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Abstract—Approximate nearest neighbor search (ANNS) is the
key operation in vector databases. Graph-based ANNS algo-
rithms are among the best-performing and most used methods
on CPUs. However, the graph search procedures are challenging
to optimize on GPUs. Existing GPU-based algorithms propose
a variety of designs. In this paper, we conduct an experimental
study of five representative GPU-based graph ANNS algorithms
(i.e., SONG, CUHNSW, GANNS, GGNN, CAGRA) in order to
compare their overall performance and understand the impact
of the different design aspects.

Index Terms—ANN search, GPU, graph index, evaluation

I. INTRODUCTION

Vector databases are widely used in image search, rec-
ommendation systems, and recently in retrieval augmented
generation (RAG) for large language models (LLMs). The key
operation in vector databases is approximate nearest neighbor
search (ANNS). Given a query vector ¢, ANNS retrieves the
(approximate) k nearest neighbors (kNN) of ¢ in the vector
database D = {d;,ds, . ..,d,}. The database D typically con-
tains millions to even billions of vectors. Each vector consists
of hundreds to thousands of floating point features. Therefore,
a brute-force method to obtain the accurate kNN results can
be prohibitively expensive. Since approximate answers often
suffice for many applications, industry and academia mainly
focus on ANNS as a feasible solution to the kNN problem.

Existing ANNS methods build a variety of structures to
reduce the kNN search cost, including hashing-based [1[|—
[3]], tree-based [4]-[6], quantization-based [7]-[9], and graph-
based structures [10]-[13[]. Graph-based ANNS algorithms
have been shown to be among the best-performing ANNS
methods on CPUs. They construct a proximity graph on the
vectors in D. Each vertex v represents a vector d,. A directed
edge (u,v) either connects two vectors that are close or
provides properties of the small world for accelerating the
graph search [[10]-[[13]]. Given a query g, ANNS starts from
a set of entry vertices and performs a variant of A* heuristic
search on the graph to obtain the kNN results.

Recent studies exploit GPUs for accelerating graph-based
ANNS algorithms [[14]]-[|18]]. Compared to CPUs, GPUs sup-
port higher levels of parallelism and enjoy higher memory
bandwidth. For example, an NVIDIA A100 GPU consists of
108 Streaming Multiprocessors (SMs). Each SM contains 64
CUDA cores. The bandwidth of the GPU’s device memory
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(a.k.a. global memory) is up to 1555 GB/s. Existing studies
show that distance computation can be easily parallelized with
GPUs. However, it is more challenging to exploit GPUs’
Single Instruction Multiple Threads (SIMT) programming
model to optimize the graph search procedures. Therefore,
existing algorithms propose a variety of designs.

In this paper, we conduct a performance study of five
representative  GPU-based graph ANNS algorithms (i.e.,
SONG [14], CUHNSW [15], GANNS [16]], GGNN [17],
CAGRA [18])) using four representative vector data sets. Our
goal is to compare their overall performance and understand
the performance impact of their different designs. To our
knowledge, this is the first systematic evaluation study for
the graph ANNS algorithms on GPUs. Our code is publicly
available at https://github.com/schencoding/gpu-graph-anns.

The rest of the paper is organized as follows. Section
reviews the general framework of the graph-based ANNS algo-
rithms, and compares the five different algorithms in this study.
Then, Section describes the experimental methodology.
After that, Section presents our evaluation study. Finally,
Section |V| concludes the paper.

II. GPU-BASED GRAPH ANN SEARCH ALGORITHMS

In this section, we first describe the general framework of
the graph-based ANNS algorithms, then compare the designs
of five state-of-the-art GPU-based graph ANNS algorithms.

Graph-Based ANNS. Algorithm|[I]lists the pseudo code of the
parallel graph-based ANNS algorithm. Given the vector data
set D and a batch of query vectors @, the algorithm searches
the proximity graph G to find the approximate kNN for every
query vector q. Popular distance metrics include the Euclidean
distance, angular distance, inner product, etc.

The algorithm employs the following main data structures.
First, Scqna contains visited vertices, while Sezpioreq contains
vertices that have been explored. A vertex v is visited if
distance(v, q) has been computed. A vertex u is explored if
all its neighbors have been visited. S¢qng and Segpiored store
both the vertex IDs and the corresponding computed distances.
The popTopK procedure returns a given number of entries with
the smallest distances. The addAndEvict procedure inserts new
entries. Since GPU-based algorithms often allocate fixed space
for the two structures, addAndEvict removes entries with the
largest distances if the allocated space is full. Second, Hy;sited
records the information of visited vertices for the purpose of
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Fig. 1. GPU-based graph ANNS algorithms.

Algorithm 1: Parallel graph-based ANNS.

Input: A proximity graph G, vector dataset D, the batch of
query vectors (Q, the number of nearest neighbors to
find k&

Output: top-k approximate nearest neighbors for every

query (R1, Rz, ..., R|q))

1 parallel for ¢ in @ do

2 Scand — Q’ Sezplo’r‘ed — @1

3 Hyisited < Pentry;

4 Distentry + parallelComputeDistance(Pentry, g, D);

5 Scand-addAndEvict(Pepntry, Distentry);

6 repeat sd times do

7

8

if satisfyStopCriterion(Scand, Sexplored) then
| break
9 (Peur, Disteur) < Scand-popTopK(sw);
10 Seaplored-addAndEvict( Peyyr, Diskcur);
11 Py 0
12 parallel for v in P.,, do
13 parallel for v in G.neighbors(v) do
14 if u & Hyisiteqa then
15 Hy;siteq-insert(u);
16 L Py < Pry U{u};
17 Disty, + parallelComputeDistance( Py, g, D);
18 Scand.addAndEvict(Ppp, Diskns);

19 (Rg, Distq) < Sexpiored-popTopK(k);

20 return (R, Rz, ..., R|g|);

avoiding redundant distance computation. Third, the vertices
in P,y are the starting points for the graph search. Finally,
Dist buffers are temporary buffers for distance computation.

The algorithm performs each query in the query batch () in
parallel (Line [T). Note that all data structures in the algorithm
except G, D, Q, and P, are private in the processing of a
query. For each query q, Scang and Hy;siteq are initialized with
the entry vertices in Peytry, and Seazpiored Starts with an empty
set (Line 2H5). Then, the algorithm goes into the main loop to
perform at most sd iterations of exploration (Line[6). The loop
can stop early if certain stop criterion is satisfied (Line [7THS).

Each iteration pops sw vertices with the smallest distances
from Scana (Line [9), move them to Secypiorea (Line [T0), and
explores the vertices in parallel (Line [I2HI8). The algorithm
avoids visiting the same vertex multiple times by checking the
vertex about to visit against H,;siteq (Line . The newly
visited vertices are added to H,;siteq and Scqnq. Finally, the
algorithm returns the top-k vertices with the smallest distances
from Sczpiorea (Line [T9}-[20).

The capacity of Scang and Segpiored, the search depth sd,
and the search width sw are all hyper-parameters. Tuning
these parameters achieve different query throughput vs. recall
trade-offs. Moreover, the stop criterion can also be tuned to
achieve better recalls. For example, one way is to allocate k
entries for Scana and Seazpioreqa and terminate if the minimal
distance in S.q,q is greater than the maximal distance in
Seaplored. To improve recalls, existing algorithms increase the
capacity of the structures to be much larger than & [[14]-[16],
[18]] or introduce slacks to the minimal and maximal distance
comparison [17].

GPU-Based Graph ANNS Algorithms. In this paper, we
study five state-of-the-art GPU-based graph ANNS algorithms,
i.e., SONG [14], CUHNSW [15], GANNS [16], GGNN [17],
and CAGRA [18]], as depicted in Figure [T} All the algorithms
follow the general framework in Algorithm [I] They perform
the ANNS on a single GPU. The vector data set D and the
graph G can fit into the GPU device memory. Table [I| shows
the main different features of the five algorithms.

First, there are mainly two types of proximity graphs:
variants of kNN graphs [11] and variants of NSW [12]. In
a kNN graph, the edges connect a vertex to its k nearest
neighbors. Efficient approximate methods are often employed
to construct the KNN graphs quickly [[11]]. NSW [[12] contains
both short-range and long-range links to achieve the properties
of the small world. HNSW [13]] is a hierarchical version of
NSW in the same spirit of the skip list. The GPU algorithms
except CUHNSW ensure that the number of out-neighbors is
fixed. In this way, the out-neighbors of vertices in G can be
placed in an array and easily located using vector IDs.



TABLE I
DIFFERENCES OF GPU-BASED GRAPH ANNS ALGORITHMS.

[Algorithm [Graph structure  [Query parallelism [sw  [Scand and Scapiored [Hyisited ]
SONG [14] |NSW, fixed-|a thread block per query sw=1 |heaps in device memory, hash table or Bloom filter in de-
degree single-threaded vice memory, single-threaded
CUHNSW [[15][HNSW, degrees|a thread block per query sw=1 |heaps in device memory, hash table in device memory,
are not fixed single-threaded single-threaded
GANNS [16] [NSW / HNSW,|a thread block per query sw=1 |bitonic sort / sorting-based|no check for visited, avoid the
fixed-degree merge on shared memory,juse of Hyisited
multi-threaded
GGNN [[17]  |hierarchical kNN,|a thread block per query sw=1 |parallel insert to a sorted|ring-buffer in shared memory,
fixed-degree ring-buffer in shared mem-|multi-threaded
ory, multi-threaded
CAGRA [18] |CAGRA single-CTA: a thread block per{sw >1|warp-level bitonic sort /|forgettable hash table in shared
(optimized kNN),|query; multi-CTA: multiple thread radix-based sort, multi-/memory, multi-threaded

fixed-degree blocks per query

threaded

Second, all algorithms except CAGRA computes ANNS for
a query using a thread block. All the threads in a thread block
are run on a single SM on GPUs. In comparison, CAGRA
supports two modes. The single-CTA mode processes a query
with a single thread block, while the multi-CTA mode can
exploit multiple thread blocks (and thus multiple SMs) for
a query. Specifically, multi-CTA CAGRA explores multiple
vertices using multiple thread blocks in parallel. The distance
computation is typically parallelized with multiple threads in
a thread block. To compute distance(v, q), every thread in the
thread block computes a partial result on a disjoint subset of
v’s dimensions. Then, warp-level primitives are often used to
aggregate the partial results into the full distance.

Third, the number of vertices to explore (sw) in each
iteration of Algorithm [I] is different. all algorithms except
CAGRA explores a single vertex at a time. In comparison,
CAGRA can explore multiple vertices in parallel. sw can be
tuned to achieve different query throughput and recalls.

Finally, the designs of Scand, Sezplored> and Hyjgiteq are
different. SONG and CUHNSW perform single-threaded ac-
cesses, while GANNS, GGNN, and CAGRA exploit all threads
in the thread block(s) to process the structures.

For Scand and Segpiored, the algorithms either use heaps
in single-threaded accesses or perform sorting or inserting
in multi-threaded execution. SONG and GGNN implement
Scand and Seapiored as two disjoint data structures. The other
algorithms store Scqng and Seazpioreqd in the same structure,
and use a flag to indicate the explored vertices (shown as the
red flag in Figure [I).

For H,;sited, the most common implementation is based
on a hash table. Due to space and efficiency considerations,
the algorithms often simplify the design. SONG considers
removing entries from the hash table or employing a Bloom
filter for the visited structure. CUHNSW allows a conflicting
entry to replace an existing entry in the hash table. GANNS
performs distance computation without checking the visited
information. (It only checks if a vertex is already explored
when it is inserted into Seazpiored.) CAGRA aims to fit the hash
table into the shared memory in the single-CTA mode. When
it is too full, the forgettable hash table is reset and reinitialized
with entries in Scqnd and Sezpiored- Note that removing entries

from Hy;siteq may result in redundant distance computation,
but does not impact the recall. In contrast, GGNN employs a
ring buffer as H,;s;teq and scans all the items in the buffer in
parallel for a H,;siteq check.

III. EXPERIMENTAL METHODOLOGY

Machine Configuration. The experimental machine is
equipped with two Intel(R) Xeon(R) E5-2640 v4 CPUs
(2.40GHz, 10 cores / 20 threads, 25 MB L3 cache per CPU),
128 GB DDR4 memory, and a NVIDIA A100-PCIE-40GB
GPU (108 SMs, 64 FP32 CUDA Cores per SM, 192 KB
of combined shared memory and L1 data cache per SM, 40
MB L2 cache, 40 GB HBM2 global memory with 1555 GB/s
memory bandwidth) [19]. The machine runs Ubuntu 22.04.5
LTS with Linux kernel 5.15.0-126-generic. All programs are
compiled with GCC 11.4.0 and NVCC 11.8 with optimization
flag -O2. The CUDA runtime version is 11.8.
Solutions to Compare. We compare five state-of-the-art GPU-
based graph ANNS algorithms and four baseline algorithmﬂ
e SONG [14]: According to the SONG paper [[14]], we choose
the best H,;siteq design, i.e., a hash table with selected
insertion and visited deletion optimizations.
CUHNSW [15]): This is an open-source GPU-based imple-
mentation of HNSW. Its graph index format is compatible
with the CPU-based hnswlib. As a result, the out-degree
of vertices in its graph is not necessarily fixed.
GANNS [16]: GANNS supports both NSW and HNSW
graphs. According to the GANNS paper [[16], we choose
the better-performing NSW graph.
GGNN [17]]: We evaluate GGNN release_0.5.
CAGRA [18]: We evaluate the CAGRA implementation in
cuVS [20]. CAGRA automatically selects the single-CTA
or the multi-CTA mode based on the query batch size and
the capacity of Seapiored-
o Three GPU-based baselines: We evaluate GPU-based IVF
Flat, IVF PQ (with refine), and Brute-force algorithms

IPlease note that CAGRA [[18], the most recent GPU-based graph ANNS
work, compares GGNN, GANNS, CAGRA, and CPU-based HNSW in the
experiments. In comparison, we conduct a more extensive study with five more
algorithms, i.e., SONG, CUHNSW, and three GPU-based baseline algorithms.



TABLE II
VECTOR DATA SETS USED IN THE EXPERIMENTS.

[ Name [ Dim [ # of Vectors [ # of Queries [ Distance |
DEEP [24] | 96 1,000,000 10,000 Euclidean
SIFT [25] 128 | 1,000,000 10,000 Euclidean
GloVe [26] | 200 | 1,183,514 10,000 Angular
GIST [25] | 960 | 1,000,000 1,000 Euclidean

in cuVS [20]]. Besides graph-based algorithms, IVF al-
gorithms, which divide vectors into K-means clusters,
are also widely used. The IVF ANNS first finds nprobe
nearest cluster centroids, then computes the distances for
all vectors in the corresponding clusters. IVF PQ employs
product quantization [7] to accelerate distance computa-
tion. Note that the distance computation between a batch
of query vectors and a set of vectors in the data set
can be formulated as matrix multiplication operations [21]]
and accelerated by highly optimized GEMM libraries that
leverage the GPU’s tensor cores.

e One CPU baseline: We evaluate hnswlib v0.7.0 [22] as a
representative CPU-based HNSW [13]] algorithm. We run
hnswlib with either 1 thread or 40 threads. Each thread
processes a query in the query batch in parallel.

All the algorithms are integrated into the cuVS bench, an
ANNS benchmarking framework in cuVS [20]. We use cuVS
24.12. We add instrumentation code to the algorithm im-
plementations for performance analysis purposes. Moreover,
for SONG, CUHNSW, and GANNS, we expose their inter-
nal hyper-parameters so that we can tune them to obtain
throughput-recall curves. Furthermore, we find that SONG,
CUHNSW, and GANNS do not cache the immutable data
vectors or graph indices in the GPU, incurring repeated
overhead for copying data to the GPU. Such operations are
unnecessary and can be rectified. Therefore, we remove the
redundant copy operations in our experiments for the sake of
fairness of comparison.

Hyper-Parameters to Tune. We tune the following knobs
as mentioned in Algorithm [I] to achieve different throughput-
recall trade-offs: 1) search depth sd, 2) search width sw, 3)
out-degree of the proximity graph, 4) capacity of |Scqnq| and
|Sewplioredl, 5) slack factor 7 in the stop criterion.

Data Sets. We use four representative vector data sets from
the ANN-Benchmarks [23]]. The details of the data sets are
shown in Table [l We ensure that each data set fits into the
GPU. (For DEEP, which contains 1 billion vectors, we use
a subset of 1 million vectors so that the data set can fit into
the GPU.) Moreover, CUHNSW [15]] and CAGRA [18]] do not
support the angular (cosine) distance. We normalize vectors in
GloVe and compute the Euclidean distance on the normalized
vectors. All the data types in our experiments are 32-bit floats.

Questions to Answer. We aim to answer the following

questions in the evaluation:

Q1: Which is the best GPU-based graph ANNS algorithm?

Q2: How do GPU-based Graph ANNS algorithms compare to
the baseline algorithms?

Q3: What are the performance bottlenecks of the GPU-based
graph ANNS algorithms?
Q4: What is the impact of different design features?

IV. PERFORMANCE EVALUATION

Overall Performance. Figure 2| compares all ANNS algo-
rithms for retrieving top-10 nearest neighbors on the four
data sets. We maximize the query batch size and thus the
inter-query parallelism to obtain the best performance. The
batch size is 10000 except GIST, whose test set contains 1000
queries. The x-axis varies the recall from 0.8 to 1.0, while
the y-axis reports the query throughput in QPS (queries per
second) in the logarithmic scale. For each algorithm, we adjust
the hyper-parameters to obtain a set of (recall, QPS) points,
then connect the Pareto-optimal points to form the curve.
Therefore, the closer to the top-right corner the better.

Among the four data sets, DEEP and SIFT are relatively
simple. The recalls of a large number of points in Figures
and [2(b)| are close to 1. GloVe requires a longer search time
to achieve a high recall rate. GIST sees the highest vector
dimensions (i.e., 960). As a result, the QPS on GloVe and
GIST is relatively lower than that on DEEP and SIFT.

OB 1. CAGRA is the best GPU-based graph ANNS al-
gorithm (Q1). Among GPU-based graph ANNS algorithms,
CAGRA shows the best performance, followed by GANNS,
GGNN, CUHNSW, and SONG. GANNS out-performs GGNN
for GIST and is comparable to GGNN for the other data sets.
They are clearly better than CUHNSW and SONG. SONG is
the worst performing GPU-based graph ANNS algorithm.

OB 2. GPU-based IVF algorithms out-perform CUHNSW
and SONG. Brute-force is competitive when the recall is close
to 1 (Q2). The QPS of IVF algorithms is better than CUHNSW
and SONG, and comparable to GANNS and GGNN (espe-
cially when the recall is above 0.95). Brute-force returns the
accurate results, and hence its recall is 1. In the figures, we
draw a dotted red line for brute-force. When the recall is close
to 1, brute-force out-performs all other algorithms for GloVe,
and is quite competitive for the other data sets. Both IVF
and brute-force algorithms can use highly optimized matrix
multiplication libraries for batch vector distance computations,
thereby better utilizing the GPU’s computation capability.

OB 3. CUHNSW out-performs CPU-based HNSW (Q2).
Comparing the 40-thread and 1-thread HNSW curves, we see
that multi-threading greatly improves the performance of CPU-
based HNSW. Moreover, comparing CUHNSW and the 40-
thread CPU-based HNSW, we see that the GPU implementa-
tion can significantly improve the performance of HNSW.

Time Breakdown. Figure [3|shows the time breakdown for the
GPU-based graph ANNS algorithms on SIFT and GIST for
the configurations obtaining recalls greater than and closest to
0.95. We measure the time for computing distances, accessing
various data structures (i.e., Scand+Sexploreds Huvisited> OF
other structures), and allocating memory in GPU. CUHNSW
invokes a CUDA kernel to search each HNSW layer copied
from the CPU. Therefore, CUHNSW has two more compo-
nents (i.e., CPU and upper-layer search).
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OB 4. Single-threaded accesses to the graph search data
structures can be a performance bottleneck (Q3,04). SONG
and CUHNSW spend over 50% of the time in accessing
Scand+Sezplored and Hyisiteq on the SIFT data set. They
perform single-threaded accesses to the graph search data
structures. In comparison, GANNS, GGNN, and CAGRA
all parallelize such accesses, and hence the components for
accessing these data structures become much smaller.

OB 5. GANNS, GGNN, and CAGRA spend most of their
time in distance computation (Q3). If we focus on the higher-
performing algorithms (i.e., GANNS, GGNN, and CAGRA),
distance computation takes over 70% of the total time. More-
over, as the number of feature dimensions increases (from
128 dimensions in SIFT to 960 dimensions in GIST), the
algorithms spend higher fraction of their time in distance
computation. Consequently, to achieve higher performance, it
is important to reduce the number of computed distances.

Number of Computed Distances. Figure ] reports the number
of computed distances per query for the configurations ob-
taining recalls greater than and closest to 0.95. We normalize
the number of distances of each point to that of CPU-based
HNSW with the same recall. (Linear interpolation is used
if the results of the CPU-based HNSW do not contain the
exact recall.) Note that the number of computed distances is
determined by the graph structure (e.g., the out-degree, the
neighbor relationship), the search width, the stop criterion, and
even the implementation of the search data structures (which
may record only a subset of the visited information and hence
only partially avoid redundant distance computations).

OB 6. CAGRA achieves the smallest number of computed
distances per query among GPU-based graph ANNS algo-
rithms. Combined with the time breakdown results, this ob-
servation explains why CAGRA out-performs the other GPU-
based graph ANNS algorithms.
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OB 7. The number of computed distances of CUHNSW
is much worse than that of CPU-based HNSW. While
CUHNSW?’s graph data structure is compatible with hnswlib,
CUHNSW sees much higher number of computed distances
per query. This indicates that either its constructed graph has
lower quality, or the search data structures incur higher number
of redundant distance computation (e.g., because H,;sited
allows conflicting entries to replace existing entries).

Access Cost of Search Data Structures. Figure [5] compares
the cost of accessing Scand, Seaxplored> and Hay;giteq for the
three higher-performing GPU-based graph ANNS algorithms.
We divide the total time of accessing the structures by the
number of computed distances, and report the average latency.
OB 8. CAGRA and GANNS have better implementations of
the search structures than GGNN (Q4). As described in Ta-
blem for H,;sited» GGNN employs a ring-buffer and performs
parallel checking for all the items in the ring-buffer, which
incurs O(|Hy;sitea|) cost. In comparison, CAGRA employs a
hash table with O(1) cost and GANNS does not check the
visited information. For S¢qnq and Sezpiored; GGNN inserts
each point into a sorted buffer by moving the existing items
and inserting the new item. In comparison, both GANNS and
CAGRA sort all points visited in an iteration and merge them
with existing items, thereby reducing the item moving cost.

Scalability Varying GPU Resources. Figure compares
the performance of GPU-based graph ANNS algorithms vary-
ing GPU resources on the SIFT data set. For each algorithm,
we choose the setting that achieves the maximum QPS with
recall > 0.95 in Figure |ZI We use NVIDIA Multi-Instance
GPU (MIG) [19] to configure GPU instances with 1/7, 2/7,
3/7, 4/7, and 7/7 of the A100’s resources. The y-axis reports
QPS normalized to that with 1/7 resources.

OB 9. As the amount of GPU resources increase, GGNN,
GANNS, and CAGRA show good scalability. Comparing the
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cases with 1/7 and 7/7 resources, we see that GGNN, GANNS,
CAGRA, CUHNSW, and SONG obtain 6.4x, 5.6x, 5.2x, 4.3x,
2.7x speedups, respectively. The three higher-performing algo-
rithms can effectively utilize the increasing hardware resources
with large query batches.

Impact of Query Batch Size. Figure [/| compares the per-
formance of GPU-based graph ANNS algorithms varying the
query batch size on the SIFT data set. We vary the size of
each query batch from 1 to 10000. For example, when the
query batch size is 10, we perform 1000 batches of queries.
We report the maximum QPS for configurations whose recalls
are greater than 0.95. Moreover, Figure [6(b) varies the GPU
resources when the batch size is 10.

OB 10. GPU-based graph ANNS algorithms exhibit drastic
performance drops at small query batch sizes. The multi-
CTA mode helps reduce the performance loss of CAGRA
(Q4). Comparing 10 and 10000 batch sizes in Figure
the higher-performing algorithms, GANNS, GGNN, CAGRA
suffer performance drops of 266x, 121x, and 40x, respectively.
Comparing 1 and 10000 batch sizes, GANNS, GGNN, CA-
GRA slows down by 1921x, 863x, and 373x, respectively.
As described in Table [I, most graph ANNS algorithms run a
query per thread block. A100 supports up to 32 thread blocks
per SM, and 3456 thread blocks for 108 SMs in total. When
the query batch size is 1-1000, there are fewer numbers of
thread blocks than the maximum capacity. As a result, it is
more difficult to hide the latency to access the global memory
(e.g., for reading the vector data for distance computation). In
comparison, CAGRA automatically switches to the multi-CTA
mode for small query batch sizes, which employs multiple
thread blocks per query, alleviating this problem.

OB 11. The multi-CTA mode of CAGRA cannot fully utilize
the increasing GPU resources (Q4). As shown in Figure lo(b)}
we see that all algorithms, including CAGRA, show poor
scalability when the query batch size is 10. Even the multi-
CTA design falls short of fully exploiting the GPU resources.

1.0 10 410 1.0
508 0.8 5038 0.8
B 0.6 0675 T06 0.6
N Q N Q
504 048 S04 0.4 2
502 0.2 502 0.2

0.0 16 32 64 128 256 51200 0.0 16 32 48 64 96 1280'0

internal topk graph degree

Fig. 9. Impact of capacity of S.qnq Fig. 10. Impact of out-degree in
and Sezpiored in CAGRA (SIFT).  CAGRA (SIFT).

Impact of Hyper-Parameters. We focus on the best-
performing algorithm, CAGRA, to understand the performance
impact of hyper parameters. Figures 8] [9] and [T0]show the QPS
and the recall of CAGRA while varying the search width,
the internal top-k size (which is the capacity of S.qnq and
Seaplored), and out-degree of the proximity graph. Each point
in the figure is the average across all the configurations with
the same hyper-parameter. The QPS is further normalized to
the one at the lowest x-value.

OB 12. QPS and recall tend to grow in reverse directions
for most hyper parameters except search width. High search
widths cause poor QPS and recalls (Q4). In Figures [9] and [T0]
increasing the hyper-parameter leads to higher number of
visited vertices. Therefore, the QPS decreases while the recall
increases. This trend exists for most other hyper-parameters
(whose figures are omitted for space reasons.) In contrast, in
Figures [8] we see that high search widths lead to both poor
QPS and poor recalls. The best performance appear at around
1 and 2. That is, it is not beneficial to explore more than 2
vertices in parallel in each iteration.

V. CONCLUSION

In this paper, we have evaluated five representative GPU-
based graph ANNS algorithms (i.e., SONG, CUHNSW,
GANNS, GGNN, CAGRA) using four vector data sets. We
have obtained a number of observations from the experimental
results to answer the four raised questions. Our observations
can be summarized into the following guidelines for designing
GPU-based graph ANNS algorithms:

« It is important to perform parallel accesses to the graph
search data structures. Otherwise, this can become a per-
formance bottleneck.

« After optimizing the search structure access cost, the main
optimization goal is to reduce the number of computed
distances per query.

o Hyper-parameters should be carefully selected. The search
width should be set to at most 2.

« It is significant but challenging to better utilize the GPU
resources for small query batches.
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