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Scan is a fundamental operation widely used in main-memory analytical database systems. To accelerate scans,

previous studies build either record-order or sort-order structures known as scan indices. While achieving good

performance, scan indices often incur significant space overhead, limiting their use in main-memory databases.

For example, the most recent and best performing scan index, BinDex, consists of a sort-order position array,

which is an array of rowIDs in the value order, and a set of record-order bit vectors, representing records in

pre-defined value intervals. The structures can be much larger than the base data column size.

In this paper, we propose a novel scan index, Cabin, that exploits the following three techniques for better

time-space tradeoff. 1) filter sketches that represent every 2
𝑤 − 2 value intervals with a𝑤-bit sketched vector,

thereby exponentially reducing the space for the bit vectors; 2) selective position array that removes the rowID

array for a fraction of intervals in order to lower the space overhead for the position array; and 3) data-aware
intervals that judiciously select interval boundaries based on the data characteristics to better support popular

values in skewed data distributions or categorical attributes. Experimental results show that compared with

state-of-the-art scan solutions, Cabin achieves better time-space tradeoff, and attains 1.70 – 4.48x improvement

for average scan performance given the same space budget.
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1 INTRODUCTION
Scan is a fundamental operation widely used in analytical data processing [9, 13, 16–18, 23, 25, 26,

30, 31, 34, 35, 37]. Given a base data column in a table and a filter predicate, a scan operation returns

a result bit vector or a rowID list that indicates which records satisfy the predicate. A plain scan

reads the data column sequentially and evaluates the predicate for each data value. There are two

main ways to improve the plain scan in the literature. The first approach is to optimize the layout

of the base data column so that the scan can effectively exploit SIMD to speed up computation, and

reduce the amount of data accessed with early pruning techniques [13, 26]. The second approach

does not change the base data. Instead, it builds auxiliary data structures (a.k.a. scan indices) to
accelerate scans [11, 16, 25, 27, 29]. Compared to the first approach, scan indices have been shown to

achieve higher performance. However, scan indices often incur significant space overhead, limiting

their use in main-memory databases. In this paper, we aim to improve the time-space tradeoff for

scan indices.
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We consider the design principles for scan indices. A scan deals with two data orders: the record

order and the sort order. Both the base data and the scan result are in the record order. On the

other hand, for a predicate (e.g., <, >, ≤, ≥, =, ≠, or BETWEEN) that compares the data value with

constant(s), the evaluation can be better supported if the data is sorted. The two orders are the

same if values are sorted in the base data column. In this case, a search on the data column can

efficiently compute the result bit vector or rowID list. However, the more common and challenging

case is where values are not sorted. This is the focus of previous scan index studies, as well as the

focus of our work.

To improve scans, scan indices build either record-order structures or sort-order structures or

both. Record-order structures can reduce the amount of access to the base data, while sort-order

structures can accelerate the computation of the predicate.

• B+-Tree [11] is a sort-order scan index. A scan performs a search, then follows the linked list

of leaf nodes to retrieve all rowIDs that satisfy the predicate. This process is efficient if the

predicate selectivity is low. However, for medium to high selectivities, it incurs many expensive

random memory accesses.

• Bitmap Index [29] maintains record-order bit vectors for each distinct values. It can retrieve a

stored bit vector for a scan with an equality predicate. However, for other predicate types, it

has to merge multiple bit vectors, and thus becomes less efficient if more distinct values satisfy

the scan predicate.

• Column Sketches [16] create a sketched column in the record order. Value ranges are mapped

to small (e.g., 8-bit) code words. Then the sketched column stores a code per record. A scan

evaluates the predicate by checking the per-record code in the sketched column. This is sufficient

for most records. For a small fraction (e.g.,
1

256
) of records, the check is uncertain and the scan

reads the base data values. In this way, Column Sketches significantly reduce the amount of

data to read.

• BinDex [25], the most recent and best performing solution, combines both sort-order and record-

order structures to speed up scans. The former is an array of rowIDs (a.k.a. position array) in

the sort order of values. The latter is a set of record-order bit vectors, each representing the

records in a pre-defined value range. For a scan, the predicate specifies a target value range.

BinDex finds the closest pre-defined range to the target range, and copies the associated bit

vector as the draft result. Then, it searches the position array for records in the intersection of

the target and the pre-defined range, and corrects the corresponding bits in the draft result to

obtain the scan result.

However, the improvement of scan performance comes at a price: scan indices introduce sig-

nificant space cost. Both record-order and sort-order structures store an element per record. The

element size can be comparable or even larger than the value size in the base data. In a B+-Tree [11],

there is a (value, rowID) entry per record. Suppose the rowID takes 4B. Then the B+-Tree incurs

at least 5x, 3x, 2x, and 1.5x space overhead for 8-bit, 16-bit, 32-bit, and 64-bit values, respectively.

In a Bitmap Index [29], every bit vector stores 1 bit per record. The space cost increases linearly

as the number of distinct values. For example, the bit vectors for 64 distinct values lead to 1–8x

space overhead for 64-bit – 8-bit values. Column Sketches [16] store a (e.g., 8-bit) code per record.

Therefore, the space overhead is 0.125–1x, which is low among scan indices. In a BinDex [25],

the position array contains a (e.g., 4B) rowID per record. Each bit vector costs 1 bit per record.

The number of stored bit vectors is determined by the number of pre-defined value ranges. For

example, if there are 64 pre-defined ranges, then the BinDex sees 1.5–12x space overhead for 64-bit

– 8-bit values. As the number of pre-defined ranges increases, BinDex performs better because

the intersection between a target range and its closet pre-defined range tends to become smaller.
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Therefore, for achieving higher scan performance, it can be necessary to store more bit vectors,

incurring even higher space overhead.

In this paper, we propose a novel scan index, Cabin (compressed adaptive binned scan index).

Cabin exploits the following three techniques for better time-space tradeoff:

• Filter Sketches: BinDex stores a bit vector for each value range, which consumes a lot of space.

To reduce space, we replace every 2
𝑤 − 2 bit vectors with a𝑤-bit sketched vector (e.g.,𝑤 ≤ 9).

A 𝑤-bit code can represent 2
𝑤 − 2 value intervals (and two reserved virtual intervals for all

values less than or greater than the set of intervals). We call the resulting record-order structure

filter sketches. Cabin divides all the value intervals into groups of 2
𝑤 − 2 intervals each, and

build𝑤-bit filter sketches per interval group. In this way, Cabin reduces the space cost of bit

vectors by a factor of
2
𝑤−2
𝑤

. In addition, we describe a novel encoding and computation scheme,

MLO, that minimizes the number of SIMD operations for generating a draft result from filter

sketches given a pre-defined value range.

• Selective Position Array: The position array in BinDex incurs a fixed space overhead. If space

budget is tight, we propose to selectively store the position array, i.e., storing rowIDs for a

fraction of intervals. If the predicate of a scan hits a value interval whose rowIDs are not stored,

Cabin relies on the filter sketches for evaluating the predicate. Note that our design of filter

sketches covers the entire value range (−∞, +∞) for every interval group (with the two virtual

intervals). Consequently, we can use filter sketches in a similar fashion to Column Sketches to

support scans.

• Data-aware intervals: Bindex divides the full value range into even-sized intervals for obtaining

the pre-defined value ranges. This works well when the number of duplicates of each distinct

value is small. However, real-world data may contain a lot of duplicates because of skewed data

distribution (e.g., power-law graphs) or low unique value counts (e.g., categorical attributes). In

such cases, Cabin judiciously makes data-aware selection of intervals to optimize for popular

values.

Contributions. The main contributions of this paper are threefold. First, we propose a scan

index, Cabin
1
, with three novel techniques, i.e., filter sketches, selective position array, and data-

aware intervals, to improve the time-space tradeoff for scans. Second, we model the time and

space cost of Cabin, and design an algorithm to compute the optimal design parameters for Cabin.

Finally, we perform extensive experimental evaluation of Cabin under various data workloads. Our

experimental results show that compared with state-of-the-art scan solutions, Cabin achieves better

time-space tradeoff, and attains 1.70 – 4.48x improvement for average scan performance given

the same space budget. In addition, we evaluate Cabin in a full fledged main memory analytical

database system, MonetDB, using a subset of queries in TPC-H and SSB benchmarks. Our results

show that Cabin can improve the query performance of MonetDB by a factor of 1.1–49.9x.

Organization. The rest of the paper is organized as follows. Section 2 provides the background on

existing scan solutions. Section 3 presents the Cabin design. Then, Section 4 analyzes the space and

time cost of Cabin for optimal design selection. After that, Section 5 performs the experimental

evaluation. Section 6 discusses a number of practical issues. Finally, Section 7 concludes the paper.

2 BACKGROUND AND RELATEDWORK
We describe background on data scans in Section 2.1, then discuss related work on scan indices in

Section 2.2.

1
The source code is available at https://github.com/schencoding/Cabin
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2.1 Data Scan

Problem Definition. In this paper, we focus on single-column data scan operations. We consider

the same problem definition as in previous studies [13, 16, 25, 26].

• Base data: A column of fixed sized values, which is the common storage layout in main-memory

analytical databases [6, 8, 12, 22, 32, 38]. Note that variable sized fields are often encoded into

fixed sized codes with dictionary encoding [7, 12].

• Query predicate: A filter predicate (e.g., <, >, ≤, ≥, =, ≠, or BETWEEN) that specifies a value

range of the input data.

• Output: A result bit vector, whose 𝑖-th bit is set to 1 if the 𝑖-th record satisfies the predicate.

Compared to other return formats (e.g., rowID list), bit vectors can be efficiently merged with

bitwise operations to compute complex predicates [10].

TwoWays to Optimize Scans. A plain scan reads the base data sequentially and checks if each

value satisfies the filter predicate. There are two main ways to improve plain scans in the literature.

The first approach is to optimize the layout of the base data. The design goals are to exploit

SIMD and/or to reduce the amount of data accessed by the scan. BitWeaving [26] proposes bit-level

layouts. In comparison, ByteSlice [13] proposes a byte-level columnar layout, where the 𝑖-th byte of

all values are stored contiguously. Predicate evaluation employs SIMD to compare multiple values

from the most to the least significant byte. It stops early if the higher-order bytes already determine

the predicate outcome. This early pruning technique can significantly reduce the amount of data to

read.

The second approach does not change the base data. Instead, it builds auxiliary data structures

to improve scan performance. Examples include B+-Tree [11], Bitmap Index [29], Zone Maps [27],

Column Sketches [16], and BinDex [25]. We call such auxiliary data structure scan index. Compared

to the first approach, scan indices can perform better, but often incur significant space overhead.

We aim to design a scan index with better time-space tradeoff.

2.2 Scan Index
Let us consider the principles of designing a scan index. From the problem definition, we see that

there are two orders: the record order and the sort order. Both the base data and the output bit

vector are in the record order, while predicate evaluation can be more efficient if the values are

sorted. As a result, it is natural to consider three types of structures in scan indices:

• Record-order structure: It contains one item for every value in the base data. The order of the

items is in the record order of the base data. An example is the bit vector in Bitmap Index.

• Sort-order structure: It contains one item for every value in the base data. The order of the items

is in the sort order of the values. An example is the B+-Tree leaf nodes.

• Summary structure: The structure is small. It contains aggregates of the base data, or metadata

of the other structures.

We examine the structures of each scan index, as shown in Table 1. Figure 1 depicts a high-level

picture of the time-space trade-off of scan solutions. (Please see the space-time analysis under

different workloads in our experiments in Section 5.)

B+-Trees [11]. In a B+-Tree, the leaf level stores the list of (value, rowID)’s in the sort order. This

consumes more space than the base data. A scan performs a search to reach the leaf level, then

follows the linked list of leaf nodes to retrieve all rowIDs that satisfy the predicate and sets the

relevant bits in the result bit vector. This is efficient when the predicate selectivity is low, as shown

in Figure 1. However, it can be costly with medium to high selectivities (not shown) because of

pointer chasing and random memory accesses.
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Table 1. Comparing scan index structures.

Scan Index
Record-Order

Structure

Sort-Order

Structure

Summary

Structure

B+-Tree - tree nodes -

Bitmap Index bit vectors - key-to-vector map

Zone Maps - - bucket aggregates

Column Sketches sketched column - compression map

BinDex filter bit vectors position array area map

Cabin

(our solution)
filter sketches

selective

position array

data-aware

interval table

Zone Maps

ByteSlice

BinDex

Cabin

(our solution)

CS

B+-Tree

(low selectivity)Sc
an

ti
m
e

Space of auxiliary structures
0

Fig. 1. Comparison of optimized scan solutions. (CS stands for Column Sketches. The performance of B+-Tree
at low selectivity (e.g., 0.1%) is shown.)
Bitmap Index [29]. Bitmap index stores a bit vector for each distinct value, and a summary

structure that maps keys to vectors. For an equality predicate, it returns the relevant bit vector, which

is very fast. However, there are two main problems. First, for common data columns with many

distinct values, Bitmap index can be much larger than other scan indices. Second, predicates that

specify value ranges often require merging multiple bit vectors, leading to degraded performance.

Hence, we do not further discuss or evaluate Bitmap index in the paper. Note that the above

problems can be addressed by more sophisticated use of bitmaps, such as range-based bit vectors

in BinDex and filter sketches in our solution.

Zone Maps [27]. It divides the input data into buckets, and maintains per-bucket aggregates (e.g.,

min, max). The summary structure incurs little space overhead, as shown in Figure 1. For a scan,

Zone Maps skip a bucket if the bucket aggregates show that the entire bucket satisfies or dissatisfies

the predicate. However, bucket skipping is effective only when values are mostly sorted or the

selectivity is very low or very high. In other cases, Zone Maps essentially perform a plain scan,

making it the slowest scan index.

Column Sketches [16]. As shown in Figure 2(a), Column Sketches consist of a sketched column

and a compression map. The latter maps value ranges to codes. The former contains a code per

value in the record order. In the example, 𝑥0=5 ∈ (−∞, 8], thus its code is 000. 𝑥1=23 ∈ (22, 28], so
its code is 100. The space cost is

𝑁 ·𝑤
8

bytes, where 𝑁 is the number of records and𝑤 is the code

width. Since𝑤 (e.g., 8 bits) is often smaller than value size (e.g., 64 bits), Column Sketches consume

smaller space than the base data.

A scan first maps the predicate value to the (predicate) code. Then, it compares each code in the

sketched column with the predicate code. In most cases, code ≠ predicate code, then the comparison

suffices. When code = predicate code, the scan has to check the value in the base data. Therefore, the

scan reads the sketched column and
1

2
𝑤 (e.g.,

1

256
for𝑤=8) of the base data. Consequently, Column

Sketches significantly reduce the amount of data to read.

BinDex [25]. BinDex combines features of B+-Tree and Bitmap Index, as shown in Figure 2(b).

First, the position array and the virtual sorted values are similar to the sorted (value, rowID)’s in the

B+-Tree’s leaf level. To reduce space cost, BinDex stores only the rowIDs. The value part is virtual
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5 23 30 12 42 39 21 8 46 45 22 42 40 16 11 15 25 10 19 0 36 28 33 9

𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12 𝑥13 𝑥14 𝑥15 𝑥16 𝑥17 𝑥18 𝑥19 𝑥20 𝑥21 𝑥22 𝑥23

Column 
Data

000 100 101 010 110 110 011 000 111 111 011 110 110 010 001 010 100 001 011 000 101 100 101 001

Compression Map
Sketched Column

8 11 16 22 28 36 42 46

000 001 010 011 100 101 110 111

(a) Column Sketches

Filter Bit Vector

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1

1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1

1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 0 0 1

1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 0 1

1 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1

19 0 7 23 17 14 3 15 13 18 6 10 1 16 21 2 22 20 5 12 4 11 9 8

0 5 8 9 10 11 12 15 16 19 21 22 23 25 28 30 33 36 39 40 42 42 45 46

𝐹1: (−∞, 9)

𝐹2: (−∞, 12)

𝐹3: (−∞, 19)

𝐹4: (−∞, 23)

𝐹5: (−∞, 33)

𝐹6: (−∞, 42)

Position 
Array 

Virtual
 Value Space

Area Map
Lower 
Bound

Index in 
Position Array

𝐴2 9 3

𝐴3 12 6

𝐴4 19 9

𝐴5 23 12

𝐴6 33 16

𝐴7 42 20

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7

(b) BinDex

(c) Cabin Filter Sketches 

𝑓𝑠0,0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 1 1 0 0 0 1 0 0

Interval Table

𝑓𝑠0,1

1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 0 0 1

1 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1

𝑓𝑠0,2

Selective Position Array
19 0 7 23 17 14 3 15 13 18 6 10 1 16 21 2 22 20 5 12 4 11 9 8

𝐼0,1 𝐼0,2 𝐼0,3 𝐼0,4 𝐼0,5 𝐼0,6

G
ro

u
p

 0

Group 0

𝐼0,0 (−∞, 0) 111 / 0 /

𝐼0,1 [0, 10) 110 4 0 1

𝐼0,2 [10, 16) 101 4 4 1

𝐼0,3 [16, 23) 100 4 8 1

𝐼0,4 [23, 33) 011 4 12 0

𝐼0,5 [33, 42) 010 4 16 1

𝐼0,6 [42, 47) 001 4 20 0

𝐼0,7 [47,+∞) 000 / / /

Range Code

#Records

Index in Selective 
Position Array𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12 𝑥13 𝑥14 𝑥15 𝑥16 𝑥17 𝑥18 𝑥19 𝑥20 𝑥21 𝑥22 𝑥23 𝑋 ↦ 𝐶2𝐶1𝐶0

𝑟𝑜𝑤𝐼𝐷

Selective Flag

𝐶2

𝐶0

𝐶1

G
ro

u
p

 0

Fig. 2. Scan index structures of (a) Column Sketches, (b) BinDex, and (c) Cabin (with uniform data).

and not physically stored. Second, BinDex divides the position array into even-sized intervals (a.k.a.

bins or areas), and keeps the interval bound positions in the area map. Third, there is a filter bit

vector per interval. It stores the result for value < interval upper bound. This structure resembles

Bitmap Index. When the scan predicate coincides with an interval bound, the associated filter bit

vector can be directly returned.

For a scan (e.g., 𝑣𝑎𝑙𝑢𝑒 ≤ 10), BinDex uses the area map to locate the corresponding interval (e.g.,

𝐴2=[9, 12)). Then, it performs a binary search in the interval, which follows the rowIDs to read the

values in the base data. For example, the search finds the predicate value 10 at the second entry in

𝐴2. After that, BinDex chooses and copies a filter bit vector (e.g., 𝐹2 that represents (−∞, 12)) as the
draft result. Finally, it refines the draft result by flipping the wrong bits (e.g., bit 14 that corresponds

to value 11).

Suppose there are 𝑁 records and𝑀 intervals. Then, there are𝑀 − 1 filter bit vectors. Suppose

each rowID takes 𝑟 bits. Thus, the space cost of BinDex is
𝑁 (𝑟+𝑀−1)

8
bytes. The scan time consists

of checking the area map (𝑂 (log𝑀)) , searching the interval (𝑂 (log 𝑁
𝑀
)), copying the filter bit

vector as draft result (i.e., sequentially copying
𝑁
8
bytes), and refining the draft result (i.e., randomly

accessing average
𝑁
4𝑀

bits). Figure 1 shows the BinDex curve varying the number of intervals𝑀 . As

𝑀 increases, the space cost increases linearly, while the number of random bit accesses decreases,

leading to better performance.

Motivation of Our Solution: Cabin.While BinDex achieves the best performance among existing

scan indices, it pays substantial space overhead, as shown in Figure 1. We aim to achieve better

time-space tradeoff based on three observations:

• Observation 1: It is costly to keep a filter bit vector per interval. We propose filter sketches, which

represent multiple intervals using sketch codes to reduce space.
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• Observation 2: The position array takes a fixed amount of space. If space budget is tight, we

propose selective position array, i.e. storing position arrays for a fraction of intervals. If the

predicate falls into an interval without position array, the scan can use filter sketches in a similar

fashion to Column Sketches.

• Observation 3: When the number of duplicate values is high, the interval boundaries should be

judiciously chosen for time and space efficiency. Hence, we study data-aware intervals.

3 CABIN DESIGN
We propose Cabin, a compressed adaptive binned scan index. In the following, Section 3.1 overviews

the design. Then, Section 3.2– 3.4 describe the three distinctive features of Cabin, i.e., filter sketches,

selective position array, and data-aware intervals, respectively.

3.1 Cabin Overview
Figure 2(c) depicts Cabin. It is composed of three structures:

• Filter sketches: According to Observation 1, we can use 𝑤-bit sketch codes (e.g., 𝑤=3 in

Figure 2(c)) to represent𝑚 = 2
𝑤 − 2 (e.g., 6) intervals. Then we divide all the intervals into

groups of𝑚 intervals each, and build𝑤 filter sketches for every group of𝑚 intervals. The 𝑗-th

interval in group 𝑖 is denoted as 𝐼𝑖, 𝑗 . 𝐼𝑖,0 and 𝐼𝑖,𝑚−1 are two special virtual intervals, representing
values less than and greater than the entire group 𝐼𝑖 . In this way, 𝐼𝑖,0, 𝐼𝑖,1, ..., 𝐼𝑖,𝑚−1 cover the
full value range. (This is important for supporting selective position array.) Note that while

Figure 2(c) draws only one group of intervals due to paper space constraint, there are usually

multiple interval groups in a Cabin.

• Selective position array: According to Observation 2, we can remove the portion of the position

array for a subset of intervals to save space. As shown in Figure 2(c), the shaded portion of

the selective position array is not physically stored. However, an interval without physical

position array may be visited by a scan. In such cases, we cannot perform binary search of the

predicate value in the position array. Instead, Cabin relies on the filter sketches for evaluating

the predicate. Since the filter sketches of an interval group cover the full range of values, they

can be used in a similar fashion to Column Sketches.

• (Data-aware) interval table: As shown in Figure 2(c), the interval table keeps the metadata

of each interval in each group, including the value range, the sketch code word, the number

of records in the interval, its start location in the selective position array, and a flag used

by selective position array and data-aware intervals to indicate the interval types. To build

the interval table, it is natural to divide the value range into even-sized intervals. However,

according to Observation 3, even-sized intervals may be sub-optimal when there are a large

number of duplicate values. In such cases, Cabin judiciously makes data-aware selection of

intervals to further optimize the scan.

In the following subsections, we describe three Cabin designs addressing the three observations

progressively:

• Cabin𝐹 : A design with filter sketches, even-sized intervals, and fully physical position array (cf.

Section 3.2)

• Cabin𝐹𝑆 : Cabin𝐹 with selective position array (cf. Section 3.3)

• Cabin𝐹𝑆𝐷 : Cabin𝐹𝑆 with data-aware intervals (cf. Section 3.4)

3.2 Filter Sketches
We consider the evaluation of a scan with predicate “𝑥 ≤ 10” using the index as shown in Figure 2(c).

(1) Cabin locates the predicate value 10 in the interval table. It falls into 𝐼0,2. Since 𝐼0,2 contains 4
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records and starts at 𝑝𝑜𝑠 [4], Cabin performs a binary search between 𝑝𝑜𝑠 [4] and 𝑝𝑜𝑠 [7] of the
position array. The split point is 𝑝𝑜𝑠 [5], which refers to 𝑥14=11. (2) There are two options to generate
the draft result: a) compute a bit vector for all values < 𝐼0,2 (i.e., 𝑥 < 10, or union of 𝐼0,0 and 𝐼0,1) then

flip the bits to the left of the split point in 𝐼0,2 (i.e., 𝑝𝑜𝑠 [4]); or b) compute the bit vector representing

values ≤ 𝐼0,2 (i.e., 𝑥 < 16, or union of 𝐼0,0, 𝐼0,1, and 𝐼0,2) then flip the bits including and to the right

of the split point in 𝐼0,2 (i.e., 𝑝𝑜𝑠 [5], 𝑝𝑜𝑠 [6], and 𝑝𝑜𝑠 [7]). Cabin chooses a) since it minimizes the

number of bit flips. (3) Cabin combines the set of filter sketches in group 0 to compute the draft

result for (−∞, 10). (4) Cabin flips the bit for 𝑝𝑜𝑠 [4] (i.e., bit 17) in the draft result to obtain the

final result.

Compared to BinDex, Step (1), (2), and (4) are similar. The main novel feature of CabinF resides in

Step (3). In the following, we design filter sketches to optimize the draft result computation. Then,

we describe the scan algorithm for CabinF.

Vertical Bit Layout for Filter Sketches. Let us first consider a horizontal layout for filter sketches.
In our design, the optimal sketch code width𝑤 is often less than 8. As a result, sketch codes may

span byte boundaries, incurring computation costs to reconstruct the codes. Therefore, we store

filter sketches in a vertical bit layout, as shown in Figure 2(c). 𝑓 𝑠0,𝑏 (𝑏 = 0, ...,𝑤 − 1) stores bit 𝑏 of

all the codes. This layout enables the use of SIMD logical operations to efficiently generate draft

results.

Draft Bit Vector Computation Problem. We focus on one of the interval groups. Since the

computation is the same regardless of group 𝑖 , we omit the group ID 𝑖 below for simplicity. Following

the example, we first consider a predicate “𝑥 ≤ 𝑐”.

From Step (2), we see that the draft result is the union of intervals 𝐼0 . . . 𝐼 𝑗 for some 𝑗 . Let

the code word of interval 𝐼 𝑗 be 𝑐𝑜𝑑𝑒 ( 𝑗). Then the set of code words associated with 𝐼0 . . . 𝐼 𝑗 is

𝑈 𝑗 = {𝑐𝑜𝑑𝑒 (0), . . . , 𝑐𝑜𝑑𝑒 ( 𝑗)}. For every code 𝐶 in the filter sketches, we set the corresponding bit

in the draft result to 1 iff 𝐶 ∈ 𝑈 𝑗
.

Then, two related questions arise: 1) What is the encoding 𝑐𝑜𝑑𝑒 ( 𝑗)? 2) How to compute 𝐶 ∈ 𝑈 𝑗

efficiently?

Our Solution: MLO. BitWeaving [26] proposed the VBP vertical bit layout. As shown in Figure 3(a),

𝑐𝑜𝑑𝑒 ( 𝑗) = 𝑗 in VBP. To compute 𝐶 ∈ 𝑈 𝑗
, VBP checks each bit from the most to the least significant

in a loop. Each loop iteration updates𝑚𝑙𝑡 and𝑚𝑒𝑞 , which represent the less than and the equal

to cases. If we omit ¬ (since combined operations, such as andnot, may exist as a single SIMD

instruction), VBP performs 5𝑤 + 1 SIMD operations for𝑤-bit codes.

We propose MLO (minimal logical operations), a novel encoding and computation scheme that

minimizes the number operations. Unlike VBP, MLO avoids the per-bit loop. Instead, we derive a

boolean logical formula to compute 𝐶 ∈ 𝑈 𝑗
.

In MLO, we set 𝑐𝑜𝑑𝑒 ( 𝑗) = 2
𝑤 − 𝑗 − 1. Let 𝐶 = 𝐶𝑤−1𝐶𝑤−2 . . .𝐶0 be a code word. Our target is the

function 𝑓𝑤 (𝐶,𝑈 𝑗 ) s.t. 𝑓𝑤 (𝐶,𝑈 𝑗 )=1 iff 𝐶 ∈ 𝑈 𝑗
. The subscript𝑤 denotes the number of bits in the

code word. We derive the function’s formula by recursion. Suppose 𝑓𝑏 (𝐶,𝑈 𝑗 ) is 1 iff 𝐶 ∈ 𝑈 𝑗
when

we focus on the lower 𝑏 bits of the codes. We have the following:

𝑓𝑏 (𝐶,𝑈 𝑗 ) =

𝐶𝑏−1 ∧ 𝑓𝑏−1 (𝐶,𝑈 𝑗 ), if 0 ≤ 𝑗 ≤ 2

𝑏−1,

𝐶𝑏−1 ∨ 𝑓𝑏−1 (𝐶,𝑈 𝑗−2𝑏−1 ), if 2
𝑏−1 < 𝑗 < 2

𝑏 − 1.

1, if 𝑗 = 2
𝑏 − 1.

We can prove the following based on the recurrence relations.

Theorem 3.1. 𝑓𝑤 (𝐶,𝑈 𝑗 ) can be computed with up to𝑤 − 1 logical operations.

As shown in Figure 3(b), MLO performs the same computation with only two SIMD logical opera-

tions. In general, compared with VBP, which takes 5𝑤 + 1 SIMD operations, our MLO reduces the
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Code(j) = j
𝐺𝑜𝑎𝑙: 𝑇𝑒𝑠𝑡 𝐶 ∈ {000, 001, 010}

𝑓𝑜𝑟 𝑖 = 2,1,0

𝑚𝑙𝑡 = 𝑚𝑙𝑡 ∨ 𝑚𝑒𝑞 ∧ 𝑈𝑖 ∧ ¬𝐶𝑖
𝑚𝑒𝑞 = 𝑚𝑒𝑞 ∧ ¬ 𝑈𝑖 ⊕ 𝐶𝑖

𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑚𝑒𝑞 ∨ 𝑚𝑙𝑡

Code(j) = 23 − 𝑗 − 1 (w=3)
𝐺𝑜𝑎𝑙: 𝑇𝑒𝑠𝑡 𝐶 ∈ {111, 110, 101}

𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑓3 = 𝐶2 ∧ 𝐶1 ∨ 𝐶0

1. 𝑃𝑟𝑒𝑝𝑎𝑟𝑒 2. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒

𝑈: 010
𝑚𝑙𝑡: 0
𝑚𝑒𝑞: 1

(a) VBP (b) MLO

Fig. 3. VBP vs. our proposed MLO computation.

number of SIMD operations by 5x.

Scan Algorithm for “≤” Operator. The scan algorithm of CabinF for a predicate “𝑥 ≤ 𝑐” is listed

in Algorithm 1:

1. Prepare (Line 2–4). Cabin performs a binary search for the predicate value 𝑐 in the interval table.

The target interval 𝐼𝑖, 𝑗 contains 𝑛𝑢𝑚 records and starts at 𝑝𝑜𝑠 [𝑠𝑡𝑎𝑟𝑡]. Then, Cabin searches for

𝑐 between 𝑝𝑜𝑠 [𝑠𝑡𝑎𝑟𝑡] and 𝑝𝑜𝑠 [𝑠𝑡𝑎𝑟𝑡+𝑛𝑢𝑚-1] in the selective position array. The split point is

𝑝𝑐 . Note that data associated with 𝑝𝑜𝑠 [0], ..., 𝑝𝑜𝑠 [𝑝𝑐 − 1] satisfy the predicate “𝑥 ≤ 𝑐”.

2. Find Closest Matching Intervals (Line 5–8). To compute the result bit vector, there are two options:

a) compute the bit vector representing all intervals < 𝐼𝑖, 𝑗 (i.e. 𝑆𝑒𝑡𝐼 = {𝐼𝑖,0 . . . 𝐼𝑖, 𝑗−1}) then flip the

bits of the records to the left of 𝑝𝑐 ; b) compute the bit vector representing 𝑆𝑒𝑡𝐼 = {𝐼𝑖,0 . . . 𝐼𝑖, 𝑗 }
then flip the bits of the unwanted records including and to the right of 𝑝𝑐 . Cabin chooses the

option with fewer bit flips.

3. Generate Draft Bit Vector (Line 9–10). This step calls the MLO computation function for every

𝑉𝐿 (i.e, vector length, e.g., 256 in Intel AVX2) bit segment in filter sketches. Our implementation

pre-generates 𝑓𝑤 (𝐶,𝑈 𝑗 ) function using SIMD operations for all 0 ≤ 𝑗 ≤ 2
𝑤 − 1 and 2 ≤ 𝑤 ≤ 9.

(This is sufficient since the optimal𝑤 is often small.) We store the function pointers in a table

and invoke the relevant functions for 𝑠𝑘𝑒𝑡𝑐ℎ_𝑡𝑜_𝑏𝑣 . (Alternatively, SIMD code can be generated

online if the database system supports query compilation [14, 19, 21, 28, 36].)

4. Refine Bit Vector (Line 11–13). Finally, Cabin performs the bit flips to account for the difference

between the interval boundary and the split point. Step 2 has already recorded the incorrect

records 𝑝𝑜𝑠 [𝑝𝑠𝑡𝑎𝑟𝑡 ], ..., 𝑝𝑜𝑠 [𝑝𝑒𝑛𝑑 − 1]. Cabin simply flips the corresponding bits in a loop. We

use software prefetching to accelerate the random memory accesses caused by the bit flips.

Scan Algorithms for Other Comparison Operators. The scan algorithms for the other compar-

ison operators are similar to Algorithm 1. We discuss them in the following:

• “𝑥 < 𝑐”: “𝑥 < 𝑐” can be transformed to “𝑥 ≤ 𝑐′” where 𝑐′ is the next value2 less than 𝑐 . As there
are no other values between 𝑐 and 𝑐′, the two predicates have the same result.

• “𝑥 ≥ 𝑐” and “𝑥 > 𝑐”: To compute “𝑥 ≥ 𝑐”, the basic idea is to compute “𝑥 < 𝑐” and negate the

result bit vector. After calling 𝑠𝑘𝑒𝑡𝑐ℎ_𝑡𝑜_𝑏𝑣 , we perform one additional SIMD operation 𝑏𝑣𝑠
𝑑𝑟𝑎𝑓 𝑡

= ¬𝑏𝑣𝑠
𝑑𝑟𝑎𝑓 𝑡

. In this way, we obtain the negation of the result bit vector after the bit flips. Similarly,

“𝑥 > 𝑐” can be computed by negating the result of “𝑥 ≤ 𝑐”. In these cases, MLO performs up to

𝑤 SIMD operations for every 𝑉𝐿 code words.

• “𝑐1 ≤ 𝑥 ≤ 𝑐2” : In Cabin, this case is transformed into “𝑥 ≥ 𝑐1” and “𝑥 ≤ 𝑐2”. Then, Cabin

computes the bitwise AND of the result bit vectors of “𝑥 ≥ 𝑐1” and “𝑥 ≤ 𝑐2”.

• “𝑥 = 𝑐” and “𝑥 ≠ 𝑐”: “𝑥 = 𝑐” is transformed into “𝑐 ≤ 𝑥 ≤ 𝑐”. “𝑥 ≠ 𝑐” is supported by negating

the result of “𝑥 = 𝑐”.

2
For integer values, we can simply set 𝑐′=𝑐-1. For floating-point values, we can get the next representable value 𝑐′ using the
C++ std::nexttoward function.
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Algorithm 1: CabinF for a predicate “𝑥 ≤ 𝑐”.

Input : Input column 𝑋1...𝑁 , predicate “𝑥 ≤ 𝑐”, filter sketches 𝑓 𝑠𝑖,𝑏 , sketch code width𝑤 ,

interval table 𝑇 𝐼 , selective position array 𝑝𝑜𝑠 []
Output :Result bit vector 𝑏𝑣

1 Function CabinFScan(“𝑥 ≤ 𝑐”, 𝑋)
2 (𝐼𝑖, 𝑗 , num, start, sflag) = binary_search_interval(𝑐 , 𝑇 𝐼 );

3 /* assume selective flag of 𝐼𝑖, 𝑗 is 1, i.e., 𝑠 𝑓 𝑙𝑎𝑔 == 1 */

4 𝑝𝑐 = binary_search_pos(𝑐 , 𝑝𝑜𝑠 , 𝑠𝑡𝑎𝑟𝑡 , 𝑛𝑢𝑚);

5 if 𝑝𝑐 − 𝑠𝑡𝑎𝑟𝑡 ≤ 𝑛𝑢𝑚
2

then
6 𝑆𝑒𝑡𝐼 = {𝐼𝑖,0 . . . 𝐼𝑖, 𝑗−1}; 𝑝𝑠𝑡𝑎𝑟𝑡 = 𝑠𝑡𝑎𝑟𝑡 ; 𝑝𝑒𝑛𝑑 = 𝑝𝑐 ;

7 else
8 𝑆𝑒𝑡𝐼 = {𝐼𝑖,0 . . . 𝐼𝑖, 𝑗 }; 𝑝𝑠𝑡𝑎𝑟𝑡 = 𝑝𝑐 ; 𝑝𝑒𝑛𝑑 = 𝑠𝑡𝑎𝑟𝑡 + 𝑛𝑢𝑚;

9 for each 𝑉𝐿-bit segment 𝑠 in filter sketches do
10 𝑏𝑣𝑠

𝑑𝑟𝑎𝑓 𝑡
= 𝑠𝑘𝑒𝑡𝑐ℎ_𝑡𝑜_𝑏𝑣 (𝑆𝑒𝑡𝐼 , {𝑓 𝑠𝑠𝑖,0 . . . 𝑓 𝑠𝑠𝑖,𝑤−1});

11 for 𝑝𝑠𝑡𝑎𝑟𝑡 ≤ 𝑟 < 𝑝𝑒𝑛𝑑 do
12 pipeline prefetch;

13 flip_bit(𝑏𝑣[𝑝𝑜𝑠[𝑟 ]]);

14 return 𝑏𝑣 ;

Shortcut Optimization. BinDex takes a different approach for evaluating “𝑥 = 𝑐”. The idea is

to start with an all-zero draft vector, then search the position array to find the small number of

records that satisfy the predicate, and finally set the corresponding bits in the draft vector. We

call this approach shortcut optimization. The shortcut optimization reduces the cost of computing

the draft bit vector from filter sketches. We find this beneficial for comparison operators (e.g.,

BETWEEN) other than “=” when the selectivity is low. Therefore, we extend the use of shortcut

optimization for all comparison operators. After searching the selective position array, Cabin knows

the selectivity of the scan. If it is lower than a given threshold (e.g., 0.5%), Cabin performs the

shortcut optimization.

3.3 Selective Position Array
Let us consider the space cost of the position array. For 4-byte rowIDs, it takes 4𝑁 bytes, where 𝑁

is the number of records. Since the rowID size can be similar to or even larger than the data value

size, this incurs significant space overhead. For example, the rowIDs of 1 billion records take nearly

4GB memory space.

To save memory space, we propose to selectively store portions of the position array. That is, for

a subset of intervals, we do not store their rowIDs, and set their selective flags to 0 in the interval

table. This allows more flexible time-space tradeoff.

Scan Algorithm Without Selective Position Array. The scan algorithm of CabinFS is listed in

Algorithm 2. Compared to CabinF, the main difference is that CabinFS cannot search the target

interval using the selective position array in order to refine the draft bit vector. Instead, we use the

filter sketches in a similar fashion to Column Sketches to refine the draft result:

1. Prepare (Line 2–3). Cabin finds the target interval 𝐼𝑖, 𝑗 in the interval table. It checks the selective

flag. If the flag is 0, meaning that the rowIDs of 𝐼𝑖, 𝑗 are not stored, then Cabin executes CabinFS.

(If the flag is 1, then CabinF is used).
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Algorithm 2: CabinFS for a predicate “𝑥 ≤ c”.

Input : Input column 𝑋1...𝑁 , predicate “𝑥 ≤ 𝑐”, filter sketches 𝑓 𝑠𝑖,𝑏 , sketch code width𝑤 ,

interval table 𝑇 𝐼 , selective position array 𝑝𝑜𝑠 []
Output :Result bit vector 𝑏𝑣

1 Function CabinFSScan(“𝑥 ≤ 𝑐”, 𝑋)
2 (𝐼𝑖, 𝑗 , num, start, sflag) = binary_search_interval(𝑐 , 𝑇 𝐼 );

3 /* assume selective flag of 𝐼𝑖, 𝑗 is 0, i.e., 𝑠 𝑓 𝑙𝑎𝑔 == 0 */

4 𝑆𝑒𝑡𝐼 = {𝐼𝑖,0 . . . 𝐼𝑖, 𝑗−1};
5 for each 𝑉𝐿-bit segment 𝑠 in filter sketches do
6 𝑏𝑣𝑠

𝑑𝑟𝑎𝑓 𝑡
= 𝑠𝑘𝑒𝑡𝑐ℎ_𝑡𝑜_𝑏𝑣 (𝑆𝑒𝑡𝐼 , {𝑓 𝑠𝑠𝑖,0, . . . , 𝑓 𝑠𝑠𝑖,𝑤−1});

7 𝑏𝑣𝑠𝑒𝑞 = 𝑠𝑘𝑒𝑡𝑐ℎ_𝑡𝑜_𝑏𝑣 (𝐼𝑖, 𝑗 , {𝑓 𝑠𝑠𝑖,0, . . . , 𝑓 𝑠𝑠𝑖,𝑤−1});
8 𝑒𝑞𝑏𝑖𝑡𝑠 [] = 𝑏𝑣_𝑡𝑜_𝑝𝑜𝑠 (𝑏𝑣𝑠𝑒𝑞) ;
9 for each 𝑟 in 𝑒𝑞𝑏𝑖𝑡𝑠 [] do

10 𝑏𝑣𝑠 = 𝑏𝑣𝑠
𝑑𝑟𝑎𝑓 𝑡

| ( (𝑋𝑝𝑜𝑠 [𝑠∗𝑉𝐿+𝑟 ] ≤ 𝑐) ≪ 𝑟 );

11 return 𝑏𝑣 ;

2. Find Matching Interval (Line 4). Since the portion of position array for 𝐼𝑖, 𝑗 is not stored, we

cannot search 𝐼𝑖, 𝑗 . CabinFS simply sets 𝑆𝑒𝑡𝐼 to all intervals < 𝐼𝑖, 𝑗 .

3. Generate Draft Bit Vector (Line 5–6). This step is the same as CabinF. 𝑠𝑘𝑒𝑡𝑐ℎ_𝑡𝑜_𝑏𝑣 is invoked to

obtain the draft bit vector for every 𝑉𝐿 code words.

4. Refine Bit Vector (Line 7–10). For a value ∈ 𝐼𝑖, 𝑗 , filter sketches alone cannot tell the predicate

outcome. In such cases, CabinFS visits the base data to evaluate the predicate. Accordingly, the

algorithm obtains all the positions whose sketch code is equal to the code of 𝐼𝑖, 𝑗 (Line 7–8), then

checks the corresponding base value against the predicate (Line 9–10).

Sketch Code Equality Comparison.We develop a boolean logical function 𝑒𝑞𝑤 (𝐶,𝐶𝑇 ), where
𝐶𝑇

is the code of the target interval 𝐼𝑖, 𝑗 . Let 𝐶 = 𝐶𝑤−1𝐶𝑤−2 . . .𝐶0 be a code word. 𝑒𝑞𝑤 (𝐶,𝐶𝑇 ) =1 iff
𝐶 = 𝐶𝑇

. We also derive the formula by recursion:

𝑒𝑞𝑏 (𝐶,𝐶𝑇 ) =
{
¬𝐶𝑏−1 ∧ 𝑒𝑞𝑏−1 (𝐶,𝐶𝑇 ), 𝐶𝑇

𝑏−1 = 0,

𝐶𝑏−1 ∧ 𝑒𝑞𝑏−1 (𝐶,𝐶𝑇 ), 𝐶𝑇
𝑏−1 = 1.

For example, 𝑒𝑞3 (𝐶, 010) = ¬𝐶2 ∧𝐶1 ∧ ¬𝐶0. Note that Intel processors support andnot as a single

SIMD instruction. Therefore, 𝑒𝑞𝑤 (𝐶,𝐶𝑇 ) takes up to𝑤 SIMD operations to compute for each SIMD

segment.

3.4 Data-aware Intervals
In CabinF and CabinFS, we divide the value range into equal-sized intervals. This strategy works

well when the number of duplicates for each distinct value is small. However, real-world data may

contain a lot of duplicates. Two representative scenarios are as follows:

• Skewed data distribution: Real-world data distribution is often skewed. For example, power-law

distribution is common in real-world graphs, such as social networks [5]. In this scenario, a few

values may have a large number of duplicates, while the number of duplicates of most values is

small.

• Small number of distinct values (NDV): The number of distinct values can be small in a data

column. Examples are categorical attributes. In this scenario, the number of duplicates can be

quite large for each distinct value.
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50 2 4 50 50 … 2 50

𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥𝑁−1 𝑥𝑁

Filter Sketches 

Interval Table

0 1 0 0 0 … 1 0𝑓𝑠0,1

Column Data

1 1 1 1 1 … 1 1𝑓𝑠1,0

𝐼0,0 (−∞, 2) 111 / 0 /

𝐼0,1 [2, 4) 110 … … 2

𝐼0,2 [4, 20) 101 … … 1

… … … … … …

𝐼0,7 (46,+∞) 000 / / /

𝐼1,0 (−∞, 50] 1 … … 3

𝐼1,1 (50,+∞) 0 / / /

(popular values: 2, 50)

G
ro

u
p

 0
G

ro
u

p
 1

flag

0 0 1 0 0 … 0 0𝑓𝑠0,0

0 1 1 0 0 … 1 0𝑓𝑠0,2

Interval
Type

flag = 0 interval without position array flag = 2 skew interval

flag = 1 interval with position array flag = 3 skew interval group

Fig. 4. Cabin supporting data with duplicates.

We call values with a large number of duplicates popular values. CabinFSD judiciously chooses

intervals, interval groups, and/or sketch code widths to better support popular values.

In the following, we describe the steps of index building with an emphasis on data-aware

intervals:

Index Building Step 1: Popular Value Discovery. Given a base data column, we consider

three alternative methods for discovering popular values. First, the sort-based method allocates a

temporary sort buffer and sorts the (value, rowID) pairs in value order. It scans the sorted array

and computes the number of duplicates for each value. Second, the hash-based method allocates a

temporary hash table and counts the number of duplicates per value using the hash table. Third,

the sample-based method collects a small (e.g., 1%) sample from the base data. Then, it applies the

sort-based method on the sample. Since popular values appear in the sample with high probability,

we can use the sample based estimates to discover popular values. We record a value as a candidate

popular value if its number of occurrences ≥ 𝑁𝑝𝑙 . The bound 𝑁𝑝𝑙 is computed as the record count

𝑁 divided by the maximal number of intervals given the memory space budget of Cabin. We

also collect/estimate other meta-information about the base data, such as the value range and the

number of distinct values.

Index Building Step 2: Optimal Design Selection. Given memory space budget and the data

characteristics, we compute the optimal design parameters (cf. Section 4). Then, we compute 𝑁𝑝 ,

the average interval size, as 𝑁 divided by the number of intervals in the optimal parameters. Since

𝑁𝑝 > 𝑁𝑝𝑙 in most cases, we remove unqualified candidates to obtain the popular values. For each

popular value, we put the value into its own interval. We call such interval skew interval. If the
number of duplicates is larger than the average interval group size 𝑁𝑝 (2𝑤 − 2), then we put the

value into its own interval group. We call such interval group skew interval group. The code width of
all skew interval groups is set to 1. As for unpopular normal values, we create even-sized intervals.

Index Building Step 3: Structure Building. Given the selected design parameters in Step 2, we

build the interval table, the selective position array, and the filter sketches. For skew intervals and

skew interval groups, we do not store the associated portions of the position array. As a skew

interval contains only a single value, scans do not need to search the position array in the interval.

Optimizing for Popular Values. Figure 4 illustrates data-aware intervals for popular values.

There are two popular values in the base data: 50 and 2. First, 50 occupies its own skew interval

group (i.e., Group 1). A skew interval group contains only two virtual intervals (−∞, 𝑣𝑝 ] and
(𝑣𝑝 , +∞), where 𝑣𝑝 is the popular value. We set flag=3 to indicate a skew interval group. Second, 2

has its own skew interval in Group 0 (i.e., 𝐼0,1). We set flag=2 for skew intervals.
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Table 2. Terms used in cost analysis.
𝑤 sketch code width 𝐼𝑖, 𝑗 𝑗-th interval in Group 𝑖

𝑔 number of groups 𝑝𝑖, 𝑗 probability of accessing 𝐼𝑖, 𝑗

𝑠𝑝 percentage of stored pos[] 𝑆𝑒𝑡𝑥 Set of intervals w/ property 𝑥

𝑁 number of records 𝑡𝑠𝑒𝑞𝑟 time to sequentially read a byte

𝑀 number of intervals 𝑡𝑠𝑒𝑞𝑤 time to sequentially write a byte

|𝐼𝑖, 𝑗 | number of records in 𝐼𝑖, 𝑗 𝑡𝑟𝑎𝑛𝑟 time for a random read

𝑟 rowID bits 𝑡𝑟𝑎𝑛𝑤 time for a random write

𝑉𝐿 SIMD vector length 𝑡𝑠𝑖𝑚𝑑 time of a SIMD logical operation

For a scan with predicate 𝑥 ≤ 𝑐 , CabinFSD finds the target interval in the interval table. There are

two cases for popular values. First, the target is a skew interval group with flag=3 (e.g., 𝑐=50). Then

the scan directly returns the single filter sketch (e.g., 𝑓 𝑠1,0). Second, the target interval is a skew

interval in a normal group (e.g., 𝑐=2). Then the scan performs a simplified CabinFScan. Specifically,

since the skew interval contains a single value, there is no need to refine the draft result. The draft

result bit vector can be returned directly. In both cases, CabinFSD simplifies the scan procedure,

thereby improving scan performance for popular values.

4 OPTIMAL DESIGN SELECTION
We model the time and space cost of Cabin, then describe how to compute the optimal design

parameters for Cabin.

Design Parameters of Cabin. There are three important design parameters in Cabin. (Table 2

lists the terms used in the analysis.)

• Sketch code word width (𝑤 ). As𝑤 increases, the number of bit vectors in filter sketches increases.

The cost of draft bit vector generation becomes proportionally expensive. On the other hand, the

number of intervals per group (2
𝑤 − 2) increases exponentially. Interval size becomes smaller,

leading to fewer bit flips in the refine step.

• Number of groups (𝑔). Every contiguous 2
𝑤 − 2 intervals form a group. The total number of

non-virtual intervals is𝑀 = 𝑔(2𝑤 − 2). As 𝑔 rises,𝑀 increases. The interval size decreases, and

therefore the refine step improves. However, the space for storing all filter sketches grows as 𝑔

increases. The optimal 𝑔 is often larger than 1 (cf. Section 5.4).

• Stored proportion of selective position array (𝑠𝑝). 𝑠𝑝 ∈ [0, 1] is the fraction of rowIDs physically

stored in the selective position array. For even-sized intervals, 𝑠𝑝 ·𝑀 computes the number of

intervals, whose flag=1 in the interval table. In this work, we assume that every data record is

equally likely to be the query predicate value. Hence, the probability that the predicate value

falls into each equal-sized interval is the same. Therefore, we randomly pick intervals that do

not store the position array.

Scan Performance. Let 𝑝𝑖, 𝑗 be the probability that the scan predicate value falls into interval 𝐼𝑖, 𝑗 .

Let |𝐼𝑖, 𝑗 | be the number of records in 𝐼𝑖, 𝑗 . If we assume that every base data record is equally likely

to be queried, then 𝑝𝑖, 𝑗 =
|𝐼𝑖,𝑗 |
𝑁

. Let 𝑆𝑒𝑡0 be the set of all intervals whose flag=0 (i.e., the rowIDs are

not stored). Let 𝑆𝑒𝑡1 be the set of all intervals whose flag=1 (i.e. with stored position array). Let

𝑆𝑒𝑡𝑠𝑘𝑒𝑤 be the set of all skew intervals. Then the average scan time of Cabin can be modeled as

follows:

𝑇𝐶𝑎𝑏𝑖𝑛 =
∑︁
𝑆𝑒𝑡1

|𝐼𝑖,𝑗 |
𝑁

𝑇𝐶𝑎𝑏𝑖𝑛𝐹 (𝐼𝑖, 𝑗 ) +
∑︁
𝑆𝑒𝑡0

|𝐼𝑖,𝑗 |
𝑁

𝑇𝐶𝑎𝑏𝑖𝑛𝐹𝑆 (𝐼𝑖, 𝑗 ) +
∑︁

𝑆𝑒𝑡𝑠𝑘𝑒𝑤

|𝐼𝑖,𝑗 |
𝑁

𝑇𝐶𝑎𝑏𝑖𝑛𝐹𝑆𝐷 (𝐼𝑖, 𝑗 )

𝑇𝐶𝑎𝑏𝑖𝑛𝐹 , the scan time of CabinF, consists of four components:
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1. Prepare (𝑇𝑠𝑒𝑎𝑟𝑐ℎ𝐹 ). CabinF searches the interval table containing𝑀 intervals, and then the target

interval with an average
𝑁
𝑀

records. Hence, this step takes 𝑂 (log𝑁 ) time.

2. Find Closest Matching Intervals (𝑇𝑓 𝑐𝑚𝑖 ). Step 2 involves 𝑂 (1) comparison and assignment opera-

tions.

3. Generate Draft Bit Vector (𝑇𝑔𝑒𝑛𝑏𝑣). This step reads a group of𝑤 𝑁 -bit filter sketches, performs

an average 𝑤 SIMD logical operations for every 𝑉𝐿 code words, and writes a 𝑁 -bit result

vector. Hence,𝑇𝑔𝑒𝑛𝑏𝑣 = max{𝑤𝑁
8
𝑡𝑠𝑒𝑞𝑟 ,

𝑤𝑁
𝑉𝐿

𝑡𝑠𝑖𝑚𝑑 ,
𝑁
8
𝑡𝑠𝑒𝑞𝑤} where 𝑡𝑠𝑒𝑞𝑟 , 𝑡𝑠𝑖𝑚𝑑 , and 𝑡𝑠𝑒𝑞𝑤 are the time

to sequentially read a byte, perform a SIMD logical operation, and sequentially write a byte,

respectively. The max takes into consideration the overlapping of computation and memory

accesses [15, 33].

4. Refine Bit Vector (𝑇𝑟𝑒 𝑓 𝑖𝑛𝑒𝐹 ). As Step 2 finds the closer interval end to the split point, the number

of bit flips is at most half of the interval. On average,
1

4
of the positions need to be corrected. For

each position, Step 4 reads the rowIDs in the position array then flips the bit in the draft result.

Hence, 𝑇𝑟𝑒 𝑓 𝑖𝑛𝑒𝐹 =
|𝐼𝑖,𝑗 |
4

( 𝑟
8
𝑡𝑠𝑒𝑞𝑟 + 𝑡𝑟𝑎𝑛𝑤), where |𝐼𝑖, 𝑗 | is the size of interval 𝐼𝑖, 𝑗 , 𝑟 is the number of

bits of rowID, 𝑡𝑟𝑎𝑛𝑤 is the time for a random write.

It follows from the above discussion:

𝑇𝐶𝑎𝑏𝑖𝑛𝐹 (𝐼𝑖, 𝑗 ) = 𝑇𝑠𝑒𝑎𝑟𝑐ℎ𝐹 +𝑇𝑓 𝑐𝑚𝑖 +𝑇𝑔𝑒𝑛𝑏𝑣 +𝑇𝑟𝑒 𝑓 𝑖𝑛𝑒𝐹
= 𝑂 (log𝑁 ) +max{𝑤𝑁

8
𝑡𝑠𝑒𝑞𝑟 ,

𝑤𝑁
𝑉𝐿

𝑡𝑠𝑖𝑚𝑑 ,
𝑁
8
𝑡𝑠𝑒𝑞𝑤} + |𝐼𝑖, 𝑗 | ( 𝑟

32
𝑡𝑠𝑒𝑞𝑟 + 1

4
𝑡𝑟𝑎𝑛𝑤)

𝑇𝐶𝑎𝑏𝑖𝑛𝐹𝑆 , the scan time of CabinFS, also consists of four components. The costs of the first three steps

are similar to those of Cabin𝑆 except that it does not search the interval. The main difference is the

cost of the refine step. Since the portion of the selective position array is not stored for the interval,

CabinFS computes the equal-code positions with SIMD logical operations, and reads all |𝐼𝑖, 𝑗 | base
data values in interval 𝐼𝑖, 𝑗 to evaluate the predicate. On average, half the values satisfy the predicate,

and the scan flips
|𝐼𝑖,𝑗 |
2

bits in the draft result. Hence, 𝑇𝑟𝑒 𝑓 𝑖𝑛𝑒𝐹𝑆 =
𝑤𝑁
𝑉𝐿

𝑡𝑠𝑖𝑚𝑑 + |𝐼𝑖, 𝑗 | (𝑡𝑟𝑎𝑛𝑟 + 1

2
𝑡𝑟𝑎𝑛𝑤),

where 𝑡𝑟𝑎𝑛𝑟 is the time for a random read. Hence, we have:

𝑇𝐶𝑎𝑏𝑖𝑛𝐹𝑆 (𝐼𝑖, 𝑗 ) = 𝑇𝑠𝑒𝑎𝑟𝑐ℎ𝐹𝑆 +𝑇𝑓 𝑐𝑚𝑖 +𝑇𝑔𝑒𝑛𝑏𝑣 +𝑇𝑟𝑒 𝑓 𝑖𝑛𝑒𝐹𝑆
= 𝑂 (log𝑀) +max{𝑤𝑁

8
𝑡𝑠𝑒𝑞𝑟 ,

𝑤𝑁
𝑉𝐿

𝑡𝑠𝑖𝑚𝑑 ,
𝑁
8
𝑡𝑠𝑒𝑞𝑤} + 𝑤𝑁

𝑉𝐿
𝑡𝑠𝑖𝑚𝑑 + |𝐼𝑖, 𝑗 | (𝑡𝑟𝑎𝑛𝑟 + 1

2
𝑡𝑟𝑎𝑛𝑤)

Finally, we compute 𝑇𝐶𝑎𝑏𝑖𝑛𝐹𝑆𝐷 for popular values. The scan searches the interval table in 𝑂 (log𝑀)
time. Then it computes the result. There are two cases. For a skew group, the scan returns the

filter sketches with negligible cost. For a skew interval, the scan generates and returns the draft bit

vector in 𝑇𝑔𝑒𝑛𝑏𝑣 time.

𝑇𝐶𝑎𝑏𝑖𝑛𝐹𝑆𝐷 (𝐼𝑖, 𝑗 ) = 𝑇𝑠𝑒𝑎𝑟𝑐ℎ𝐹𝑆𝐷 +𝑇𝑓 𝑐𝑚𝑖 +𝑇𝑔𝑒𝑛𝑏𝑣

=

{
𝑂 (log𝑀) +max{𝑤𝑁

8
𝑡𝑠𝑒𝑞𝑟 ,

𝑤𝑁
𝑉𝐿

𝑡𝑠𝑖𝑚𝑑 ,
𝑁
8
𝑡𝑠𝑒𝑞𝑤}, 𝑓 𝑙𝑎𝑔 = 2,

𝑂 (log𝑀) +max{𝑁
8
𝑡𝑠𝑒𝑞𝑟 ,

𝑁
𝑉𝐿

𝑡𝑠𝑖𝑚𝑑 ,
𝑁
8
𝑡𝑠𝑒𝑞𝑤}, 𝑓 𝑙𝑎𝑔 = 3.

Space Overhead. We first consider all equal-sized intervals:

• Interval table (𝑆𝑇 𝐼 ). It stores meta information of intervals. Its space cost is negligible.

• Filter sketches (𝑆 𝑓 𝑠 ). There are 𝑔 interval groups. Each group has𝑤 𝑁 -bit vectors. Hence, 𝑆 𝑓 𝑠 =
𝑔𝑤𝑁

8
bytes.

• Selective position array (𝑆𝑝𝑜𝑠 ). The total size is
𝑁𝑟
8

bytes. Since 𝑠𝑝 portion is physically stored,

𝑆𝑝𝑜𝑠 = 𝑠𝑝 𝑁𝑟
8

bytes.

Thus, we have the following for equal-sized intervals:

𝑆𝐶𝑎𝑏𝑖𝑛 = 𝑆𝑇 𝐼 + 𝑆 𝑓 𝑠 + 𝑆𝑝𝑜𝑠 =
𝑔𝑤𝑁

8
+ 𝑠𝑝 𝑁𝑟

8
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Algorithm 3: Optimal design selection algorithm.

Input :Column data 𝑋1...𝑁 , space budget 𝐵

Output :Sketch code width𝑤 , number of groups 𝑔, stored proportion of selective position

array 𝑠𝑝

1 Function DesignSelection(𝑋 , 𝐵)
2 𝑁 = |𝑋 |; 𝐶𝑃 = CandidatePopularValues (𝑋 , 𝐵);

3 𝑇𝑚𝑖𝑛 = +∞;

4 for 2 ≤ 𝑤 ≤ 9 do
5 𝑔𝑚𝑎𝑥 =

8𝐵
𝑤 ·𝑁 /* 𝑠𝑝 = 0 */; 𝑔𝑚𝑖𝑛 =

8𝐵−𝑁 ·𝑟
𝑤 ·𝑁 /* 𝑠𝑝 = 1 */;

6 for 𝑔𝑚𝑖𝑛 ≤ 𝑔 ≤ 𝑔𝑚𝑎𝑥 do
7 𝑀 = 𝑔 · (2𝑤 − 2);
8 𝑆𝑒𝑡𝑠𝑘𝑒𝑤 = DataAwareInterval(𝑋 , 𝐶𝑃 ,𝑀);

9 𝑆𝑒𝑡𝑛𝑜𝑟𝑚𝑎𝑙 = EqualInterval(𝑋 , 𝑆𝑒𝑡𝑠𝑘𝑒𝑤 ,𝑀);

10 𝑠𝑝 = ComputeSP(N, 𝑆𝑒𝑡𝑠𝑘𝑒𝑤 , 𝑆𝑒𝑡𝑛𝑜𝑟𝑚𝑎𝑙 , 𝑔,𝑤 );

11 (𝑆𝑒𝑡0, 𝑆𝑒𝑡1) = GetSelPosArray(𝑆𝑒𝑡𝑛𝑜𝑟𝑚𝑎𝑙 , 𝑠𝑝);

12 Compute 𝑇𝐶𝑎𝑏𝑖𝑛 given 𝑆𝑒𝑡0, 𝑆𝑒𝑡1, and 𝑆𝑒𝑡𝑠𝑘𝑒𝑤 ;

13 if 𝑇𝐶𝑎𝑏𝑖𝑛 < 𝑇𝑚𝑖𝑛 then
14 𝑇𝑚𝑖𝑛 = 𝑇𝐶𝑎𝑏𝑖𝑛 ; update (𝑤 , 𝑔, 𝑠𝑝);

15 return (𝑤 , 𝑔, 𝑠𝑝);

For popular values, Cabin does not store the rowIDs. Therefore, we subtract the number of records

with popular values from 𝑁 in the computation of 𝑆𝑝𝑜𝑠 . As for filter sketches, there are two cases.

For a skew interval group, Cabin stores only a single 𝑁 -bit vector. For a skew interval in a normal

group, the size of filter sketches is the same as that of normal intervals.

Optimal Design Selection.Given amemory space budget, Algorithm 3 finds the design parameters

that optimize the scan time of Cabin. It begins by getting the candidate popular values (Line 2, cf.

Section 3.4). Then, it enumerates every pair of (𝑤 , 𝑔). We restrict𝑤 to be up to 9, which is sufficient

in our experiments with up to a billion records. The range of 𝑔 is bounded by the cases where the

selective position array is entirely stored or removed. Therefore, the procedure is efficient because

the search space is limited.

For each pair of (𝑤 , 𝑔), the algorithm computes the set of skew intervals from popular values

(Line 8, cf. Section 3.4). Then, for unpopular values, it computes equal-sized intervals (Line 9). After

that, the algorithm examines the space cost of filter sketches and selective position array by taking

into account of both skew intervals and normal intervals. It computes 𝑠𝑝 (Line 10) and chooses

a subset of intervals to remove the associated portion of the selective position array (Line 11).

This completes the tentative design for all intervals. The scan time is estimated using the above

formulas
3
(Line 12). Finally, the algorithm returns the design parameters that obtain the minimal

scan time.

5 EVALUATION
We perform extensive experiments to compare Cabin with existing optimized scan solutions in this

section.

3
The asymptotic terms, i.e.,𝑂 (log𝑀 ) and𝑂 (log𝑁 ) , in the formulas refer to the time of searching the interval table and/or

the position array. Since the search time is tiny compared to the (𝑂 (𝑁 )) cost of draft bit vector generation and refinement

(cf. Figure 11(a) and Figure 12), we omit these terms in the computation.
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5.1 Experimental Setup

Machine Configuration. The experimental machine is equipped with a 3.0GHz Intel Core i7-9700

processor (8 cores, 12MB L3 cache), 32GB DDR4 DRAM, and 16TB disks. The processor supports

256-bit SIMD instructions. The operating system is 64-bit Ubuntu Server 20.04 with Linux kernel

5.13.0-30. All testing programs are compiled using g++ 9.4 (i.e., the default version in Ubuntu 20.04)

with optimization flag -O3 and SIMD flag -mavx, -mavx2, -mbmi1, -mbmi2. All experiments are

performed in main memory.

Solutions to Compare. We compare Cabin against five optimized scan solutions: ByteSlice

(BS) [13], Zone Maps (ZM) [27], Column Sketches (CS) [16], B+-tree [11], and BinDex [25]. We

obtain the code of ByteSlice and BinDex from their github repositories. We select a widely used

in-memory B+-tree implementation, STX B+-Tree [3]. For Zone Maps and Column Sketches, we

follow the papers to faithfully implement the techniques. We use single-byte column sketches as in

the original experimental setting. Moreover, we try our best to optimize all scan solutions with

software prefetching and SIMD techniques.

Both BinDex and Cabin can leverage more space to construct more filter bit vectors or filter

sketches for achieving better scan performance. We set a reasonable space limit by considering the

space cost of the B+-Tree. In our experimental setting, a rowID is 32-bit large and each column data

value takes 𝑑 bits, where 𝑑=8, 16, 32, or 64. Hence, the data column takes 𝑑𝑁 bits, where 𝑁 is the

number of records. Since the B+-Tree’s leaf level contains 𝑁 pair of (value, rowID), the B+-Tree size

is at least (𝑑 + 32)𝑁 bits. (Note that the B+-Tree consumes more space for storing non-leaf nodes as

well as other fields, such as sibling pointers, in leaf nodes.) Consequently, we set the default space

upper limit of BinDex and Cabin to be
𝑑+32
𝑑

× column size (i.e., 5x for 𝑑=8, 3x for 𝑑=16, 2x for 𝑑=32,

and 1.5x for 𝑑=64), which is smaller than the B+-Tree.

Note that this space limit is a lower bound of the space used in tree-structured indices in general,

including not only B+-Trees, but alsomore recent proposals, such as ART [24] and learned index [20].

This is because values are not sorted and a tree-structured index has to store (value, rowID)s for

the data column.

Synthetic Workload.We generate each synthetic data column with one billion random values.

We consider four cases: 1) integer data following uniform distribution over the full value range;

2) integer data following Zipf distribution to model skew data; 3) integer data with 𝑁𝐷𝑉 distinct

values uniformly distributed in [0, 𝑁𝐷𝑉 ) to model domain encoded categorical attributes; and 4)

skewed floating point data following skewed normal distribution (location=0, scale=1, shape=4) or

pareto distribution (scale=1, shape=4) generated with the Boost library. Note that there are few

duplicate values in case 1 and 4, but a large number of duplicates in case 2 and 3.

We perform scan operations with different types of predicates on the synthetically generated

data columns. We run all experiments in a single-threaded test program. The output of all scan

solutions is a result bit vector except the B+-tree, which outputs a rowID list.

Real-World Data Sets. We also conduct experiments on two widely used real-world data sets,

DBLP [1] and IMDb [2]. The DBLP data set contains 5.26M records. We use the n_citation column

in the scan experiment. The IMDb data set contains 10.2M records. We use the startYear column

in the scan experiment. Both data sets contain a lot of duplicates.

TPC-H and SSB Workloads. Besides the above stand-alone tests, we evaluate Cabin in a full

fledged main memory database system, MonetDB. To add Cabin to MonetDB, our implementation

follows the approach of BinDex. Specifically, the Cabin-based select operator supports the same API

as the original select operator, which takes a single column and a predicate as input. A new fetch

operator supports the result bit vector instead of the rowID list in the original fetch operator. To run
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Fig. 5. Scan performance (uniform, 32-bit data).

a SQL query, we first invoke MonetDB to generate the corresponding MAL script, which consists of

operator calls to execute the selected query plan for the query. Then, we modify the MAL script to

call either BinDex or Cabin enhanced scan operations. We run the original, BinDex-enhanced, and

Cabin-enhanced MAL scripts to compare the query performance of MonetDB, MonetDB+BinDex,

and MonetDB+Cabin, respectively. In the MonetDB experiments, we still bound the memory usage

of BinDex and Cabin by
𝑑+32
𝑑

× column size for each indexed column, where 𝑑 is the bit width of

data values.

We run TPC-H and SSB (Star Schema Benchmark) workloads on MonetDB. For TPC-H, we

generate data with scale factor=20. We follow previous study [16, 25] to run TPC-H Q1 and Q6,

which scan the Lineitem table with various filters to compute aggregates. We also run Q12, which

performs a single join between Lineitem and Orders tables in addition to scans and aggregates. For

SSB, we generate data with scale factor=60. We run all the SSB queries.

5.2 Scan Performance on Uniform Data
In this subsection, we perform scan experiments on uniform data with few duplicates. We vary the

predicate comparison operator, the data width, and the predicate selectivity in the experiments.

Scan with ≤ Operator. Figure 5(a) compares the scan solutions with ≤ operator on 32-bit integer

data. The x-axis varies the selectivity from 0 to 100% with 1% increments. The y-axis reports scan

time in ms. Each reported point is the average over 10 runs.

First, we see that Zone Maps, Column Sketches, and ByteSlice show three flat lines as the

selectivity increases. Zone Maps fall back to plain scans in most cases, reading 32𝑁 bits of data

and displaying a flat (green) curve. Only at very low or very high selectivities can Zone Maps

effectively skip entire buckets. Column Sketches out-performs Zone Maps by reducing the amount

of data to read. Regardless of selectivities, it reads 8𝑁 bits in the sketched column to compare the

predicate code with the 1-byte sketch codes, and performs
𝑁
256

random accesses where sketch code

= predicate code. ByteSlice reads the byte-level columnar data with an efficient SIMD algorithm. It

accesses similar amount of data for all selectivities.

Second, both BinDex and Cabin see wave-like curves. As the selectivity increases, the predicate

value moves across the intervals in the scan indices. The number of bits to refine depends on how

far the predicate value is from the closest interval boundary, and thus varies periodically as the

predicate value moves across multiple interval boundaries. This causes the wave shapes.

Third, the space of BinDex and Cabin are bounded by twice the column data size (i.e., 32𝑁 ) as

discussed in Section 5.1. Hence, the space limit is 64𝑁 . For BinDex, the position array takes 32𝑁

for storing 𝑁 32-bit rowIDs. Therefore, BinDex uses the remaining space to store 32 𝑁 -bit filter

vectors. There are 33 value intervals. In comparison, the optimal design of Cabin has 𝑔 = 6 interval

groups, each containing 2
𝑤 − 2 = 30 intervals where𝑤 = 5. That is, Cabin supports 180 intervals in

total, over 5x as many as that supported by BinDex. As a result, Cabin reduces the interval size and

the average number of bits to refine (i.e.,
1

4
× interval size) by over 5x, attaining significant better
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Fig. 6. Space-time analysis for scans.

performance than BinDex.

Overall, Cabin achieves up to 11.7x, 8.38x, 5.86x, and 3.51x better performance than Zone Maps,

Column Sketches, ByteSlice, and BinDex for 1%–99% selectivities, respectively. (The improvement

over Column Sketches and ByteSlice at 0% and 100% is over 20x because of the shortcut optimization.)

We compute the average scan time over all the measured selectivities. Compared to Zone Maps,

Column Sketches, ByteSlice, and BinDex, Cabin improves the average scan time by 4.48x, 3.27x,

2.27x, and 1.70x, respectively.

Scan with Different Comparison Operators. Figure 5(b) shows the scan performance of different

filter operators. Note that ≤ performs a single in-equality comparison, representing <, >, and ≥
operators. For BETWEEN, Cabin decomposes 𝑐1 ≤ 𝑥 ≤ 𝑐2 into 𝑥 ≥ 𝑐1 and 𝑥 ≤ 𝑐2. Hence, BETWEEN

takes nearly twice as much time as ≤ in Cabin. Compared with Zone Maps, Column Sketches,

ByteSlice, and BinDex, Cabin improves the average performance of scans with BETWEEN by 2.82x,

2.81x, 2.42x, and 1.70x, respectively.

For =, Cabin and BinDex use the shortcut optimization that directly sets the matching bits in the

result bit vector
4
. As a result, Cabin and BinDex take a few ms to evaluate scans with =, which are

orders of magnitude faster than the other solutions.

Index Space-Time Analysis Varying Data Width. Figure 6 analyzes the time-space trade-off of

the scan solutions for queries with ≤ operator while varying data width. The x-axis is the index

size normalized to that of the column data. The space bound is set as discussed in Section 5.1. The

y-axis reports the scan time averaged across all the measured selectivities. In the figures, Zone

Maps, Column Sketches, and ByteSlice are single points. Cabin and BinDex can exploit larger space

to achieve better scan performance, showing two curves. Note that the ByteSlice implementation

does not support 64-bit data and thus is not tested on 64-bit data.

From the figures, we see that Cabin achieves the best performance (at 2x–5x sizes for 8 bits, at

2x–3x sizes for 16 bits, at 1x–2x sizes for 32 bits, at 0.25x–1.5x column size for 64 bits). Compared

to BinDex, Cabin’s higher performance mainly comes from filter sketches, which support more

intervals given the same space budget. Moreover, Cabin enjoys a much wider range of space

4
BinDex implements the shortcut optimization only for =. Cabin extends it to optimize all comparison operators, including

BETWEEN, when the selectivity is low.
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Fig. 8. Scan performance on data with duplicates.

configurations than BinDex. BinDex is at least as large as its position array, which takes 4x–0.5x as

much space as the data column for 8-bit – 64-bit values. In contrast, the selective position array

can effectively reduce Cabin’s size with graceful performance degradation.

Comparison with B+-Tree When Selectivities are Low. We find that the B+-Tree performs

poorly at medium to high selectivities. To show good B+-Tree performance, we run scans with

BETWEEN and focus on low selectivities from 0% to 0.4%. Given a specific selectivity, we randomly

pick 1000 value pairs as the BETWEEN predicate values that satisfy the target selectivity, and

report the average time of the 1000 scans in Figure 7(a).

From Figure 7(a), we see that the B+-Tree is the second best solution when the selectivity is

lower than 0.2%. However, as the selectivity increases, the performance of the B+-Tree quickly

degrades because the B+-Tree leaf scan incurs random memory accesses and costly pointer chasing.

At 0.4% selectivity, the B+-Tree becomes the slowest solution. In comparison, Cabin achieves the

best performance by using the shortcut optimization for low selectivities
4
.

Figure 7(b) shows the space-time scatter plot for low selectivities from 0% to 0.4%. We see that

Cabin achieves the best time-space trade-off among all solutions. Note that compared to the B+-

Tree, Cabin is both smaller and faster. When the index size is reduced, Cabin employs the selective

position array. If the BETWEEN range falls in intervals where position arrays are not stored, the

shortcut optimization cannot be applied. Hence, the scan performance degrades gracefully, leading

to the arc shape for smaller index sizes.

5.3 Data with Different Characteristics

Scan Performance on Data with Duplicates.We study two representative scenarios where there

can be a lot of duplicates in the column data: 1) Skew data with Zipf distribution, which models the

power-law distribution in real-world data sets; and 2) Data with a small number of distinct values,

which models categorical attributes that are domain encoded.

Figure 8(a) shows the space-time scatter plot for skew data with the Zipf parameter = 2. Figure 8(b)

shows the space-time scatter plot when there are 100 distinct values. In both cases, the data column

contains popular values that span entire value intervals. Our technique of data-aware intervals
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Fig. 9. Scan performance on skewed floating point values.
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Fig. 10. Scan performance on real-world datasets.

both reduces the space cost and improves the scan performance for supporting the popular values.

As a result, Cabin achieves the best time-space trade-off in both cases, as shown in Figure 8.

Scan Performance on Skewed Floating Point Data. Figure 9(a) and (b) show the time-space

trade-off of scan solutions for 32-bit floating point data that follow skewed normal distribution and

pareto distribution, respectively. (Please note that ByteSlice does not support floating point data.)

In both data sets, value ranges contain skewed amount of data but the number of duplicates is low.

Therefore, equal-sized intervals, which contain equal number of records per interval, still work

well. Cabin sees similar benefits as in the case of 32-bit uniform integer data in Figure 6(c).

Scan Performance on Real-World Datasets. Figure 10 shows the scan performance on DBLP’s

n_citation column and IMDb’s startYear column. Since both data sets contain a lot of duplicates,

Cabin constructs data-aware intervals to achieve good performance. From Figure 10, we see that

Cabin achieves the best scan time at all sizes for DBLP and at 0.5–2x column size for IMDb.

5.4 Benefit of Proposed Techniques in Cabin
We study the benefit of the proposed techniques of Cabin. All experiments in this subsection use

32-bit data and the ≤ operator.

Filter Sketches. Figure 11(a) shows the scan time while varying the sketch code width𝑤 from 2

to 9, and limiting Cabin’s size by 2 × column size. The scan time is broken down into three parts of

the CabinF algorithm: 1) prepare and search (search), 2) generate the draft bit vector (draft), and 3)

refine the bit vector (refine). Note that the search cost is tiny and hardly visible. As𝑤 increases, the

number of intervals increases. Hence, the interval size and the number of bits to refine decrease

accordingly, leading to the decreasing refine cost. On the other hand, a draft result bit vector is

constructed from𝑤 filter sketches with MLO computation. As𝑤 increases, the draft cost increases

linearly as guaranteed by theorem 3.1. Our DesignSelection algorithm computes the optimal design

parameter. In this case,𝑤 = 5 obtains the best scan time, which is consistent with the output of the

DesignSelection algorithm.

Scan Time Breakdown Varying 𝑔 and 𝑠𝑝. Figure 12 depicts the scan performance of Cabin

with𝑤 = 5 and varying 𝑔 and 𝑠𝑝 to satisfy the space limit. The line shows the average scan time,
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Fig. 13. Benefit of MLO in draft bit vector generation.

while the bars show the time breakdown into three components, i.e., search, draft, and refine, as in

Figure 11(a). When 𝑠𝑝 < 100%, a query may hit an interval without the stored position array. In

such cases, CabinFS is executed instead of CabinF. From the figure, we see that (1) the search time

is tiny; (2) refine is more costly in CabinFS since CabinFS has to visit the base data if filter sketches

cannot tell the predicate outcome; and (3) (5,6,100%), which is chosen by Algorithm 3, achieves the

best performance.

MLO. We compare MLO vs. VBP to understand the benefit of MLO in draft bit vector generation.

Figure 13(a) and (b) compare the execution time and instruction count of MLO and VBP varying the

code width. We see that compared to VBP, MLO significantly reduces the number of instructions

for computing the draft bit vectors. While memory accesses account for a large portion of the

execution time, the instruction reduction by MLO attains up to 19.6% improvement (at 𝑤=2) in

execution time.

Selective Position Array. Figure 11(b) compares CabinF and CabinFS to understand the benefit of

the selective position array. The red dotted line indicates the size of the full position array that

stores 𝑁 32-bit rowIDs. Since it stores the full position array, CabinF’s size is always larger than 1

× column size. In comparison, by setting 𝑠𝑝 to be less than 1, the technique of selective position

array stores the position array only for 𝑠𝑝 fraction of the intervals. In this way, CabinFS supports

space budges lower than 1 × column size. The selective position array substantially extends the

range of index size that can be supported by Cabin.
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Table 3. Build time of scan solutions (in seconds).

Solution

Vary data width (10
9
values) Vary data size (32-bit)

8-bit 16-bit 32-bit 64-bit 10
6

10
7

10
8

10
9

Zone Maps 0.074 0.12 0.22 0.48 0.00023 0.0023 0.022 0.22

ByteSlice 1.65 1.87 2.17 / 0.0022 0.022 0.22 2.17

B+-tree 42.3 52.3 85.9 / 0.059 0.68 7.67 85.9

Column Sketches 30.2 80.4 108 111 0.082 0.91 9.86 108

BinDex 48.2 61.2 88.9 101 0.056 0.67 7.80 88.9

Cabin 52.7 81.9 117 132 0.089 0.99 10.8 117

Data-aware Intervals.We compare CabinFS and CabinFSD to understand the benefit of data-aware

intervals. Similar to Section 5.3, we consider two cases: 1) skew data with Zipf distribution, and 2)

data with a small number of distinct values. CabinFSD employs data-aware intervals to optimize for

popular values.

For case 1), Figure 14(a) shows the scan time while varying the Zipf parameter. We see that as

the data is more skewed, CabinFSD achieves more significant improvement over CabinFS. For case

2), Figure 14(b) reports the scan performance while varying the number of distinct values. We see

that CabinFSD works better than CabinFS when there are fewer than 1000 distinct values. In such

cases, entire intervals contain the same values, and the optimization of data-aware intervals is

applicable. CabinFSD improves the scan time and reduces the space cost at the same time.

5.5 Build Time

Popular Value Discovery and Build Time Breakdown. Figure 15 evaluates sort-based (sort),
hash-based (hash), and sample-based (sample) methods for discovering popular values during Cabin

index building. The build time is decomposed into five components: popular value discovery (PV ),
optimal design selection (excluding PV) (OD), and structure building for interval table (IT ), position
array (PA), and filter sketches (FS). We see that the optimal design selection using Algorithm 3 is

fast (i.e. 3–41 microseconds) in all cases. Compared to sort and hash, sample reduces the cost of PV

by using a small sample. It also avoids the sorting cost in PA for intervals whose position array is

not stored (i.e., 𝑠𝑝 < 100%). Hash works well for data with duplicates, but incurs prohibitively high

hashing cost for uniform data because the hash table is much larger than the CPU cache. Overall,
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Fig. 16. Comparing MonetDB with scan index enhanced MonetDB using TPC-H and SSB workloads.
Table 4. Total and scan time in ms of TPC-H and SSB queries.
Queries MonetDB MonetDB+BinDex MonetDB+Cabin

TPC-H Q1 12670 / 330.9 11699 / 10.3 11548 / 7.7

TPC-H Q6 521.7 / 468.9 74.1 / 22.3 69.8 / 19.1

TPC-H Q12 610.2 / 176.8 523.1 / 18.5 508.8 / 11.4

SSB Q1.1 10286 / 9699 1154 / 30.1 1115 / 17.3

SSB Q1.2 9214 / 9016 410.8 / 33.7 399.1 / 19.1

SSB Q1.3 9359 / 9205 248.7 / 40.5 187.5 / 20.5

SSB Q2.1 8560 / 4.84 8629 / 0.42 8613 / 0.12

SSB Q2.2 8444 / 1.43 8346 / 0.082 8363 / 0.043

SSB Q2.3 8333 / 1.89 8246 / 0.22 8309 / 0.11

SSB Q3.1 30815 / 7.63 28204/ 0.65 28328 / 0.18

SSB Q3.2 28955 / 5.52 26670 / 0.62 26540 / 0.19

SSB Q3.3 1517 / 7.13 1424 / 1.52 1467 / 1.35

SSB Q3.4 169.3 / 6.83 176.5 / 1.57 173.2 / 1.30

SSB Q4.1 21710 / 12.6 21596 / 1.74 21369 / 0.26

SSB Q4.2 4353 / 12.8 4411 / 1.80 4401 / 0.35

SSB Q4.3 2452 / 8.60 2468 / 1.22 2463 / 0.31

sample achieves good performance in all cases. Hence, we choose sample in Cabin building.

Build TimeVaryingDataWidth andData Size. Table 3 compares the build time of scan solutions.

We vary the data width from 8-bit to 64-bit, and the data size (𝑁 ) from 10
6
to 10

9
records. We see

that Cabin takes modestly longer time than B+-Tree, Column Sketches, and BinDex because of

its relatively complex structure. Since scan indices can be used by a large number of queries after

building, it is beneficial to pay the build cost for better query performance in OLAP.

5.6 TPC-H and SSB Workloads

TPC-H. Figure 16(a) shows the query performance of TPC-H Q1, Q6, and Q12. Table 4 lists the

total query time and the scan time of the TPC-H queries. We see that compared to MonetDB,

MonetDB+Cabin achieves 1.10x, 7.48x, and 1.20x performance improvement for Q1, Q6, and Q12,

respectively. Q1 and Q12 see less significant improvement than Q6. This is because scan accounts

for only 2.6% of Q1’s query time and 29.0% of Q12’s query time, while scan takes 89.9% of Q6’s

query time. Focusing on the scan time in Table 4, we see that compared to MonetDB+BinDex,

MonetDB+Cabin reduces the scan time significantly (by a factor of 1.17–1.62x), showing the benefits

of filter sketches and data-aware intervals.

SSB. Figure 16(b) shows the query performance of SSB Q1.1, Q1.2, and Q1.3, and Table 4 shows

the total query time and scan time for all SSB queries. Each SSB query performs at least one join

operation.We see that in Q1.1–Q1.3, scan plays an important role in the query evaluation. Compared

to MonetDB, MonetDB+Cabin achieves 9.23–49.9x performance improvement for Q1.1–Q1.3. In
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contrast, in queries Q2.1–Q4.3, scan accounts for only a small fraction of the total query time. As a

result, the index enhanced solutions have similar performance as MonetDB. Overall, if we focus on

the scan time, we see that MonetDB+Cabin improves the scan performance in all SSB queries by a

factor of 5.2–560x compared with MonetDB and 1.1–6.7x compared with MonetDB+BinDex.

6 DISCUSSION

PAX Layout. In this work, Cabin is constructed on a whole data column. In addition to the column

layout, PAX is another popular data layout in OLAP systems [4]. In PAX, a table is divided into

row groups, and each row group employs the column layout. To support PAX, we can simply build

a Cabin per row group, and use the per-row-group Cabins to accelerate scans.

Data Updates. For deletes, we can record the deleted rows in a delete bit vector. Then, a scan

computes the bit-wise AND of the scan result bit vector and the delete bit vector. For inserts, we

can employ the main+delta approach. We build Cabin indices for the main data, and append newly

inserted values to the delta data. When merging the main and delta into the new main data, we

re-construct Cabin indices. In this way, a scan consists of the Cabin-enhanced scan on the main

data, and a plain scan on the delta data. An update can be supported as a delete followed by an

insert.

Support for Strings. Scan indices, including Cabin, mostly focus on numeric values and filter

predicates (e.g., <, >, ≤, ≥, =, ≠, or BETWEEN) that specify value ranges. In many cases, strings

can be encoded as numeric values and effectively supported for such predicates. However, string

matching operations (e.g., LIKE) cannot be easily supported by scan indices. There is no clear

sort order for string matching operations, but the sort order is the basis for the design of many

scan indices. It would be interesting to study how to combine inverted indices and scan indices to

improve OLAP queries with string matching operations.

Optimization Based on Query History. In this work, our Cabin design does not rely on any

query history. Here, we consider potential optimizations if the query history is available. (1)

Index selection: We can identify frequent queries and analyze the importance of scans to query

performance. Then, we can choose a subset of columns to build Cabin indices in order to maximize

the performance benefit given memory space budget. (2) Query-aware selective position array:

Instead of randomly selecting intervals, we can choose which intervals to remove position arrays

based on the distribution of query predicate values.

7 CONCLUSION
In this paper, we propose and evaluate a novel scan index, Cabin. Extensive experiments show that

Cabin achieves better time-space tradeoff than state-of-the-art scan solutions. Cabin is a promising

scan index for main-memory analytical databases.
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