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ABSTRACT
Software lifeguards, or tools that monitor applications at runtime,
are an effective way of identifying program errors and security ex-
ploits. Parallel programs are susceptible to a wider range of pos-
sible errors than sequential programs, making them even more in
need of online monitoring. Unfortunately, monitoring parallel ap-
plications is difficult due to inter-thread data dependences. In prior
work, we introduced a new software framework for online parallel
program monitoring inspired by dataflow analysis, called Butterfly
Analysis. Butterfly Analysis uses bounded windows of uncertainty
to model the finite upper bound on delay between when an instruc-
tion is issued and when all its effects are visible throughout the sys-
tem. While Butterfly Analysis offers many advantages, it ignored
one key source of ordering information which affected its false pos-
itive rate: explicit software synchronization, and the corresponding
high-level happens-before arcs.

In this work we introduce Chrysalis Analysis, which extends
the Butterfly Analysis framework to incorporate explicit happens-
before arcs resulting from high-level synchronization within a mon-
itored program. We show how to adapt two standard dataflow anal-
ysis techniques and two memory and security lifeguards to Chrys-
alis Analysis, using novel techniques for dealing with the many
complexities introduced by happens-before arcs. Our security tool
implementation shows that Chrysalis Analysis matches the key ad-
vantages of Butterfly Analysis—parallel monitoring, no detailed
inter-thread data dependence tracking, no strong memory consis-
tency requirements, and no missed errors—while significantly re-
ducing the number of false positives.

Categories and Subject Descriptors
F.3.2 [Logics & Meanings of Programs]: Semantics of Program-
ming Languages—Program Analysis; D.1.3 [Programming Tech-
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Figure 1: (a) Butterfly Analysis ignores synchronization arcs (such
as from locks), and hence views the taint(p) and *p as racing if
they are close in time, even if the source code resembles (b). (b)
Chrysalis Analysis eliminates such false positives by dynamically
capturing explicit synchronization arcs. (Note that [un]taint(p)
indicates an application operation that would cause the lifeguard to
[un]set the “tainted” metadata value for p.)

1. INTRODUCTION
To help programmers identify software bugs, a number of power-

ful tools have been developed for recognizing incorrect behaviors
(e.g., memory [15], security [16], and concurrency [17] bugs) by
performing sophisticated analysis of the dynamic execution path at
run-time. These dynamic tools (aka “lifeguards”) are typically im-
plemented using either dynamic binary instrumentation (e.g., Val-
grind [14], Pin [11], or DynamoRio [3]) or with hardware-assisted
logging [4].

Lifeguards often analyze program execution at the instruction
level by maintaining shadow state (metadata) for program mem-
ory and register locations [14]. Examples of lifeguards discussed
throughout this paper include ADDRCHECK [13] and TAINTCHECK [16].
ADDRCHECK ensures that every memory access in the monitored
application touches a properly allocated region of memory by inter-
cepting calls to library routines such as malloc and free to main-
tain metadata state, and checking the state on every memory access.
TAINTCHECK detects security exploits due to memory overwrites
by tagging as tainted, in its metadata, any application memory lo-
cations corresponding to unverified input data, tracking the prop-
agation of tainted data through the application, and checking that
tainted data is not used in indirect jump targets, system call argu-
ments, and other critical operations.

Parallel Monitoring via Butterfly Analysis. A key challenge in
extending lifeguards such that they can find bugs in parallel soft-
ware is dealing with inter-thread data dependences [9, 24]. In
contrast to proposals for hardware-assisted solutions [24], our re-
cent work introduced ”Butterfly Analysis” [9] as a software-only
solution. Butterfly Analysis avoids depending upon capturing a
precise interleaving of events across threads (which is impractical
to capture on modern machines) and instead, uses a new form of



Table 1: Comparison of Parallel Program Monitoring Solutions

Implementation Analysis Monitoring
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ParaLog [24] Yes Yes TSO only high high
Chrysalis Analysis No No Yes good high
Butterfly Analysis [9] No No Yes fair fair

dataflow-style analysis (inspired by interval analysis [21]) that au-
tomatically reasons about bounded windows of uncertainty. Such
windows capture the fact that on modern machines there is an up-
per bound on the delay between when an instruction is issued and
when all its effects are reflected system-wide. Thus, uncertainty
concerning the relative ordering among events on different threads
is limited to instructions issued within a bounded window of time of
each other. In order to avoid considering a combinatorial explosion
of potential orderings, Butterfly Analysis instead performs a new
form of “closure” operation across sliding windows of uncertainty.

False Positives in Butterfly Analysis. While the dataflow-based
approach of Butterfly Analysis offers many advantages (including
a theoretically sound framework with no missed errors), one of
the limitations of the original framework was that it ignored ex-
plicit software synchronization. Because Butterfly Analysis con-
siders all possible instruction interleavings within each window of
uncertainty, lifeguards can conservatively report an error based on
a hypothetical ordering that can never arise due to synchroniza-
tion operations. In Figure 1, for example, because the ordering
untaint(p), taint(p), *p cannot be ruled out under Butterfly
Analysis, a lifeguard would report the dereference of a possibly
tainted pointer. Such false positives represent an additional burden
on the application developer as error reports must be analyzed, true
errors may be missed if they are lost in a large number of false pos-
itive messages, and developers may abandon the tool if the work
required to process the false reports exceeds the tool’s benefits.

Chrysalis Analysis: Adding Happens-Before Arcs to Butterfly
Analysis. In this paper, we propose and evaluate “Chrysalis Anal-
ysis,” which is an extension of Butterfly Analysis that takes into
account the dynamic happens-before constraints resulting from ex-
plicit software synchronization, thereby reducing the number of er-
roneous false positives, as illustrated in Figure 1(b). Integrating
happens-before relationships into the Butterfly Analysis framework
while retaining the elegance and efficiency of the original frame-
work was a major challenge, due to the irregularities that this intro-
duced, as will be described in detail in Section 3. This required gen-
eralizing the dataflow analysis mechanisms in the original frame-
work (which were based on simple sliding windows spanning all
the threads) to handle all the complexities introduced by partial or-
derings induced by happens-before arcs between pairs of threads.

Related Work. This work significantly extends our previous work
on Butterfly Analysis [9], which we will review in more detail later
in Section 2, making use of vector clocks to track synchronization
events. Vector clocks [1, 5, 19] have been used in a number of
data race detectors [2, 7, 8, 12, 18, 26]. For example, Flanagan
and Freund proposed FastTrack [8], which primarily uses a com-
pact representation to detect data races but still uses vector clocks
to track lock and unlock operations. FastTrack achieves precision
similar to full vector-clock based methods and performance simi-
lar to LockSet [17]. Muzahid et al. [12] divide thread execution

into epochs to form a data race detector based on signatures, and
use vector clocks to determine happens-before relationships. In
contrast, Chrysalis Analysis is not simply a data race detector, but
a general dataflow analysis framework for implementing a broad
range of sophisticated lifeguards.

Prior work in adapting lifeguards to parallel applications falls
into two categories: synchronous frameworks, where lifeguard meta-
data values are updated immediately when triggering application
operations are encountered, and non-synchronous frameworks, where
the metadata values are updated more lazily. The primary challenge
with synchronous approaches (e.g., binary instrumentation [3, 11,
14]) is ensuring that the lifeguard metadata is updated atomically
with the application data. Synchronous examples include Chung et
al. [6], which relies on transactional memory and exhibits signifi-
cant performance slowdowns, and FlexiTaint [22], which requires
extensive hardware support. Non-synchronous approaches, such as
Kannan [10] and ParaLog [24], focus on enabling a parallel life-
guard to reproduce the order of application events. While these
designs provide good monitoring fidelity, they require hardware
to monitor cache coherency and are unable to handle memory-
ordering models weaker than TSO [20].

Table 1 compares Chrysalis Analysis with Butterfly Analysis and
ParaLog [24]. Compared to ParaLog, Chrysalis Analysis does not
require special hardware support or a mechanism for tracking inter-
thread memory dependences, and it can also handle weak mem-
ory consistency models. Compared to Butterfly Analysis, Chrysa-
lis Analysis offers improved precision by not reporting errors that
are precluded by software synchronization. In fact, when moni-
toring data-race-free parallel programs, the precision of Chrysalis
Analysis should be comparable to ParaLog (because all valid or-
derings are accurately captured via happens-before arcs).1 There is
a trade-off, though, in obtaining this improved precision, as Chrys-
alis Analysis is somewhat slower than Butterfly Analysis.

Contributions. This paper makes the following contributions:
◦ We propose Chrysalis Analysis, which builds upon Butterfly Anal-

ysis to model the happens-before arcs from explicit synchroniza-
tion, thereby increasing precision. While Butterfly Analysis sup-
ported only a very simple and regular concurrency structure of
sliding windows across all threads, Chrysalis Analysis supports
an arbitrarily irregular and asymmetric acyclic structure within
such windows (making the analysis problem considerably more
challenging).
◦ We present (sound) formalizations in the Chrysalis Analysis frame-

work for reaching definitions, available expressions, and two
well-studied lifeguards.
◦ In contrast to our prior work [9], we implemented a far more

challenging lifeguard (TAINTCHECK, requiring not only dataflow
analysis but also inheritance analysis whereby a single instruc-
tion is itself a transfer function) in both the Butterfly and Chrys-
alis Analysis frameworks to evaluate their precision.
◦ Our experimental results demonstrate a factor of 17.9x reduc-

tion in the number of false positives, while slowing down the
lifeguard by an average of 1.9x.

2. BACKGROUND: BUTTERFLY ANALYSIS
Butterfly Analysis [9] is a parallel dataflow analysis framework

supporting lifeguard analysis of parallel applications. Unlike tradi-
tional dataflow analysis, which performs static analysis on control
flow graphs, Butterfly Analysis analyzes dynamic execution traces
of instructions on different threads.

1We assume explicit synchronization such as locks and barriers
(tracked by Chrysalis Analysis) are used to prevent races.
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Figure 2: (a) Butterfly Analysis divides thread execution into
epochs. A block is a thread-epoch pair. (b) Chrysalis Analysis
incorporates high-level synchronization events by dividing blocks
into subblocks based on the happens-before arcs (shown as dashed
arrows) resulting from such events.

Insights and Structure of Butterfly Analysis. Butterfly Analysis
is based on the observation that modern systems have only a finite
amount of buffering. Even taking into account memory access la-
tency, and store reorder buffer sizes, if two instructions are issued
sufficiently “far apart” (meaning many instructions issued between
them) then they could not have both been buffered within the sys-
tem simultaneously. Butterfly Analysis leverages this observation
to extract a partial order of a parallel application’s events without
monitoring detailed inter-thread data dependence traffic.

Butterfly Analysis achieves this goal by dividing execution time
into epochs. The interval between issuing epoch boundaries is con-
structed to account for the reorder buffer, store buffer, memory la-
tency and skew in delivering notice of an epoch change. Epoch
boundaries are communicated to cores, using either a software-
only token ring combined with a memory fence or a simple piece
of hardware. Note that epoch boundaries need not be established
instantaneously—the sole requirement is a guaranteed maximum
skew among the times a given epoch boundary is established at ev-
ery core.

Note that by construction, two instructions in non-adjacent epochs
(i.e., epochs which do not share an epoch boundary) cannot inter-
leave. This follows from how epochs are defined: instructions in
non-adjacent epochs were already implicitly ordered by the system,
as the earlier instruction must have committed, with any related
store draining from the store buffer, before the later instruction was
even issued. In Figure 2(a), instructions in epoch l−1 must all have
committed with any related store draining before any instruction in
epoch l + 1 is issued. This motivates the use of a 3-epoch sliding
window in Figure 2(a); instructions separated by an epoch or more
are automatically ordered.

On the other hand, instructions in adjacent epochs, i.e., epochs
that share an epoch boundary, are assumed to be potentially concur-
rent when they are not in the same thread. For example, in Figure
2(a), epochs l − 1 and l are adjacent, as are epochs l and l + 1.
Figure 2(a) depicts blocks2 of instructions for three epochs across
seven threads, summarizing the potential concurrency with instruc-
tions by thread t in epoch l (labeled the body of the “butterfly”).
Instructions in the body of the butterfly are concurrent with instruc-
tions in the wings, but ordered with respect to the head and tail, as
intra-thread data dependences are still respected. In reality, epoch
boundaries will be staggered due to skew in delivery latency, and
blocks will be of somewhat varying sizes.

Two-Pass Lifeguard Analysis. Analysis proceeds one epoch at a
time, using a sliding window of three epochs. Lifeguard threads,
one per application thread, execute in parallel and lag at least two
epochs behind the application threads. Unlike traditional dataflow
analysis, Butterfly Analysis maintains global state to summarize
earlier epochs that are no longer within the window. The Strongly
Ordered State (SOS) represents the global metadata resulting from
all instructions executed at least two epochs prior to epoch l. Each
lifeguard thread operating on a butterfly also knows that the head
has already executed relative to the body for its application thread
(Figure 2(a)), and augment the SOS with this additional, locally
known information to form their thread’s Local Strongly Ordered
State (LSOS).

Analysis for a given epoch proceeds in two passes. In the first
pass, each lifeguard thread performs dataflow analysis using only
local events, and produces a summary or SIDE-OUT of lifeguard-
relevant events. In the next phase, lifeguard threads compute the
meet of these summaries to create the SIDE-IN. In the second pass,
dataflow analysis is repeated, this time including the SIDE-IN, and
lifeguard checks are performed. Finally, a summary of the entire
epoch’s execution is created, and used to update the SOS.

The events the dataflow analysis will track, the meet operation,
the metadata format, and the checking algorithm are all specified by
the lifeguard writer. Tolerating uncertainty introduces imprecision
into the dataflow analysis. Our prior paper [9] proved that Butterfly
Analysis does not miss any errors (zero false negatives), but it sac-
rifices precision in the form of false positives arising from the lack
of a relative ordering among events within a sliding window.

3. OVERVIEW OF CHRYSALIS ANALYSIS
In this section, we introduce Chrysalis Analysis. We begin by

motivating the utility of our analysis using simple examples, as
well as showcasing the challenges we faced in generalizing But-
terfly Analysis. Then, we introduce the new primitives that en-
able Chrysalis Analysis. Finally, we illustrate some of the major
challenges in generalizing Butterfly Analysis to produce Chrysalis
Analysis, namely maintaining global state and updating local state.

3.1 Adding Happens-Before Arcs: A Case Study
We begin with a few examples that illustrate the utility of our

new primitives as well as the challenges that lie ahead.
Consider Figure 3(a). This shows a single thread’s execution,

where in one block it issues (an instruction that serves to) untaint(p)
and in the next *p. Any single-threaded analysis will conclude that
at the point where *p is dereferenced, p is untainted because only
one thread was executing and that thread untainted p prior to deref-
erencing it as a pointer.

Now consider Figure 3(b). Here, we see Thread 1 issuing untaint(p);
unlock(L). After Thread 1 unlocks L, Thread 0 is the next thread to
2A block is specified by an epoch-thread tuple (l, t).
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Figure 3: TAINTCHECK examples for dereferencing a pointer
p. (a) In single-threaded execution, respect of intra-thread depen-
dences implies p is untainted. (b) The synchronization between
Thread 1 and Thread 0 means block b3 executes before block b2.
Since b1 does not assign to p, p is untainted. This is a win for
Chrysalis Analysis. (c) Similar to (b), but now Thread 0 issues
taint(p) in b1 concurrently with b3. Conservative analysis means
p must be treated as tainted. (d) Another win for Chrysalis Analy-
sis. Each dereference of p in b4 and b6 is guaranteed to only see p
as untainted.

acquire L (lock(L)) and then issues *p. In this case, the happens-
before relationship is not due to intra-thread data dependences but
rather the synchronization on lock L. However, from the perspective
of a lifeguard monitoring this program, Thread 1 issued untaint(p)
before Thread 0 issued *p; since no instructions in Thread 0 prior
to *p conflict, this analysis should be identical to case (a). This is
true for Chrysalis Analysis, but not Butterfly Analysis.

Finally, consider Figure 3(c), which contains a data race. Thread
1 is still untainting p and releasing lock L immediately before Thread
0 dereferences p. However, we also see that block b1 in Thread
0, prior to issuing lock(L) in block b2, issued taint(p) without
holding lock L. To know whether the dereference of p is safe in
Thread 0, the analysis needs to know whether p was tainted at the
program point immediately prior. It knows that two things hap-
pened before the dereference: p was tainted by Thread 0, and p
was untainted by Thread 1. However, the ordering between these
two operations remains unknown! Figure 3(c) illustrates that extra
happens-before information is not a panacea for all causes of im-
precision. In this case, the lifeguard must behave conservatively,
since the analysis cannot determine whether the taint(p) occurs
before or after the untaint(p).

While incorporating happens-before arcs can significantly im-
prove precision, it spoils the key ingredient underlying Butterfly
Analysis, namely, that the simple “butterfly” of Figure 2(a) cap-
tured all the ordering information known to the lifeguard. Each
of the steps in Butterfly Analysis’ two-pass analysis exploits this
regular structure in a fundamental way; and with happens-before
arcs, this regularity no longer exists (see Figure 2(b)). Including
additional partial ordering information, while making the analysis
more precise, also makes the analysis much more difficult!

3.2 Maximal Subblocks
Consider again Figures 3(b) and (c). In both cases, what allowed

us to analyze these figures was the fact that the traces were divided

at each lock or unlock call. This allowed us to reason that an
entire section of the trace happened before another section. This
motivates the following definition, based on the synchronization
events currently tracked by our analysis. An execution trace for a
thread is partitioned into maximal subblocks (subblocks for short)
by breaking the trace (i) after the last instruction of an epoch, (ii)
after each send, unlock, or barrier-wait call, and (iii) whenever
the following instruction is a receive or lock call.3 This sub-
division enables us to reason that entire maximal subblocks must
have occurred before, after, or concurrent with other maximal sub-
blocks. Note that the maximal subblocks are precisely the irreg-
ularity mentioned earlier. The number and size of maximal sub-
blocks per thread, and per epoch, is based on the frequency and
types of synchronization used by the application. This is illustrated
in Figures 1(b) and 2(b).

Despite the introduction of subblocks, for ease of comparison,
we will adopt the notation of Butterfly Analysis by referring to
instructions based on their offset within blocks. Namely, (l, t, i)
refers to the ith instruction in epoch l of thread t’s trace.

Next, we discuss how to determine, given two subblocks, b and
b′, if b executed before, after, or concurrent with b′.

3.3 Testing Ordering Among Subblocks
To test ordering between maximal subblocks, each maximal sub-

block b has an associated vector clock v(b). Vector clocks have
been used in many other works [1, 2, 5, 8, 19]; they are a natural
distributed clock primitive. We are using them here to label individ-
ual subblocks based on synchronization events and epoch bound-
aries.4 The addition of vector clocks and subblocks transforms the
Butterfly Analysis diagram, shown in Figure 1(a), into Figure 1(b).

We modify the standard vector clock algorithm slightly. Let n be
the number of threads. If v(b)[i] is the ith position in vector clock
v(b), then for 0 ≤ i < n we initially set v(b)[j] = 1 if j = i
and v(b)[j] = 0 otherwise. For example, the second thread in a 3-
thread system would begin with vector clock < 0, 1, 0 >. Consider
a send (equivalently, unlock L) from thread j to thread k. If vj is
thread j’s current vector clock and vk is thread k’s current vector
clock, then thread j will first bind vj to vsend, which k will later re-
ceive. Then, vj [j] is incremented, and a new maximal subblock be-
gins in thread j. When thread k processes the associated receive
(equivalently, lock L), it will set vk[i] = max{vsend[i], vk[i]} for
0 ≤ i < n and then increment vk[k]. The receive instruction in
thread k begins a new maximal subblock.

On a barrier wait (assuming all n threads participate) let

∀i, 0 ≤ i < n, vbar[i] = vi[i].

Then, thread j updates its vector clock to be:

∀i 6= j, vj [i] = vbar[i], vj [j]++

This is easily extended to work for a barrier of n′ < n threads:
Update vj [i] only if both threads i and j were among the n′ threads
participating in the barrier.

It makes sense to include ordering information that Butterfly
Analysis provides. After the second epoch, we can update vec-
tor clocks at epoch boundaries, since the ordering is always known
3In the special case where the first instruction of an epoch is a
receive or lock call, the first maximal subblock is considered
empty and the second maximal subblock begins with the receive
or lock, respectively.
4We make the typical assumption that, even on relaxed memory
consistency models, synchronization events such as lock, unlock
and barrier-wait always carry an associated memory fence.
Such a fence implies, for example, that all the effects of instruc-
tions before an unlock complete before the lock is released.



when instructions are separated by at least an epoch. Epoch l treats
a snapshot of the vector clocks available at the end of epoch l − 2
as a barrier (call them v∗bar). While v∗bar is calculated the same as
vbar , the update rule differs slightly:

∀i 6= j, vj [i] = max{v∗bar[i], vj [i]}, vj [j]++

We can compare two vector clocks, v and v′, by comparing their
components. Vector clock v happens before vector clock v′ if
∀i, v[i] ≤ v′[i] ∧ ∃j s.t. v[j] < v′[j]. We indicate this relation-
ship using v < v′ or equivalently, v′ > v. If v 6< v′ and v′ 6< v,
then v and v′ label concurrent maximal subblocks; we will denote
this as v ∼ v′.

We will use this terminology loosely. For instance, if (l, t, i)
is an instruction in maximal subblock b, then we might talk about
v(l, t, i) or v(b), which are equivalent vector clocks.

3.4 Reasoning About Partial Orderings
Some new complexities arise when trying to reason about all the

partial orderings which are consistent with Chrysalis Analysis. For
instance, there can be an upwards arc from epoch l+1 into epoch l,
where a subblock in epoch l+1 happens before a different subblock
in epoch l. This is illustrated in Figure 2(b), where the last subblock
in the body happens after a subblock in the rightmost thread in the
wings. Once all the instructions in epoch l have executed, we also
know that some of the instructions in epoch l+1 have also executed,
because there exists a maximal subblock in epoch l which happens
after a maximal subblock in epoch l + 1. We call l+ the extended
epoch of l, and define it to include all instructions in epoch l, as
well as all instructions (l + 1, t, i) in epoch l + 1 for which there is
some subblock b in epoch l where v(l + 1, t, i) < v(b).

We introduce the concept of a valid vector ordering, which ex-
tends Butterfly Analysis’ valid ordering to incorporate happens-
before arcs. A valid ordering is any total sequential ordering of
instructions consistent with both the intra-thread dependences and
the ordering of instructions in non-adjacent epochs. This is too
broad a set of orderings for Chrysalis Analysis to use because it
includes orderings that violate the happens-before arcs captured by
our vector clocks. To capture the more restricted set of orderings,
we define valid vector orderings:

DEFINITION 3.1. Ol is a valid vector ordering (VVO) if:
◦ BACKWARDS COMPATIBLE

Ol restricted to epochs [0, l] and ignoring happens-before arcs
is a valid ordering.
◦ INCLUDES ALL INSTRUCTIONS THROUGH EPOCH l+

All instructions from epochs 0 to l are included, as well as those
instructions from epoch l + 1 that belong to l+, with no instruc-
tions from epochs > l + 1 included.
◦ RESPECTS HAPPENS-BEFORE

If v(l, t, i) < v(l′, t′, i′), instruction (l, t, i) appears before in-
struction (l′, t′, i′) in Ol.

3.5 Challenge: Maintaining Global State
As in Butterfly Analysis, Chrysalis Analysis requires global state

because the analysis only proceeds over a sliding window of execu-
tion. Butterfly Analysis made simplifying assumptions that allowed
it to symmetrically reason about each butterfly in parallel. For in-
stance, consider the traces depicted in Figure 3(d). In Butterfly
Analysis, the dashed happens-before arcs (from synchronization)
are ignored. Suppose this all occurred within the same epoch l.
Both subblocks b4 and b6 would conservatively reason that p was
tainted before the dereference, as it was possible that the taint(p)
occurred between the untaint(p) and *p. However, that taint(p)

is issued only once, whereas Thread 1 issues untaint(p) twice!
It was impossible for both dereferences of p to be against a tainted
pointer, and also have p tainted at the end of epoch l. However, But-
terfly Analysis would have summarized this epoch with p tainted.

Once Chrysalis Analysis adds the happens-before (dashed) arcs
in Figure 3(d), it is clear not only that each *p is to untainted
data, but also that at the end of the epoch, p is untainted. This
requires epoch-level summarization to consider the happens-before
arcs. Summarizing an “epoch” in Chrysalis Analysis will also mean
summarizing the extended epoch. Suppose alternatively that sub-
blocks b2 and b3 were instead in epoch l + 1, while all other sub-
blocks were in epoch l as before; b2 now belongs to l+, and we
still conclude that after all instructions in l+ have executed, p is
untainted and we update the global state (SOS) accordingly.

3.6 Challenge: Updating Local State
Once again, consider Figure 3(d). As stated earlier, the second

pass for Butterfly Analysis was entirely in parallel, because there
were no additional happens-before arcs. Chrysalis Analysis wishes
to improve on this imprecision. As the second pass of the analysis
proceeds, at each entry point to a new maximal subblock Chrysalis
Analysis must wait for all of its direct parents (those subblocks
with a happens-before arc pointing to it) to finish their second pass
before beginning. This makes the analysis aware, for example, that
b2’s taint of p was prior to b6, and hence b6’s subsequent issue of
untaint(p) made *p safe.

To do this analysis correctly, it is important to note that each di-
rect parent takes on a role analogous to the head in Butterfly Anal-
ysis. However, now we can have multiple “heads”, arising either
due to explicit synchronization or intra-thread sequential seman-
tics. The parents are unlikely to be ordered themselves. Just as
in Figure 3(c), we will need to conservatively reason about instruc-
tions that executed prior to a subblock. This will lead to our treating
the local state (LSOS) more as a dataflow problem and less as pure
state. We will conduct a “meet” at subblock entry points of the
incoming GEN and KILL sets we define in the sections that follow.

4. REACHING DEFINITIONS
In this section, we will show how to extend Reaching Defini-

tions, a classical dataflow analysis problem, to Chrysalis Analy-
sis. We will begin by showing how to define generating and killing
definitions at the instruction, subblock and epoch level, as well as
showing how to compute the Side-In and Side-Out primitives. Then
we will show how to update both the Strongly Ordered State (SOS)
and the Local Strongly Ordered State (LSOS), and present the two-
pass algorithm for reaching definitions. Throughout the section, we
will prove key properties of our definitions, showing that Chrysa-
lis Analysis will not “miss an error” (meaning, it will never claim a
definition d does not reach a program point p when there was a way
for that to happen). Later in Section 5 we will give an example life-
guard, TAINTCHECK, based on reaching definitions. Extensions
of Chrysalis Analysis to Available Expressions, another classical
dataflow analysis problem, and ADDRCHECK, a memory lifeguard,
appear in Appendices A and B, respectively.

4.1 Gen and Kill equations
We begin by defining GEN and KILL at all granularities, repre-

sented by G and K, respectively.

Instruction-Level. Let Gl,t,i = {d} if (l, t, i) generates d. Let
Kl,t,i = {d|(l, t, i) kills d}.

Maximal Subblock-Level. We often wish to refer to a maximal



subblock b as (l, t, (i, j)), meaning it is composed of instructions
(l, t, i) through (l, t, j). If b = (l, t, (i, j)) then:

Gb = Gl,t,(i,j) = Gl,t,j ∪(Gl,t,(i,j−1) −Kl,t,j)
Kb = Kl,t,(i,j) = Kl,t,j ∪(Kl,t,(i,j−1) − Gl,t,j)

with Gl,t,(i,i) = Gl,t,i andKl,t,(i,i) = Kl,t,i as base cases to the re-
cursion. These are the standard flow equations for GEN and KILL,
defined now over maximal subblocks.

Side-Out and Side-In (Per Subblock). In generalizing Butterfly
Analysis’ treatment of Side-Out and Side-In, we must take into ac-
count the additional information provided by the vector clocks. It
now makes sense to consider Side-Out and Side-In per maximal
subblock b, rather than per block (l, t). In the event that there are
no happens-before arcs, the subsequent equations are equivalent to
the original Butterfly Analysis equations for Side-Out and Side-In.
For maximal subblocks b and b′, where b = (l, t, (j, k)), the new
equations for GEN-SIDE-OUT and GEN-SIDE-IN are:

GEN-SIDE-OUTb =
S

j≤i≤k Gl,t,i

GEN-SIDE-INb =
S
{b′|v(b′)∼v(b)} GEN-SIDE-OUTb′

Epoch-Level. We will define three useful sets, AFTER, MB and
NBEFORE, and use them to define Gl and Kl for an epoch l. If b is
a maximal subblock in l+ (the extended epoch of l), then:

MBl = {b|b is a maximal subblock in epoch l}.
AFTERb = {b′|b′ ∈ MBl+ and v(b) < v(b′)}

NBEFOREb = {b′|b′ ∈ (MBl−1 ∪MBl+)∧
(v(b) ∼ v(b′) ∨ v(b) < v(b′))}

Gl =
S
{b|b∈MB

l+}

“
Gb −

S
b′∈AFTERb

Kb′

”
Kl =

S
{b|b∈MB

l+}

“
Kb −

S
{b′|b′∈NBEFOREb}

Gb′

”
LEMMA 1. If there exists a valid vector ordering (VVO) Ol of

the instructions in l+ such that d ∈ G(Ol) then d ∈ Gl.

PROOF. d ∈ G(Ol) implies that there exists an instruction (l, t, i)5

in the total order Ol such that (l, t, i) generates d and no subse-
quent instruction kills d. Let b be the maximal subblock containing
(l, t, i). By the definition of VVO, there is no instruction (l′, t′, i′)
that kills d such that either v(l, t, i) < v(l′, t′, i′) or (l, t, i) is be-
fore (l′, t′, i′) in the same block b. Thus, d ∈ Gb (by construction)
and d /∈

S
b′∈AFTERb

Kb′ , implying d ∈ Gl.

LEMMA 2. If d ∈ Kl, then no valid vector ordering O of the
instructions in epochs l − 1 through l+ exists such that d ∈ G(O).

PROOF. If d ∈ Kl, then by definition there exists a maximal
subblock b such that d ∈ Kb and for all maximal subblocks b′ such
that v(b) ∼ v(b′) or v(b) < v(b′), d /∈ Gb′ . Let (l, t, k) be the
last instruction in b that kills d; d ∈ Kb implies that no instruction
in b after (l, t, k) generates d. (Due to data dependences, kills and
generates of d are strictly ordered within a subblock.)

Consider any VVO O of the instructions in epochs l− 1 through
l+. By the definition of VVO, the only instructions following (l, t, k)
in O that can kill or generate d are those belonging to any maximal
subblock b′ that is concurrent or occurs strictly after b. As argued
above, d /∈ Gb′ , implying either (i) b′ never generates d or (ii) any
generation of d in b′ is followed by a subsequent kill of d also in b′,
which would be reflected in O. Thus, any generation of d in O ei-
ther occurs strictly before (l, t, k), or else is followed by a kill of d;
either way, d does not reach the end of O. Hence, d /∈ G(O).

5Actually, the instruction must exist in l+, not just in l. For sim-
plicity of exposition, we chose to use l.

4.2 Strongly Ordered State
As in Butterfly Analysis, Chrysalis Analysis uses the epoch-

level summaries Gl and Kl to compute the Strongly Ordered State
(SOS). This equation is unchanged from Butterfly Analysis; all the
changes are in the generalization of Gl and Kl.

SOS0 = SOS1 = ∅
SOSl = Gl−2 ∪(SOSl−1 −Kl−2) ∀l ≥ 2

The following theorem proves that if there exists any VVO such
that a definition d reaches the end of l epochs, then it will be in
SOSl+2.

THEOREM 3. If there exists a valid vector ordering Ol of the in-
structions in epochs [0, l+] such that d ∈ G(Ol) then d ∈ SOSl+2.

PROOF. Our proof will proceed by induction on l. In the base
case of l = 0, we have SOSl+2 = G0 by an application of Lemma 1.
Now assume that the lemma is true for all l < k, and show for
l = k. Suppose d ∈ G(Ol). As in Lemma 1, by the defini-
tion of VVO, there exists an instruction (l̃, t̃, ĩ) in Ol generating d
such that no subsequent instruction kills d. In particular, ∀(l′, t′, i′)
where v(l̃, t̃, ĩ) < v(l′, t′, i′), d /∈ Kl′,t′,i′ . There are two cases:
l̃ ≥ l: Let b be the maximal subblock containing instruction (l̃, t̃, ĩ).

No subsequent instruction in b can kill d. Thus, d ∈ Gb and
b belongs to l+, which implies d ∈ Gl. Hence, d ∈ SOSl+2

by definition.
l̃ < l: Because, as argued above, there is no kill ordered after (l̃, t̃, ĩ),

we have that d /∈ Kl and there exists a VVO Ol−1 of the in-
structions in epochs [0, (l−1)+] such that d ∈ G(Ol−1). Ap-
plying the inductive hypothesis, we have that d ∈ SOSl+1.
Thus, d ∈ SOSl+1 −Kl, implying d ∈ SOSl+2.

4.3 Local Strongly Ordered State
Once we have computed the SOS, the next step is to calculate

the Local Strongly Ordered State (LSOS). As mentioned in Sec-
tion 3.6, we face a few challenges in generalizing Butterfly Anal-
ysis’ LSOS update rule. Butterfly Analysis proposed an equation
for calculating the LSOS from the body (block (l, t)) based on the
SOS, and the G and K from the head (block (l − 1, t)):

Butterfly Analysis: LSOSl,t = Gl−1,t ∪(SOSl −Kl−1,t)∪
{d|d ∈ SOSl ∧ d ∈ Kl−1,t ∧ ∃t′ 6= t s.t. d ∈ Gl−2,t′}

This rule took advantage of a specialized structure that does not
hold in Chrysalis Analysis. First, there was only one head, or direct
predecessor, for any block, so Gl−1,t and Kl−1,t are easily directly
referenced. Second, removing a definition d ∈ Kl−1,t from SOSl

was incorrect if another thread t′ had actually generated d in epoch
l− 1 or l− 2; only l− 2 had to be directly added back in, because
everything in epoch l − 1 was part of the GEN-SIDE-INl,t. The
union of the final set fixed the accuracy of the LSOS, but at the
price of a deviation from the standard OUT = GEN∪(IN − KILL)
formulation.

Chrysalis Analysis must anticipate the possibility of a more gen-
eralized structure, where subblocks have multiple direct parents,
which may all execute before a particular subblock b, but not nec-
essarily be totally ordered amongst themselves. This is illustrated
in Figure 3(c), where b1 and b3 both occur before b2 but the taint
status of p is uncertain (conservatively, tainted) before b2. Dataflow
analysis provides a natural way of handling such effects: the meet
operator.

Our solution for Chrysalis Analysis will involve representing the
local differences applied to the SOS as transfer functions. We will



use ING and OUTG for GEN difference, and INK and OUTK for
KILL. Furthermore, we will present a way of calculating the LSOS
from the SOS that will use the OUT = GEN∪(IN − KILL) struc-
ture, where IN = SOSl and OUT = LSOSb, without involving
extra sets.

The rest of the section focuses on the program point immediately
before a maximal subblock b. For instructions on the “interior” of b,
we can use standard dataflow analysis techniques to update the in-
termediate state, i.e., LSOSl,t,i+1 = Gl,t,i ∪(LSOSl,t,i − Kl,t,i).
We only require a more general solution to the entry points of max-
imal subblocks. The meet operator (

d
) for reaching definitions in

Chrysalis Analysis is union (
S

).

LSOS: Representing GEN As Transfer Functions.
The LSOS transfer functions focus on the sliding window of

epochs l−1 through l+1. Let MB[l1,l2] =
S

l1≤li≤l2
MBli . Then,

we define HB(b):

HB(b) = {b′|v(b′) < v(b) where
`
b′ ∈ MB[l−1,l+1]

´
∨

(b′ ∈ MBl−2 ∧ ∃b′′ ∈ MBl−1 such that v(b′′) < v(b′))}

for maximal subblocks b and b′. Note that this captures all maximal
subblocks b′ that happen before b and are within the 3 epoch sliding
window, as well as including those subblocks in epoch l − 2 that
have predecessors in epoch l − 1.

For the LSOS, we define Gb and Kb to be the standard dataflow
formulations of G and K over a maximal subblock b, restricted to
the sliding window of epochs l−1 through l+1. Define pred(b) to
be the set of maximal subblocks b′ ∈ HB(b) such that either (i) b′ is
the immediate predecessor of b in thread t or (ii) the first instruction
of b receives a send from (equivalently, locks an unlock by) the last
instruction of b′. Barriers are an all-to-all send/receive. Then we
can define the OUT and IN formulas for GEN:

OUTGb = Gb ∪(INGb −Kb)

INGb =

(
∅ if b is a thread’s 1st subblock at level l − 1
d

b′∈pred(b) OUTGb′ otherwise

The following establishes the correctness of this formulation:

LEMMA 4. If there exists a valid vector ordering O of the in-
structions in HB(b) such that d ∈ G(O) then d ∈ INGb .

PROOF. Suppose HB(b) is not empty and d ∈ G(O). As in
earlier proofs, the definition of VVO implies that there exists in
O an instruction (l′, t′, j′) that generates d in a maximal subblock
b′, such that no subsequent instruction kills d, and in particular, ∀
maximal subblocks b̃ ∈ HB(b) with v(b′) < v(b̃), we have d /∈ Kb̃.
It follows that d ∈ Gb′ , and hence d ∈ OUTGb′ . Moreover, since
d /∈ Kb̃ and b̃ is not the first subblock for its thread at level l − 1,
we have that d ∈ OUTG

b̃
for all such b̃.

If b′ ∈ pred(b), then by the definition of INGb and the fact that
b is not the first subblock for its thread at level l − 1, we have
d ∈ INGb . If b′ /∈ pred(b), then b′ ∈ HB(b) implies that there exists
a b̃ ∈ pred(b) such that v(b′) < v(b̃). As argued above, d ∈ OUTG

b̃
,

and hence d ∈ INGb .

INGb captures the set of local GEN differences to reflect in the
LSOS at the entry point to b, i.e., definitions from instructions that
executed before b but may not be in the SOS.

LSOS: Representing KILL As Transfer Functions.
The formula for OUTKb is similar to the formula for OUTGb :

OUTKb = Kb ∪(INKb − Gb).

Recall that the meet function
d

is still union, even though we are
combining kill sets.

In defining INKb , it helps to have the following set:

DEL-INKb′ =
{b′′|(v(b′′) ∼ v(b′)) ∨ ((v(b′) < v(b′′)) ∧ (v(b) 6< v(b′′)))}

INKb =

8><>:
∅ if b is a thread’s 1st subblock at level l − 1
d

b′∈pred(b)(OUTKb′−
(∪b′′∈DEL-INKb′

GEN-SIDE-OUTb′′)) otherwise

LEMMA 5. If d ∈ INKb then ∀ valid vector orderings O com-
posed solely of all instructions from maximal subblocks b′ such that
v(b′) < v(b), d /∈ G(O).

PROOF. If d ∈ INKb then ∃b′ ∈ pred(b) such that d ∈ OUTKb′

and ∀b′′ such that b′′ is concurrent with b′ or b′′ occurs after b′ but
not after b, d /∈ GEN-SIDE-OUTb′′ .

Consider any O, restricted to subblocks that occur before b. It
must have a nonempty suffix S beginning with an instruction (l′, t′, i′)
that is the last kill of d in b′. By the definition of VVO, the remain-
ing instructions in S must either be concurrent with b′ or happen
after—precisely the set encapsulated by DEL-INKb′ . By construc-
tion, if d ∈ OUTKb′ − (

S
b′′∈DEL-INKb′

GEN-SIDE-OUTb′′) then
d /∈ GEN-SIDE-OUTb′′ for all b′′ ∈ DEL-INKb′ , meaning no later
instruction in S can define d. Thus, since d ∈ K(S) for a nonempty
suffix S implies d ∈ K(O), we have that d /∈ G(O).

Creating LSOS. We now have all the building blocks we need to
adjust the formula for calculating LSOS at subblock entry points.
If b = (l, t, (i, j)) is a maximal subblock, let LSOSb indicate the
LSOS at the entry to block b, namely, LSOSl,t,i. Then LSOSb =
INGb ∪(SOSl − INKb ).

THEOREM 6. If ∃ a valid vector ordering O of the instructions
from epochs [0, (l − 2)+] and HB(b) such that d ∈ G(O), then
d ∈ LSOSb.

PROOF. The proof follows from a straightforward extension of
Lemma 4. Instead of limiting ourselves to an ordering of instruc-
tions in HB(b), we consider all instructions from epochs [0, (l −
2)+] and HB(b). Then if the instruction (l′, t′, i′) generating d has
l′ > l− 2, Lemma 4 dominates. Otherwise, it is still the case the d
is not in a later kill set (represented by INKb ). If we restrict the or-
dering to the first [0, (l− 2)+] epochs, this is the same as the proof
that d ∈ SOSl (Theorem 4.2), so d ∈ SOSl − INKb.

4.4 In and Out Functions
We now consider what each instruction will compute for its IN

and OUT functions. For an instruction (l, t, i) that belongs to max-
imal subblock b = (l, t, (j, j′)):

INl,t,i = GEN-SIDE-INb

S
LSOSl,t,i

OUTl,t,i = Gl,t,i

S
(INl,t,i −Kl,t,i)

4.5 Applying the Two-Pass Algorithm
Reaching Definitions in Chrysalis Analysis, like in Butterfly Anal-

ysis, is implemented as a two-pass algorithm. In the first pass, Gb,
Kb and GEN-SIDE-OUTb are calculated. Once all threads finish the
first pass, the second pass can begin. The second pass must respect
the happens-before arcs; if subblock b′ in thread t′ is an immediate
predecessor of subblock b in thread t, thread t cannot calculate INGb
or INKb until the second pass of b′ has completed and OUTGb and
OUTKb are available. This means the LSOSb cannot be computed
until just before the start of the second pass for subblock b. Once
all threads have completed the second pass, it is safe to update the
SOS.



5. TAINTCHECK
As in Butterfly Analysis, we build the Chrysalis Analysis ex-

tension of TAINTCHECK on top of reaching definitions. TAINT-
CHECK presents a unique challenge, as it incorporates not only
dataflow but also inheritance. Instead of definitions, expressions,
or addresses, a particular Gl,t,i is actually a transfer function. An
instruction can either taint a memory location x, untaint a mem-
ory location x, be a unary operation on some location a or a binary
operation on locations a and b. More formally, as in Butterfly Anal-
ysis, define Gl,t,i as:

Gl,t,i =

8>>><>>>:
(xl,t,i ← ⊥) if (l, t, i) ≡ taint(x)

(xl,t,i ← >) if (l, t, i) ≡ untaint(x)

(xl,t,i ← {a}) if (l, t, i) ≡ x := unop(a)

(xl,t,i ← {a, b}) if (l, t, i) ≡ x := binop(a, b)

When x := unop(a), we say x inherits (metadata) from a and
likewise x := binop(a, b) indicates x inherits (metadata) from a
and b. We use the set S = {>,⊥, {a}, {a, b}|a, b are memory
locations} to represent the set of all possible right-hand values in
our mapping. We will also utilize the function loc() that given
(l, t, i) returns x, where x is the destination location in instruction
(l, t, i). As in Butterfly Analysis, Kl,t,i takes the form:

Kl,t,i = {(xl,t,j ← s)|s ∈ S, j < i, loc(l, t, j) = loc(l, t, i)}

Gb, Kb, GEN-SIDE-OUTb and GEN-SIDE-INb all follow the reach-
ing definitions template, but now track transfer functions instead of
actual states. However, the LSOS and SOS still need to be states,
as in reaching definitions. In general, we would like GEN to track
⊥ and KILL to track >. To convert between transfer functions
and actual metadata, Butterfly Analysis introduced a resolve, or
checking, algorithm: resolve(m, l, t, i) takes a memory location
m which is the destination of instruction (l, t, i) and returns either
> or ⊥.

Resolving Transfer Functions to Taint Metadata. TAINTCHECK
requires resolving potential inheritance relationships when the or-
dering between concurrent instructions is unknown. Our previous
work [9] introduced an algorithm for “resolving” inheritance by
recursively evaluating transfer functions in the wings, subject to
two termination conditions: one for sequential consistency and one
for relaxed memory models. The addition of vector clocks natu-
rally prunes the search space any taint resolution algorithm has to
explore: we associate the vector clock with each predecessor and
verify that the current path of vector clocks is a VVO. The resolve
algorithm is shown in Algorithm 1. Our resolve algorithm takes
an input a tuple (m, l, t, i) and a set T of transfer functions, and re-
turns the taint status of m at instruction (l, t, i). For brevity within
resolve, loc(yi) will refer to the destination of the instruction as-
sociated with yi.

We define a proper predecessor of xl,t,i ← s to be any yl′,t′,i′ ←
s′ such that loc(l′, t′, i′) ∈ s, s ∈ S and v(l, t, i) 6< v(l′, t′, i′).

The sequential consistency and relaxed memory consistency mod-
els termination conditions6 are maintained. Now, resolve will
only replace a predecessor yj ← s with a new predecessor yj′ ←
s′ if, using vector clocks, the instruction associated with yj′ does
not occur after the instruction associated with yj .

6The sequential consistency termination condition required ensur-
ing that a sequence of proper predecessor replacement operations,
when restricted to a single thread, only allowed replacement if the
associated instruction occurred earlier within the thread; the re-
laxed memory consistency termination condition disallowed a pre-
decessor to eventually be replaced by itself [9].

Algorithm 1 TAINTCHECK resolve(m, l, t, i)

Input: m, (l, t, i), T
Initialize P (m, l, t, i) as the list of proper predecessors of
(xl,t,i ← s) from T : {(y0 ← s0), . . . , (yk ← sk)}, where
loc(yi) ∈ s.
for all (yj ← sj) ∈ P (m, l, t, i) do

if sj = ⊥ then
Terminate with the rule (xl,t,i ← ⊥).

else if sj = > then
Remove the (yj ← >) from P (m, l, t, i), and continue

Add the proper predecessors (y′i′ ← s′i′) ∈ T of (yj ← sj)
to P (m, l, t, i), subject to a termination condition and veri-
fication that following these new arcs does not violate VVO
rules.

Postcondition: Either (xl,t,i ← s) converges to (xl,t,i ←
⊥), or P (m, l, t, i) becomes empty. If P (m, l, t, i) is empty,
conclude (xl,t,i ← >).

Converting Transfer Functions Into Metadata. We will use the
function LASTCHECK(x, b), introduced in Butterfly Analysis, which
represents the last taint status returned when resolving the metadata
of location x in subblock b, modified to summarize a subblock b in-
stead of a block (l, t). If x was the destination for an instruction in
subblock b, then LASTCHECK(x, b) will return> or⊥; otherwise,
it returns ∅. This serves as a proxy for Gb or Kb whenever we
require states, not transfer functions.

Extracting GEN-SIDE-OUT into State. We introduce a new set
DIDTAINTb for a maximal subblock b, which includes memory lo-
cation m if there exists an instruction (l, t, i) contained within b for
which m was the destination, and resolve(m, l, t, i) returned ⊥.
More formally:

DIDTAINTb = {m|∃(l, t, v), i ≤ v ≤ j, m = loc(l, t, v) ∧
resolve(m, l, t, v)← ⊥}

If the resolve function for a location m ever returns ⊥, m ∈
DIDTAINTb. This set is now used in place of the GEN-SIDE-OUT
whenever we need an actual state versus transfer functions.

At this point, we have almost completed the adaptation of TAINT-
CHECK into Chrysalis Analysis. We have Gb, Kb, GEN-SIDE-OUT
and GEN-SIDE-IN, and when necessary can move between transfer
functions and actual states.

Complications: Calculating INKb . One complication arises that
was not an issue for Butterfly Analysis. Butterfly Analysis had a
special case for updating the LSOS, which used the head. Because
the head always executed before the body, LASTCHECK for the
head was always available. In Section 4.3, our generalization of
the update rules for the LSOS requires access to GEN-SIDE-OUTb

as states, not transfer functions. We require them before we begin
the second pass over subblock b, but they are not guaranteed to be
available until after each thread completes its entire second pass.
Recall the equations:

DEL-INKb′ =
{b′′|(v(b′′) ∼ v(b′)) ∨ ((v(b′) < v(b′′)) ∧ (v(b) 6< v(b′′)))}

INKb =
d

b′∈pred(b)

“
OUTKb′ −

“S
b′′∈DEL-INKb′

GEN-SIDE-OUTb′′

””
At first, it seems paradoxical. However, the situation is salvage-

able after making a key observation. If b′′ ∈ DEL-INKb′ and
v(b′′) 6< v(b), then v(b′′) ∼ v(b). (To see this, suppose instead
that v(b′′) > v(b). Because b′ ∈ pred(b), we have v(b′) < v(b),
which implies v(b′) < v(b′′). But then by the definition of DEL-



INK, v(b) 6< v(b′′), a contradiction.) In other words, when we
first need to calculate INKb before the second pass over block b, if
not all of the actual DIDTAINTb′′ are available, at least the transfer
functions are; and we will use them in the resolve process. As
long as our resolve process is accurate, our second pass will still
be accurate.

However, there is another use of INKb and OUTKb , namely, seed-
ing the next epoch’s initial INK for the same thread. To fix this, we
make a second observation: All of the subblocks in epoch l+ had
correct and complete DIDTAINT sets available once their second
pass was completed. Starting from the initial seed values of INK

for the first subblock of epoch l in each thread, we can recompute
INK and OUTK for all subblocks so that the next sliding window
can proceed. While not every subblock from epoch l + 1 will have
a DIDTAINT set ready, all subblocks (and their GEN-SIDE-OUT) in
epoch l + 1 remain available in the next sliding window.

Updating State. Once we have LASTCHECKb and DIDTAINTb as
the state proxies for Gb,Kb, GEN-SIDE-OUTb and GEN-SIDE-INb,
we can calculate Gl,Kl and SOSl, using the same SOS update rules
as reaching definitions. With INKb , OUTKb , INGb and OUTGb , we can
compute the LSOS.

THEOREM 7. If resolve returns (xl,t,i ← >), then there is
no valid vector ordering of the instructions in epochs [0, (l + 1)+]
such that x is ⊥ at instruction (l, t, i).

PROOF SKETCH. Suppose there were a VVO such that xl,t,i ←
⊥ at instruction (l, t, i). This implies a finite sequence of transfer
functions f̂ such that the associated instructions in order would (a)
taint x and (b) obey all vector orderings. Our resolve algorithm
will follow all valid vector orderings, so it would have discovered
the xl,t,i ← ⊥ and returned ⊥, a contradiction.

It follows that any error detected by the original TAINTCHECK on
a valid execution ordering for a given machine (with a memory
model that at least obeys intra-thread dependences and supports
cache coherence) will also be flagged by Chrysalis Analysis.

6. EVALUATION AND RESULTS
We now present our preliminary experimental evaluation of TAINT-

CHECK comparing the precision and performance of our TAINT-
CHECK implementation in Chrysalis Analysis to our implementa-
tion in Butterfly Analysis. Both the Chrysalis Analysis and But-
terfly Analysis implementations of TAINTCHECK are new for this
work.

6.1 Experimental Setup
Chrysalis Analysis, like Butterfly Analysis, is general purpose

and can be implemented using a variety of dynamic analysis frame-
works, including those based on binary instrumentation [3, 11, 14].
We built Chrysalis Analysis on top of the Log-Based Architectures
(LBA) framework [4]. In LBA, every application thread is mon-
itored by a dedicated lifeguard thread running on a core distinct
from the application; as the application executes, a dynamic in-
struction trace is captured and transported to the lifeguard through
a log that resides in the last-level on-chip cache. LBA itself is mod-
eled using the Simics [23] full-system simulator.

We implemented a word-granularity version of TAINTCHECK
in both Chrysalis and Butterfly Analyses. Some conservative as-
sumptions were made in the resolve algorithm, such as setting a
threshold for how many predecessors (set at 1024) we will follow
before cutting off the resolve algorithm and conservatively taint-
ing the destination. We tested our implementation on four Splash-2

Table 2: Splash-2 [25] benchmarks used in evaluation

Benchmark Inputs
BARNES 512 bodies

FFT m = 14 (214 sized matrix)
FMM 512 bodies

LU Matrix size: 128× 128, b = 16

Table 3: Simulator Parameters used in evaluation

Simulation Parameters
Cores {4, 8} cores

Application/Lifeguard {2/2, 4/4} Threads
L1-I, L1-D 64KB

L2 {2MB, 4MB}
Epoch boundaries Insert every 8K instructions/thread (on average)7

Table 4: Potential errors reported by our lifeguard. Two configu-
rations are shown, each with a Butterfly and Chrysalis implemen-
tation.

4-core 8-core
Butterfly Chrysalis Butterfly Chrysalis

BARNES 13 1 38 0
FFT 3 0 9 0
FMM 62 0 93 12
LU 5 0 10 0
Total 83 1 150 12

benchmarks [25], shown in Table 2, where we synthetically tainted
the benchmarks’ input data. We tested two different configurations
for both Butterfly and Chrysalis Analysis, shown in Table 3. To
capture happens-before arcs, we leveraged the wrapper for shared
library calls used by LBA [4] and generated vector clocks on the
producer side, which were communicated to the lifeguard cores via
the log.

Our prior work on Butterfly Analysis [9], focusing on ADDR-
CHECK8 as a lifeguard, assumed pointers to memory in the bench-
marks tested were properly allocated and thus any reported errors
were false positives. In contrast, our new TAINTCHECK tool re-
ports potential errors. Due to the introduction of synthetic tainting,
true positives are possible if taint flows from a synthetically tainted
address to a jump target, for example. Accordingly, we treat the
total number of potential errors reported as a ceiling for false pos-
itives encountered. The reduction in potential errors in our results
comparing the Butterfly and Chrysalis precision numbers is entirely
due to Butterfly reporting false positives due to the lack of happens-
before arcs. The current Chrysalis implementation can only report
potential errors, and not distinguish between false and true posi-
tives.

6.2 Results
The primary motivation for Chrysalis Analysis was improved

precision relative to Butterfly Analysis. As shown in Table 4, pre-
cision in TAINTCHECK improved significantly compared to But-
terfly Analysis for all benchmarks and both configurations (4- and
7We used LBA to generate and communicate epoch boundaries, in-
serting epoch boundaries after hn instructions had been executed
by the entire application, where n is the number of application
threads; h was set at 8K for these experiments.
8The extension of ADDRCHECK to Chrysalis Analysis appears in
Appendix B.
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Figure 4: Chrysalis Analysis, normalized to Butterfly Perfor-
mance.

8-core). Some false positives were possible in our implementa-
tion of TAINTCHECK as we made several conservative decisions in
both the Chrysalis and Butterfly Analysis implementations, such as
fixing a threshold for exploring predecessors in resolve, tracking
taint status at word (instead of byte) granularity, and using syn-
thetic tainting. Conservative decisions made in situations such as
Figure 1(c), when there is not enough ordering information to pre-
cisely determine taint status, could also lead to a memory address
being falsely tainted.

For the 4-core configuration, Chrysalis Analysis reports only one
potential error across all benchmarks, on the BARNES run. The
equivalent Butterfly Analysis 4-core BARNES run has 13 potential
errors. On the 8-core configuration, the only Chrysalis Analysis run
to report potential errrors is FMM. Its Butterfly Analysis counter-
part has 93 potential errors, compared to 12 for Chrysalis, approx-
imately a 7.8x reduction in false positives. The potential errors
in the 8-core Chrysalis FMM run correspond primarily to start-
ing and exiting a thread as well as pthread_mutex_lock. Note
that the implementation of the high-level synchronization primi-
tives that we capture cannot themselves be protected by the same
high-level synchronization, so we may miss some arcs that would
prevent races. Over all benchmarks and configurations, Chrysalis
Analysis improved precision by a factor of 17.9x relative to Butter-
fly Analysis.

Next, we examine the performance overheads of Chrysalis Anal-
ysis relative to Butterfly Analysis. Across all benchmarks, the
slowdowns range from 1.5x to less than 2.6x. Over all benchmarks
and configurations, the geometric mean slowdown is approximately
1.9x. This is not an unreasonable tradeoff; an average of less than
two-fold slowdown in exchange for a drastic improvement in preci-
sion. For BARNES, FFT, and FMM, the slowdowns remain fairly
constant when comparing the 8-core configuration to the 4-core
configuration, indicating that the Chrysalis Analysis implementa-
tion is scaling at the same rate as the Butterfly Analysis tool. There
is an increase in overhead for the 8-core LU, but even in this case
its overheads are still less than 2.6x.

Because our prototype of Chrysalis Analysis was intended to be
a proof-of-concept rather than a highly tuned piece of software, we
believe that the results shown in Figure 4 are conservative.

7. CONCLUSION
To retain the advantages of Butterfly Analysis while reducing the

number of false positives, we have proposed and evaluated Chrys-
alis Analysis, which incorporates happens-before information from
explicit software synchronization. Our implementation of the TAINT-
CHECK lifeguard demonstrates that Chrysalis Analysis reduces the
number of false positives by 17.9x while increasing lifeguard over-
head by an average of 1.9x.

Future work will focus on isolating actual errors from possible

errors (where not enough information is known), further reduc-
ing false positives, and optimizing the implementation to reduce
its overheads.
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APPENDIX
A. AVAILABLE EXPRESSIONS

The adaptation of Available Expressions to Chrysalis Analysis
proceeds in a similar manner to Reaching Definitions, with the roles
of G andK reversed. We will show the equations for G andK at all
granularities, or state when they are equivalent to Reaching Defini-
tions. Due to the strong similarity, when proofs are equivalent up
to refactoring G and K, references to the corresponding proofs are
provided instead of duplicating them.

A.1 Gen and Kill equations
Instruction Level. Let Gl,t,i = {e} if instruction (l, t, i) generates
expression e. Let Kl,t,i = {e|(l, t, i) kills e} (e.g., (l, t, i) may
redefine e’s terms).

Maximal Subblock-Level. The equations for dataflow at the max-
imal subblock level are equivalent to those of Reaching Definitions.

Kill-Side-Out/Kill-Side-In. We define KILL-SIDE-OUTb, the ana-
log of GEN-SIDE-OUTb in Reaching Definitions. As in Reaching
Definitions, we now have KILL-SIDE-OUTb and KILL-SIDE-INb

at the maximal subblock level. For maximal subblock b = (l, t, (j, k)):

KILL-SIDE-OUTb =
S

j≤i≤k Kl,t,i

KILL-SIDE-INb =
S
{b′|v(b′)∼v(b)} KILL-SIDE-OUTb′

Epoch-Level. In defining the epoch-level sets necessary for Avail-
able Expressions, we reuse the sets MBl, AFTERb, and NBEFOREb

defined in Section 4.1. For an epoch l and maximal subblocks
b ∈ MBl+ , the epoch-level summaries are:

Kl =
S
{b|b∈MB

l+}

“
Kb −

S
b′∈AFTERb

Gb′

”
Gl =

S
{b|b∈MB

l+}

“
Gb −

S
{b′|b′∈NBEFOREb}

Kb′

”
Once more, the roles ofK and G are reversed compared to Reach-

ing Definitions. This correspondence is evident in the correctness
results we obtain for available expressions. The proofs to Lem-
mas 8 and 9 are quite similar to those of Lemmas 2 and 1, respec-
tively, with the roles of G and K reversed. They are provided for
completeness.

LEMMA 8. If e ∈ Gl then ∀ valid vector orderings O of the
instructions in l − 1 through l+, e ∈ G(O).

PROOF. Suppose e ∈ Gl. Then there must exist an instruction
(l, t, k) in a maximal subblock b such that e ∈ Gb and for all sub-
blocks b′ such that v(b) ∼ v(b′) or v(b) < v(b′), e 6∈ Kb′ . This
follows from e ∈ Gl. Consider any VVO O.

Consider the suffix of O beginning with instruction (l, t, k). By
definition of VVO, the only instructions that can follow (l, t, k)
are other instructions in b (while respecting data dependences), and
instructions belonging to any maximal subblock b′ which is con-
current with or strictly after b. We have shown that for such b′,
e 6∈ Kb′ , implying either b′ never kills e or any kill of e in b′ is

followed by a subsequent generate of e also in b′. Applying the
definition of VVO, if a generate of e in b′ is followed by a kill of
e in b′, this would be reflected in O. In particular, it is also re-
flected in the suffix beginning with (l, t, k). Thus, for the suffix of
O beginning with (l, t, k), if e is killed at all, it is guaranteed to
be followed by a generate of e. So any kill of e in O either occurs
strictly before (l, t, k) or else is followed by a generate of e. Either
way, e reaches the end of O, thus e ∈ G(O).

LEMMA 9. If ∃ a valid vector ordering O of the instructions in
l+ such that e ∈ K(O) then e ∈ Kl.

PROOF. First, there must exist an instruction (l, t, i) in O such
that (l, t, i) kills e and no subsequent instruction in O generates e.
This follows from e ∈ K(O). This implies there is no instruction
(l′, t′, i′) such that e ∈ G(l′,t′,i′) and v(l, t, i) < v(l′, t′, i′) (by
definition of VVO). Then let b be the maximal subblock containing
(l, t, i). We know that e ∈ Kb (by construction) and that e /∈S

b′∈AFTERb
Gb′ , so e ∈ Kl.

A.2 Strongly Ordered State
The equation for computing SOSl is unchanged from Reaching

Definitions (Section 4.2); the differences are captured in the new
equations for Gl and Kl. However, the correctness result we prove
varies slightly compared to Reaching Definitions, reflecting the dif-
ferences between showing the existence of an interleaving where a
property holds (Reaching Definitions) and showing that a property
holds across all interleavings (Available Expressions).

THEOREM 10. If e ∈ SOSl+2 then for all valid vector order-
ings Ol of instructions in epochs [0, l+], e ∈ G(Ol).

PROOF. Our proof will proceed by induction on l. In the base
case of l = 0, we have e ∈ SOS2 = G0. Applying Lemma 8
proves the base case. Now assume the lemma is true for all l < j,
and show for l = j. Suppose e ∈ SOSl+2. Then either e ∈ Gl or
e ∈ SOSl+1 −Kl.
e ∈ Gl: We need a slight generalization of Lemma 8. Consider any

VVO Ol of epochs [0, l+]. Again, there exists an instruction
(l, t, k) in a maximal subblock b, e ∈ Gl,t,k, such that ∀b′
where v(b) ∼ v(b′) or v(b) < v(b′), e 6∈ Kb′ . We again
consider the suffix of Ol beginning at (l, t, k), and reach the
same conclusion as Lemma 8. So e ∈ G(Ol).

e ∈ SOSl+1 −Kl: Both e ∈ SOSl+1 and e 6∈ Kl hold. Consider
any VVO Ol of epochs [0, l+]. Let O′ be the restriction of
Ol to epochs [0, (l − 1)+]. Applying the inductive hypothe-
sis, we know that e ∈ G(O′). There must be some instruc-
tion (l′, t, k) in O′ such e ∈ Gl′,t,k and no instruction after
(l′, t, k) in O′ kills e. We now return to Ol, and consider the
suffix of Ol beginning with (l′, t, k). The difference in the
two suffixes must be solely made up of instructions from l+.

By the contrapositive of Lemma 9, we know that no VVO
O′′ of instructions in l+ can kill e. It follows that no suffix of
O′′ can kill e. Integrating a suffix of O′′ which does not kill e
with the suffix of O′ beginning with (l′, t, k) (also composed
of instructions which do not kill e) cannot kill e, so the suffix
beginning at (l′, t, k) in Ol must generate e; thus e ∈ G(Ol).

A.3 Local Strongly Ordered State
LSOS: Representing KILL As Transfer Functions. The OUTKb /INKb
sets in Available Expressions strongly correspond to OUTGb /INGb in
Reaching Definitions. As in Reaching Definitions, the meet opera-
tor (

d
) for Available Expressions is union(∪). These represent the



expressions which should be killed in the LSOSb as compared to
the SOSl.

OUTKb = Kb ∪(INKb − Gb)

INKb =

(
∅ if b is a thread’s 1st subblock at level l − 1
d

b′∈pred(b) OUTKb′ otherwise

In our correctness result, we reuse the notation HB(b) as defined
in Section 4.3.

LEMMA 11. If ∃ a valid vector ordering O of the instructions
in HB(b) such that e ∈ K(O) then e ∈ INKb .

The proof for Lemma 11 is essentially identical to Lemma 4, with
the roles of K and G reversed.

LSOS: Representing GEN As Transfer Functions. The INGb /OUTGb
sets in Available Expression strongly correspond to INKb /OUTKb
in Reaching Definitions. These represent the expressions which
should be added to the LSOSb as compared to SOSl.

OUTGb = Gb ∪(INGb −Kb)
DEL-INGb′ =

{b′′|(v(b′′) ∼ v(b′)) ∨ ((v(b′) < v(b′′)) ∧ (v(b) 6< v(b′′)))}

INGb =

8><>:
∅ if b is a thread’s 1st subblock at level l − 1
d

b′∈pred(b)(OUTGb′−
(∪b′′∈DEL-INKb′

KILL-SIDE-OUTb′′)) otherwise

LEMMA 12. If e ∈ INGb then ∀ valid vector orderings O com-
posed solely of all instructions from maximal subblocks b′ such that
v(b′) < v(b), e ∈ G(O).

The proof for Lemma 12 is essentially identical to the proof of
Lemma 5, with the roles of G and K reversed.

Creating LSOS. As with the SOS, the equation for the LSOS is un-
changed compared to Reaching Definitions: LSOSb = INGb ∪(SOSl−
INKb ). The differences have been folded into the equations for INGb
and INKb .

THEOREM 13. If e ∈ LSOSb, then ∀ valid vector orderings O
of the instructions from epochs [0, (l− 2)+] and HB(b), e ∈ G(O).

PROOF. Suppose e ∈ LSOSb. Then either e ∈ INGb or e ∈
SOSl − INKb .
e ∈ INGb : Then e ∈ G(O) by application of Lemma 12.
e ∈ SOSl − INKb : In this case, e ∈ SOSl and e 6∈ INKb . Applying

Theorem 10, we know that for every VVO O′ of instructions
in epochs [0, (l − 2)+], e ∈ G(O′). The contrapositive of
Lemma 11 implies that no VVO composed solely of instruc-
tions in HB(b) will kill e. Finally, we note that if a sequence
of instructions does not kill an expression e, then interleav-
ing that sequence of instructions with an O′ which generates
e (while maintaing all properties of a VVO) must still gener-
ate e. Thus, e ∈ G(O).

Applying the Two-Pass Algorithm. Available Expressions is also
implemented as a two pass algorithm. In the first pass, Gb, Kb and
KILL-SIDE-OUTb are calculated. When all threads complete the
first pass, threads begin the second pass. During the second pass,
threads wait for their predecessors b′ to compute OUTGb′ and OUTKb′

so they can compute the INGb , INKb and ultimately LSOSb. The
KILL-SIDE-INb can be computed on demand during the second
pass. Finally, after all threads complete the second pass, the SOS is
updated.

B. ADDRCHECK
As in Butterfly Analysis, we model ADDRCHECK on avail-

able expressions. Allocations will “generate” the memory loca-
tion “expression”, and deallocations kill such “expressions”. Let
Gl,t,i = {m} if and only if instruction (l, t, i) allocates mem-
ory location m and otherwise ∅. Likewise, Kl,t,i = {m} if and
only if instruction (l, t, i) deallocates memory location m and oth-
erwise ∅. Gb, Kb, Gl, Kl, INGb , INKb , SOS and LSOS all take their
form from the Available Expressions template. In addition, ADDR-
CHECK tracks a unified read/write set called ACCESS.

We extend the two modes of checking, local and isolation, in-
troduced by Butterfly Analysis. Local checking verifies that any
address that was accessed or deallocated in a thread’s maximal sub-
block was locally allocated at the start of the subblock; it also ver-
ifies that any address that was allocated in a thread’s maximal sub-
block was locally deallocated at the start of the subblock. Isolation
checking ensures that these local checks do not miss interference
by another thread; for example, if Thread 1 believes address m to
be locally allocated, but was unaware it had been recently freed by
Thread 2.

Local Checks. As in Butterfly Analysis, local checks are resolved
via LSOS lookups. The formulas for the LSOS generalize in the
same ways the formulas for available expressions were generalized.

Isolation Checks and Summaries. Isolation checks again utilize a
summary, which is now for a maximal subblock b instead of a block
(l, t). A summary is represented as sb = (Gb,Kb, ACCESSb),
where ACCESSb contains all addresses that subblock b read or wrote.

We create a “side-in” summary:

Sb = (
S
{b′|v(b′)∼v(b)} Gb′ ,

S
{b′|v(b′)∼v(b)}Kb′ ,S

{b′|v(b′)∼v(b)} ACCESSb′).

To verify isolation, we check that the following set is empty:

((sb.Gl,t ∪ sb.Kl,t)
T

(Sb.Gl,t ∪Sb.Kl,t))
S

(sb.ACCESSl,t

T
(Sb.Gl,t ∪Sb.Kl,t))

S
(Sb.ACCESSl,t

T
(sb.Gl,t ∪ sb.Kl,t))

and otherwise flag an error.

THEOREM 14. Any error detected by the sequential ADDRCHECK
on a valid vector ordering O for a given machine will also be
flagged by Chrysalis Analysis.

PROOF SKETCH. The correctness proof follows the lines of the
corresponding proof in the Butterfly Analysis paper [9]. Observe
that ADDRCHECK detects errors based on a pairwise interactions
between operations (i.e., allocations, accesses and frees). Sup-
pose there was an execution E such that a sequential ADDRCHECK
would have caught an error on memory location x. Represent this
execution as E, with E|x the execution restricted to operations uti-
lizing x. By the assumptions of Chrysalis Analysis, a VVO O must
exist such that O|x, is equivalent to E|x. Since Chrysalis Analysis
will take O into account, it will also catch the error.


