimation, connected components). These graph

mining algorithms can be generally represented by operat-
ing on an n� n matrix M and a vector v of size n. Suppose
both the matrix and the vector are divided into sub-blocks.
Let mi;j denote the ði; jÞth block of M and vj denote the jth
block of v. The computation steps are similar to those of the
matrix-vector multiplication and can be abstracted into
three operations: (1) mvi;j = combine2(mi;j; vj); (2) v0i =
combineAlli({mvi;j}); and (3) vi = assign(vi; v

0
i). We can

compare combine2 to the multiplication between mi;j and
vj, and compare combineAll to the sum of mvi;j for row i.
Algorithm 4 shows the MapReduce implementation with
two jobs for each iteration. The first job assigns vector block
vj to multiple matrix blocks mi;j (8i) and performs com-

bine2(mi;j; vj) to obtain mvi;j. The second job groups the
mvi;j and vi on the same i, performs the combineAll

({mvi;j}) operation, and updates vi using assign(vi; v
0
i).

Algorithm 4. GIM-V in MapReduce

Map Phase1 input: < ði; jÞ;mi;j > or < j; vj >
1: if kv-pair is < ði; jÞ;mi;j > then
2: output < ði; jÞ;mi;j >
3: else if kv-pair is < j; vj > then
4: for all i blocks in j’s row do
5: output < ði; jÞ; vj >
6: end for
7: end if

Reduce Phase 1 input: < ði; jÞ; fmi;j; vjg >
8: mvi;j = combine2(mi;j, vj)
9: output < i,mvi;j >, < j, vj >

Map Phase 2: output all inputs

Reduce Phase 2 input: < i; fmvi;j; vig >
10: v0i  combineAll({mvi;j})
11: vi  assign(vi, v

0
i)

12: output < i, vi >

Two kinds of data sets in iterative Algorithms. From the
above examples, we see that iterative algorithms usually
involve two kinds of data sets: (i) loop-invariant structure
data, and (ii) loop-variant state data. Structure data often
reflects the problem structure and is read-only during com-
putation. In contrast, state data is the target results being
updated in each iteration by the algorithm. Structure (state)
data can be represented by a set of structure (state) kv-pairs.
Table 1 displays the structure and state kv-pairs of the three
example algorithms.

Dependency types between state and structure data. There are
various types of dependencies between state and structure
data, as listed in Table 1. PageRank sees one-to-one depen-
dency: every vertex i is associated with both an out-neigh-
bor set Ni and a ranking score Ri. In Kmeans, the Map

TABLE 1
Structure and State kv-Pairs in Representative Iterative Algorithms

Algorithm Structure Key (SK) Structure Value (SV) State Key (DK) State Value (DV) SK$DK

PageRank vertex id i out-neighbor setNi vertex id i rank score Ri one-to-one
Kmeans point id pid point value pval unique key 1 centroids fhcid; cvalig all-to-one
GIM-V matrix block id ði; jÞ matrix blockmi;j vector block id j vector block vj many-to-one

2. The computed PageRank scores will be jNj times larger, where
jNj is the number of vertices in the graph.
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instance of every point requires the set of all centroids,
showing an all-to-one dependency. In GIM-V, multiple
matrix blocks 8j;mi;j are combined to compute the ith vec-
tor block vi, thus the dependency is many-to-one.

Generally speaking, there are four types of dependencies
between structure kv-pairs and state kv-pairs as shown in
Fig. 5: (1) one-to-one, (2) many-to-one, (3) one-to-many,
(4) many-to-many. All-to-one (one-to-all) is a special case of
many-to-one (one-to-many). PageRank is an example of (1).
Kmeans and GIM-V are examples of (2). We have not
encountered applications with (3) or (4) dependencies.
(3) and (4) are listed only for completeness of discussion.

In fact, for (3) one-to-many case and (4) many-to-many
case, it is possible to redefine the state key to convert them
into (1) one-to-one and (2) many-to-one dependencies,
respectively, as show in the right part of Fig. 5. The idea is
to re-organize the MapReduce computation in an applica-
tion or to define a custom partition function for shuffling so
that the state kv-pairs (e.g, DK1 and DK2 in the figure) that
Map to the same structure kv-pair (e.g., SK1 in the figure)
are always processed in the same task. Then we can assign a
key (e.g., DK1;2) to each group of state kv-pairs, and con-
sider each group as a single state kv-pair. Given this trans-
formation, we need to focus on only (1) one-to-one and (2)
many-to-one cases. Consequently, each structure kv-pair is
interdependent with ONLY a single state kv-pair. This is an
important property that we leverage in our design of

i2MapReduce.

4.2 General-Purpose Iterative MapReduce Model

A number of recent efforts have been targeted at improving
iterative processing on MapReduce, including Twister [9],
HaLoop [8], and iMapReduce [10]. In general, the improve-
ments focus on two aspects:

� Reducing job startup costs. In vanilla MapReduce,
every algorithm iteration runs one or several
MapReduce jobs. Note that Hadoop may take over
20 seconds to start a job with 10–100 tasks. If the
computation of each iteration is relatively simple, job
startup costs may consist of an overly large fraction
of the run time. The solution is to modify MapRe-
duce to reuse the same jobs across iterations, and kill
them only when the computation completes.

� Caching structure data. Structure data is immutable
during computation. It is also much larger than state
data in many applications (e.g., PageRank, Kmeans,
and GIM-V). Therefore, it is wasteful to transfer
structure data over and over again in every iteration.
An optimization is to cache structure data in local
file systems to avoid the cost of network communica-
tion and reading from HDFS.

For the first aspect, we modify Hadoop to allow jobs to
stay alive across multiple iterations.

For the second aspect, however, a design must separate
structure data from state data, and consider how to match
interdependent structure and state data in the computation.
HaLoop [8] uses an extra MapReduce job to match structure
and state data in each iteration. We would like to avoid
such heavy-weight solution. iMapReduce [10] creates the
same number of Map and Reduce tasks, and connects every
Reduce task to a Map task with a local connection to transfer
the state data output from a Reduce task to the correspond-
ing Map task. However, this approach assumes one-to-one
dependency for join operation. Thus, it cannot support
Kmeans or GIM-V.

In the following, we propose a design that generalizes
previous solutions to efficiently support various depen-
dency types.

Separating structure and state data in map API. We enhance
the Map function API to explicitly express structure vs. state
kv-pairs in i2MapReduce:

mapðSK; SV;DK;DV Þ ! ½hK2; V 2i�:
The interdependent structure kv-pair hSK;SV i and state
kv-pair hDK;DV i are conjointly used in the Map function.
A Map function outputs intermediate kv-pairs hK2; V 2is.
The Reduce interface is kept the same as before. A Reduce
function combines the intermediate kv-pairs hK2; fV 2gis
and outputs hK3; V 3i:

reduceðK2; fV 2gÞ ! hK3; V 3i:
Specifying dependency with project. We propose a new API
function, Project. It specifies the interdependent state key of
a structure key:

projectðSKÞ ! DK:

Note that each structure kv-pair is interdependent with a
single state kv-pair. Therefore, Project returns a single value
DK for each input SK.

Iterative model. Fig. 6 shows our iterative model. By ana-
lyzing the three representative applications, we find that
the input of an iteration contains both structure and state
data, while the output is only the state data. A large number
of iterative algorithms (e.g., PageRank and Kmeans)
employs a single MapReduce job in an iteration. Their com-
putation can be illustrated using the simplified model as
shown in Fig. 6b. In general, one or more MapReduce jobs
may be used to update the state kv-pairs hDK;DV i,
as shown in Fig. 6a. Once the updated hDK;DV is are
obtained, they are matched to the interdependent structure
kv-pairs hSK;SV is with the Project function for next itera-
tion. In this way, a kv-pair transformation loop is built. We

Fig. 5. Dependency types between structure and state kv-pairs. (3)/(4)
can be converted into (1)/(2).
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call the first Map phase in an iteration the prime Map and the
last Reduce phase in an iteration as the prime Reduce.

4.3 Supporting Diverse Dependencies Between
Structure and State Data

Dependency-aware data partitioning. To support parallel proc-
essing in MapReduce, we need to partition the data.
Note that both structure and state kv-pairs are required to
invoke the Map function. Therefore, it is important to assign
the interdependent structure kv-pair and state kv-pair to the
same partition so as to avoid unnecessary network transfer
overhead. Many existing systems such as Spark [2]
and Stratosphere [7] have applied this optimization. In
i2MapReduce, we design the following partition function
(1) for state and (2) for structure kv-pairs:

partition id ¼ hashðDK;nÞ (1)

partition id ¼ hashðprojectðSKÞ; nÞ; (2)

where n is the desired number of Map tasks. Both functions
employ the same hash function. Since Project returns the
interdependent DK for a given SK, the interdependent
hSK;SV is and hDK;DV is will be assigned to the same par-

tition. i2MapReduce partitions the structure data and state
data as the preprocessing step before an iterative job.

Invoking prime map. i2MapReduce launches a prime Map
task per data partition. The structure and state kv-pairs
assigned to a partition are stored in two files: (i) a structure
file containing hSK; SV is and (ii) a state file containing
hDK;DV is. The two files are provided as the input to the
prime Map task. The state file is sorted in the order of DK,
while the structure file is sorted in the order of project
(SK). That is, the interdependent SKs and DKs are sorted

in the same order. Therefore, i2MapReduce can sequentially
read and match all the interdependent structure/state kv-
pairs through a single pass of the two files, while invoking
the Map function for each matching pair.

Task Scheduling: Co-locating interdependent prime reduce and
prime map. As shown in Fig. 6, the prime Reduce computes
the updated state kv-pairs. For the next iteration,
i2MapReduce must transfer the updated state kv-pairs to
their corresponding prime Map task, which caches their
dependent structure kv-pairs in its local file system.

The overhead of the backward transfer can be fully
removed if the number of state kv-pairs in the application is
greater than or equal to n, the number of Map tasks (e.g.,
PageRank and GIM-V). The idea is to create n Reduce tasks,

assign Reduce task i to co-locate with Map task i on the
same machine node, and make sure that Reduce task i pro-
duces and only produces the state kv-pairs in partition i.
The latter can be achieved by employing the hash function
of the partition functions (1) and (2) as the shuffle function
immediately before the prime Reduce phase. The Reduce
output can be stored into an updated state file without any
network cost. Interestingly, the state file is automatically
sorted in DK order thanks to MapReduce’s shuffle imple-

mentation. In this way, i2MapReduce will be able to process
the prime Map task of the next iteration.

Supporting smaller number of state kv-pairs. In some appli-
cations, the number of state keys is smaller than n. Kmeans
is an extreme case with only a single state kv-pair. In these
applications, the total size of the state data is typically quite
small. Therefore, the backward transfer overhead is low.

Under such situation, i2MapReduce does not apply the
above partition functions. Instead, it partitions the structure
kv-pairs using MapReduce’s default approach, while repli-
cating the state data to each partition.

5 INCREMENTAL ITERATIVE PROCESSING

In this section, we present incremental processing techni-
ques for iterative computation. Note that it is not sufficient
to simply combine the above solutions for incremental one-
step processing (in Section 3) and iterative computation (in
Section 4). In the following, we discuss three aspects that
we address in order to achieve an effective design.

5.1 Running an Incremental Iterative Job

Consider a sequence of jobs A1; . . .Ai; . . . that incrementally
refresh the results of an iterative algorithm. Incoming new
data and updates change the problem structure (e.g., edge
insertions or deletions in the web graph in PageRank, new
points in Kmeans, updated matrix data in GIM-V). There-
fore, structure data evolves across subsequent jobs. Inside a
job, however, structure data stays constant, but state data is
iteratively updated and converges to a fixed point. The two
types of data must be handled differently when starting an
incremental iterative job:

� Delta structure data. We partition the new data and
updates based on Equation (2), and generate a delta
structure input file per partition.

� Previously converged state data. Which state shall we
use to start the computation? For job Ai, we choose
to use the converged state data Di�1 from job Ai�1,
rather than the random initial state D0 (e.g., random
centroids in Kmeans) for two reasons. First, Di�1 is
likely to be very similar to the converged state Di to
be computed by Ai because there are often only
slight changes in the input data. Hence, Ai may con-
verge to Di much faster from Di�1 than from D0.
Second, only the states in the last iteration of Ai�1
need to be saved. If D0 were used, the system would
have to save the states of every iteration in Ai�1 in
order to incrementally process the corresponding
iteration in Ai. Thus, our choice can significantly
speed up convergence, and reduce the time and
space overhead for saving states.

Fig. 6. Iterative model of i2MapReduce.
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To run an incremental iterative job Ai, i2MapReduce
treats each iteration as an incremental one-step job as shown
previously in Fig. 3. In the first iteration, the delta input is
the delta structure data. The preserved MRBGraph reflects
the last iteration in job Ai�1. Only the Map and Reduce
instances that are affected by the delta input are re-com-
puted. The output of the prime Reduce is the delta state

data. Apart from the computation, i2MapReduce refreshes
the MRBGraph with the newly computed intermediate
states. We denote the resulting updated MRBGraph as
MRBGraph1.

In the jth iteration (j 	 2), the structure data remains the
same as in the ðj� 1Þth iteration, but the loop-variant state
data have been updated. Therefore, the delta input is now
the delta state data. Using the preserved MRBGraphj�1,
i2MapReduce re-computes only the Map and Reduce
instances that are affected by the input change. It preserves
the newly computed intermediate states in MRBGraphj. It
computes a new delta state data for the next iteration.

The job completes when the state data converges or
certain predefined criteria are met. At this moment,
i2MapReduce saves the converged state data to prepare for
the next job Aiþ1.

5.2 Extending MRBG-Store for Multiple Iterations

As described previously in Section 3.4,MRBG-Store appends
newly computed chunks to the end of the MRBGraph file
and updates the chunk index to reflect the new positions.
Obsolete chunks are removed offline when the worker
machine is idle. In an incremental iterative job, every itera-
tion will generate newly computed chunks, which are sorted
due to the MapReduce shuffling phase. Consequently, the
MRBGraph file will consist of multiple batches of sorted
chunks, corresponding to a series of iterations. If a chunk
exists in multiple batches, a retrieval request returns the lat-
est version of the chunk (as pointed to by the chunk index).
In the following, we extend the query algorithm
(Algorithm 1) to handlemultiple batches of sorted chunks.

We propose a multi-dynamic-window technique. Multiple
dynamic windows correspond to multiple batches (itera-
tions). Fig. 7 illustrates how the multi-dynamic-window

technique works via an example. In this example, the
MRBGraph file contains two batches of sorted chunks. It is
queried to retrieve five chunks as shown from left to right
in the figure. Note that the chunk retrieval requests are
sorted because of MapReduce’s shuffling operation. The
algorithm creates two read windows, each in charge of
reading chunks from the associated batch. Since the chunks
are sorted, a read window will only slide downward in the
figure. The first request is for chunk 0. It is a read cache
miss. Although chunk 0 exists in both batches, the chunk
index points to the latest version in batch 2. At this moment,
we apply the analysis of Line 4-8 in Algorithm 1, which
determines the size of the I/O read window. The only dif-
ference is that we skip chunks that do not reside in the cur-
rent batch (batch 2). As shown in Fig. 7, we find that it is
profitable to use a larger read window so that chunk 4 can
also be retrieved into the read cache. The request for chunk
1 is processed similarly. Chunk 0 is evicted from the read
cache because retrieval requests are always non-decreasing.
The next two requests are for chunks 3 and 4. Fortunately,
both of the chunks have been retrieved along with previous
requests. The two requests hit in the read cache. Finally, the
last request is satisfied by reading chunk 9 from batch 1.
Since there are no further requests, we use the smallest pos-
sible read window in the I/O read.

Even though MRBG-Store is designed to optimize I/O
performance, the MRBGraph maintenance could still result
in significant I/O cost. The I/O cost might outweigh the
savings of incremental processing. The framework is able to
detect this situation and automatically turn off MRBGraph
maintenance (see [20]).

5.3 Reducing Change Propagation

In incremental iterative computation, changes in the delta
input may propagate to more and more kv-pairs as the com-
putation iterates. For example, in PageRank, a change that
affects a vertex in a web graph propagates to the neighbor
vertices after an iteration, to the neighbors of the neighbors
after two iterations, to the three-hop neighbors after three
iterations, and so on. Due to this effect, incremental process-
ing may become less effective after a number of iterations.

To address this problem, i2MapReduce employs a change
propagation control technique, which is similar to the dynamic
computation in GraphLab [6]. It filters negligible changes of
state kv-pairs that are below a given threshold. These filtered
kv-pairs are supposed to be very close to convergence. Only
the state values that see changes greater than the threshold
are emitted for next iteration. The changes for a state kv-pair
are accumulated. It is possible a filtered kv-pair may later be
emitted if its accumulated change is big enough.

The observation behind this technique is that iterative
computation often converges asymmetrically: Many state
kv-pairs quickly converge in a few iterations, while the
remaining state kv-pairs converge slowly over many itera-
tions. Low et al. has shown that in PageRank computation
the majority of vertices require only a single update while
only about 3 percent of vertices take over 10 iterations to
converge [6]. Our previous work [21] has also exploited
this property to give preference to the slowly converged
data items.

Fig. 7. An example of reading a sequence of chunks with key
0,1,3,4,9, . . . by using multi-dynamic-window.
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While this technique might impact result accuracy, the
impact is often minor since all “influential” kv-pairs would
be above the threshold and thus emitted. This is indeed con-
firmed in our experiments in Section 6.5. If an application
has high accuracy requirement, the application programmer
has the option to disable the change propagation control
functionality.

5.4 Fault-Tolerance

Vanilla MapReduce reschedules the failed Map/Reduce
task in case task failure is detected. However, the interde-
pendency of prime Reduce tasks and prime Map tasks in
i2MapReduce requires more complicated fault-tolerance

solution. i2MapReduce checkpoints the prime Reduce task’s
output state data and MRBGraph file on HDFS in every
iteration.

Upon detecting a failure, i2MapReduce recovers by
considering task dependencies in three cases. (i) In case a
prime Map task fails, the master reschedules the Map
task on the worker where its dependent Reduce task
resides. The prime Map task reloads the its structure data
and resumes computation from its dependent state data
(checkpoint). (ii) In case a prime Reduce task fails, the
master reschedules the Reduce task on the worker where
its dependent Map task resides. The prime Reduce task
reloads its MRBGraph file (checkpoint) and resumes com-
putation by re-collecting Map outputs. (iii) In case a
worker fails, the master reschedules the interdependent
prime Map task and prime Reduce task to a healthy
worker together. The prime Map task and Reduce task
resume computation based on the checkpointed state data
and MRBGraph file as introduced above. More implemen-
tation details and evaluation results of fault tolerance can
be found in [20].

6 EXPERIMENTS

We implement a prototype of i2MapReduce by modifying
Hadoop-1.0.3. In order to support incremental and iterative
processing, a few MapReduce APIs are changed or added.
We summarize these API changes in Table 2 (see [20] for
more details). In this section, we perform real-machine

experiments to evaluate i2MapReduce.

6.1 Experiment Setup

Solutions to compare. Our experiments compare four solu-
tions: (i) PlainMR recomp, re-computation on vanilla
Hadoop; (ii) iterMR recomp, re-computation on Hadoop
optimized for iterative computation (as described in
Section 4); (iii) HaLoop recomp, re-computation on the itera-
tive MapReduce framework HaLoop [8], which optimizes
MapReduce by providing a structure data caching mecha-
nism; (iv) i2MapReduce, our proposed solution. To the best
of our knowledge, the task-level coarse-grain incremental
processing system, Incoop [15], is not publicly available.

Therefore, we cannot compare i2MapReduce with Incoop.
Nevertheless, our statistics show that without careful
data partition, almost all tasks see changes in the expe-
riments, making task-level incremental processing less
effective.

Experimental environment. All experiments run on
Amazon EC2. We use 32 m1.medium instances. Each m1.
medium instance is equipped with 2 ECUs, 3.7 GB memory,
and 410 GB storage.

Applications. We have implemented four iterative mining
algorithms, including PageRank (one-to-one correlation),
Single Source Shortest Path (SSSP, one-to-one correlation),
Kmeans (all-to-one correlation), and GIM-V (many-to-one
correlation). For GIM-V, we implement iterative matrix-
vector multiplication as the concrete application using GIM-
V model.

We also implemented a one-step mining algorithm,
APriori [22], for mining frequent item sets (see [20] for more
details). Note that Apriori satisfies the requirements in Sec-
tion 3.5. Hence, we employ the accumulator Reduce optimi-
zation in incremental processing.

Data sets, delta input, and converged states. Table 3
describes the data sets for the five applications (see [20]
for more details). For incremental processing, we gener-
ate a delta input from each data set. For APriori, the
Twitter data set is collected over a period of two months.
We choose the last week’s messages as the delta input,
which is 7.9 percent of the input. For the four iterative
algorithms, the delta input is generated by randomly
changing 10 percent of the input data unless otherwise
noted. To make the comparison as fair as possible, we
start incremental iterative processing from the previously
converged states for all the four solutions.

TABLE 2
API Changes to Hadoop MapReduce

Job Type Functionality Vanilla MapReduce (Hadoop) i2MapReduce

Incremental One-Step input format input: hK1; V 10i delta input: hK1; V 1; ‘þ0 =‘�0i
Accumulator Reduce Reducer class reduce(K2,{V 2})! hK3; V 3i accumulate(V 2old; V 2new)! V 2

input format mixed input: hK1; V 10i structure input: hSK; SV i
state input: hDK;DV i

Iterative Projector class project(SK)! DK
setProjectType(ONE2ONE)

Mappper class map(K1, V 1)! ½hK2; V 2i� map(SK,SV ,DK,DV )! ½hK2; V 2i�
init(DK)! DV

input format input: hK1; V 10i delta structure input: hSK; SV; ‘þ0 =‘�0i
Incremental Iterative change propagation

control
job.setFilterThresh(thresh)

difference(DVcurr,DVprev)! diff
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6.2 Overall Performance

Incremental one-step processing.We use a priori to understand
the benefit of incremental one-step processing in
i2MapReduce. MapReduce re-computation takes 1,608 sec-

onds. In contrast, i2MapReduce takes only 131 seconds.
Fine-grain incremental processing leads to a 12x speedup.

Incremental iterative processing. Fig. 8 shows the normal-
ized runtime of the four iterative algorithms while 10 per-
cent of input data has been changed. “1” corresponds to the
runtime of PlainMR recomp.

For PageRank, iterMR reduces the runtime of PlainMR
recomp by 56 percent. The main saving comes from the
caching of structure data and the saving of the MapRe-
duce startup costs. i2MapReduce improves the perfor-
mance further with fine-grain incremental processing and
change propagation control, achieving a speedup of eight
folds (i2MR w/ CPC). We also show that without change
propagation control the changes it will return the exact
updated result but at the same time prolong the runtime
(i2MR w/o CPC). The change propagation control tech-
nique is critical to guarantee the performance (see [20]
for experimental results). Section 6.5 will discuss the
effect of CPC in more details. On the other hand, it is sur-
prising to see that HaLoop performs worse than plain
MapReduce. This is because HaLoop employs an extra
MapReduce job in each iteration to join the structure and
state data [8]. The profit of caching cannot compensate
for the extra cost when the structure data is not big

enough. Note that the iterative model in i2MapReduce
avoids this overhead by exploiting the Project function to
co-partition structure and state data. The detail compari-
son with HaLoop is provided in [20].

For SSSP, the performance gain of i2MapReduce is simi-
lar to that for PageRank. We set the filter threshold to 0 in
the change propagation control. That is, nodes without any
changes will be filtered out. Therefore, unlike PageRank,
the SSSP results with CPC are precise.

For Kmeans, small portion of changes in input will lead to
global re-computation. Therefore, we turn off theMRBGraph
functionality. As a result, i2MapReduce falls back to iterMR
recomp.We see that HaLoop and iterMR exhibit similar per-
formance. They both outperform plainMR because of similar
optimizations, such as caching structure data.

For GIM-V, both plainMR and HaLoop run two MapRe-
duce jobs in each iteration, one of which joins the structure
data (i.e., matrix) and the state data (i.e., vector). In contrast,
our general-purpose iterative support removes the need
for this extra job. iterMR and i2MapReduce see dramatic

performance improvements. i2MapReduce achieves a 10.3x
speedup over plainMR, and a 1.4x speedup over HaLoop.

6.3 Time Breakdown Into MapReduce Stages

To better understand the overall performance, we report the
time3 of the individual MapReduce stages (across all itera-
tions) for PageRank in Fig. 9.

For the Map stage, IterMR improves the run time by 51
percent because it separates the structure and state data,
and avoids reading and parsing the structure data in every
iteration. i2MapReduce further improves the performance
with fine-grain incremental processing, reducing the
plainMR time by 98 percent. Moreover, we find that the
change propagation control mechanism plays a significant
role. It filters the kv-pairs with tiny changes at the prime
Reduce, greatly decreasing the number of Map instances in
the next iteration. (see Section 6.5)

For the shuffle stage, iterMR reduces the run time of
PlainMR by 74 percent. Most savings result from avoiding
shuffling structure data from Map tasks to Reduce tasks.
Moreover, compared to iterMR, i2MapReduce shuffles only
the intermediate kv-pairs from the Map instances that are
affected by input changes, thereby further improving the
shuffle time, achieving 95 percent reduction of PlainMR time.

For the sort stage, i2MapReduce sorts only the small
number of kv-pairs from the changed Map instances, thus
removing almost all sorting cost of PlainMR.

Fig. 8. Normalized runtime.

TABLE 3
Data Sets

algorithm data set size description

APriori Twitter 122 GB 52,233,372 tweets
PageRank ClueWeb 36.4 GB 20,000,000 pages

365,684,186 links
SSSP ClueWeb2 70.2 GB 20,000,000 pages

365,684,186 links
Kmeans BigCross 14.4 GB 46,481,200 points

each with 57 dimensions
GIM-V WikiTalk 5.4 GB 100,000 rows

1,349,584 non-zero entries

Fig. 9. Run time of individual stages in PageRank.

3. The resulted time does not include the structure data partition
time, while both the iterMR time and i2MR time in Fig. 8 include the
time of structure data partition job for fairness.
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For the Reduce stage, iterMR cuts the run time of
PlainMR by 88 percent because it does not need to join the
updated state data and the structure data. Interestingly,
i2MapReduce takes longer than iterMR. This is because

i2MapReduce pays additional cost for accessing and updat-
ing the MRBGraph file in the MRBG-Store. We study the
performance of MRBG-Store in the next section.

6.4 Performance Optimizations in MRBG-Store

As shown in Table 4, we enable the optimization techni-
ques in MRBG-Store one by one for PageRank, and report
three columns of results: (i) total number of I/O reads in
Algorithm 1 (which likely incur disk seeks), (ii) total
number of bytes read in Algorithm 1, and (iii) total
elapsed time of the merge operation. (i) and (ii) are across
all the workers and iterations, and (iii) is across all the
iterations. Note that the MRBGraph file maintains the
intermediate data distributively, the total size of which is
572.4 GB in the experiment.

First, only the chunk index is enabled. For a given key,
MRBG-Store looks it up in the index to obtain the exact posi-
tion of its chunk, and then issues an I/O request to read the
chunk. This approach reads only the necessary bytes but
issues a read for each chunk. As shown in Table 4, index-
only has the smallest read size, but incurs the largest num-
ber of I/O reads.

Second, with a single fix-sized read window, a single I/O
read may cover multiple chunks that need to be merged,
thus significantly saving disk seeks. However, since Pag-
eRank is an iterative algorithm and multiple sorted batches
of chunks exist in the MRBGraph file (see Section 5.2), the
next to-be-accessed chunk might not reside in the same
batch. Consequently, this approach often wastes time read-
ing a lot of obsolete chunks. Its elapsed time gets worse.

Third, we use multiple fix-sized windows for iterative
computation. This approach addresses the weakness of the
single fix-sized window. As shown in Table 4, it dramati-
cally reduces the number of I/O reads and the bytes read
from disks, achieving an 1.4x improvement over the index-
only case.

Finally, our solution in i2MapReduce optimizes further
by considering the positions of the next chunks to be
accessed and making intelligent decisions on the read win-
dow sizes. As a result, multi-dynamic-window reads
smaller amount of data. It achieves a 1.6x speedup over the
index-only case.

6.5 Effect of Change Propagation Control

We run PageRank on i2MapReduce with 10 percent
changed data while varying the change propagation filter
threshold from 0.1, 0.5, to 1. (Note that, in all previous

experiments, the filter threshold is set to 1.) Fig. 10a shows
the run time, while Fig. 10b shows the mean error of the kv-
pairs, which is the average relative difference from the cor-
rect value (computed offline).

The change propagation control technique filters out the
kv-pairs whose changes are less than a given threshold.
These filtered kv-pairs are considered very close to conver-
gence. As expected, the larger the threshold, the more kv-
pairs will be filtered, and the better the run time (The exper-
iment result about filtered kv-pairs in each iteration is pre-
sented in [20]). On the other hand, larger threshold impacts
the result accuracy with a larger mean error. Note that
“influential” kv-pairs that see significant changes will
hardly be filtered, and therefore result accuracy is some-
what guaranteed. In the experiments, all mean errors are
less than 0.2 percent, which is small and acceptable. For
applications that have high accuracy requirement, users
have the option to turn off change propagation control.

7 RELATED WORK

Iterative processing. A number of distributed frameworks
have recently emerged for big data processing [3], [5], [6],
[7], [21], [23]. We discuss the frameworks that improve
MapReduce. HaLoop [8], a modified version of Hadoop,
improves the efficiency of iterative computation by making
the task scheduler loop-aware and by employing caching
mechanisms. Twister [9] employs a lightweight iterative
MapReduce runtime system by logically constructing a
Reduce-to-Map loop. iMapReduce [10] supports iterative
processing by directly passing the Reduce outputs to Map
and by distinguishing variant state data from the static data.
i2MapReduce improves upon these previous proposals by
supporting an efficient general-purpose iterative model.

Unlike the above MapReduce-based systems, Spark [2]
uses a new programming model that is optimized for mem-
ory-resident read-only objects. Spark will produce a large
amount of intermediate data inmemory during iterative com-
putation.When input is small, Spark exhibitsmuch better per-
formance than Hadoop because of in-memory processing.
However, its performance suffers when input and intermedi-
ate data cannot fit into memory. We experimentally compare
Spark and i2MapReduce in [20], and see that i2MapReduce
achieves better performancewhen input data is large.

Pregel [4] follows the Bulk Synchronous Processing (BSP)
model. The computation is broken down into a sequence of
supersteps. In each superstep, a Compute function is
invoked on each vertex. It communicates with other vertices
by sending and receiving messages and performs com-
putation for the current vertex. This model can efficiently

TABLE 4
Performance Optimizations in MRBG-Store

technique # reads read size(GB) time (s)

index-only 5,519,910 34.2 718
single-fix-window 1,263,680 1,0512.6 1,361
multi-fix-window 1,188,420 337.8 513
multi-dynamic-window 2,418,809 153.6 467

Fig. 10. Effect of change propagation control.
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support a large number of iterative graph algorithms. Open
source implementations of Pregel include Giraph [24],
Hama [25], and Pregelix [26]. Compared to i2MapReduce,
the BSP model in Pregel is quite different from the MapRe-
duce programming paradigm. It would be interesting
future work to exploit similar ideas in this paper to support
incremental processing in Pregel-like systems.

Incremental processing for one-step application. Besides
Incoop [15], several recent studies aim at supporting incre-
mental processing for one-step applications. Stateful Bulk
Processing [13] addresses the need for stateful dataflow pro-
grams. It provides a groupwise processing operator Trans-
late that takes state as an explicit input to support
incremental analysis. But it adopts a new programming
model that is very different from MapReduce. In addition,
several research studies [27], [28] support incremental
processing by task-level re-computation, but they require
users to manipulate the states on their own. In contrast,
i2MapReduce exploits a fine-grain kv-pair level re-computa-
tion that are more advantageous.

Incremental processing for iterative application. Naiad [14]
proposes a timely dataflow paradigm that allows stateful
computation and arbitrary nested iterations. To support
incremental iterative computation, programmers have to
completely rewrite their MapReduce programs for Naiad.
In comparison, we extend the widely used MapReduce
model for incremental iterative computation. Existing Map-
Reduce programs can be slightly changed to run on
i2MapReduce for incremental processing.

8 CONCLUSION

Wehavedescribed i2MapReduce, aMapReduce-based frame-

work for incremental big data processing. i2MapReduce com-
bines a fine-grain incremental engine, a general-purpose
iterativemodel, and a set of effective techniques for incremen-
tal iterative computation. Real-machine experiments show

that i2MapReduce can significantly reduce the run time for
refreshing big data mining results compared to re-computa-
tion on both plain and iterativeMapReduce.
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