
The VLDB Journal (2023) 32:123–148
https://doi.org/10.1007/s00778-022-00737-1

REGULAR PAPER

Zen+: a robust NUMA-aware OLTP engine optimized for non-volatile
main memory

Gang Liu1 · Leying Chen1 · Shimin Chen1

Received: 8 July 2021 / Revised: 15 February 2022 / Accepted: 22 February 2022 / Published online: 6 April 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Emerging non-volatile memory (NVM) technologies like 3DXpoint promise significant performance potential for OLTP
databases. However, transactional databases need to be redesigned because the key assumptions that non-volatile storage is
orders of magnitude slower than DRAM and only supports blocked-oriented accesses have changed. NVMs are byte-address-
able and almost as fast as DRAM. The capacity of NVM is much (4-16x) larger than DRAM. Such NVM characteristics
make it possible to build OLTP databases entirely in NVM main memory. This paper studies the structure of OLTP engines
with hybrid NVM and DRAM memory. We observe three challenges to design an OLTP engine for NVM: tuple metadata
modifications, NVM write redundancy, and NVM space management. We propose Zen, a high-throughput log-free OLTP
engine for NVM. Zen addresses the three design challenges with three novel techniques: metadata-enhanced tuple cache,
log-free persistent transactions, and light-weight NVM space management. We further propose Zen+ by extending Zen with
two mechanisms, i.e., MVCC-based adaptive execution and NUMA-aware soft partition, to robustly and effectively support
long-running transactions and NUMA architectures. Experimental results on a real machine equipped with Intel Optane DC
Persistent Memory show that compared with existing solutions that run an OLTP database as large as the size of NVM,
Zen achieves 1.0x-10.1x improvement while attaining fast failure recovery, and supports ten types of concurrency control
methods. Experiments also demonstrate that Zen+ robustly supports long-running transactions and efficiently exploits NUMA
architectures.

Keywords Non-volatile memory · OLTP engine · Metadata-enhanced tuple cache · Log-free transaction · NUMA

1 Introduction

Byte-addressable, non-volatile memory (NVM) is a new
type of memory technology designed to address the DRAM
scaling problem [1,3,21,44,55]. NVMdelivers a unique com-
bination of near-DRAM speed, lower-than-DRAM power
consumption, affordable large (up to 6TB in a dual-socket
server) memory capacity, and non-volatility in light of
power failure. By removing disk I/Os, NVM can substan-
tially improve the performance of systems with persistence

B Shimin Chen
chensm@ict.ac.cn

Gang Liu
liugang@ict.ac.cn

Leying Chen
chenleying19z@ict.ac.cn

1 SKL of Computer Architecture, ICT, CAS, University of
Chinese Academy of Sciences, Bejing, China

requirement. Therefore, OLTP databases using NVM as pri-
mary storage are emerging as a promising design choice [5,
6,27].

Recent studies in concurrency control methods have
advanced the main memory OLTP transaction throughput
in a single machine (without persistence) to over one mil-
lion transactions per second [17,33,38,48,51,57]. However,
replacing DRAM with NVM tends to slow down a system
because NVM performs modestly (e.g., 2–3x) slower than
DRAM, NVM writes have lower bandwidth than reads, and
persisting writes from CPU cache to NVM incurs drastic
(e.g., 10x) overhead. In this paper, we rethink the design of
the OLTP engine for NVM by fully considering the proper-
ties of NVM. Our goal is to achieve transaction performance
similar to those of pure DRAM-based OLTP engines.

We observe three challenges in achieving our goal:

– Tuple metadata modifications: Main memory OLTP
engines typically maintain a small amount of metadata

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-022-00737-1&domain=pdf
http://orcid.org/0000-0003-2225-8558

124 G. Liu et al.

per tuple for supporting concurrency control [33,38,48,
51,57]. The per-tuple metadata is often modified not only
by tuple writes but also by tuple reads. As a result, tuple
reads in an NVM-based OLTP engine can incur expen-
sive NVM writes.

– NVM write redundancy: OLTP databases typically rely
on logs and checkpoints/snapshots to achieve durability.
If an NVM-based engine takes this approach, there will
be substantial NVM write redundancy because the same
content is written to the logs, the checkpoints/snapshots,
in addition to the base tables. This redundancy not only
takes more NVM space, but also negatively impacts the
runtime performance.

– NVM space management: NVM space allocation opera-
tions need to be persistent across power failure. Hence,
every NVM memory allocation and free call may have
to be protected by expensive NVM persistence opera-
tions. Unfortunately, OLTP transactions often perform
non-trivial numbers of inserts, updates, and/or deletes,
potentially incurring significant allocation overhead.

In this paper, we propose Zen, a high-throughput log-free
OLTP engine for NVM. Zen addresses the above three chal-
lenges with the following three new techniques. It provides
general-purpose support for awide rangeof concurrency con-
trol methods.

– Metadata-enhanced tuple cache: We store base tables in
NVM without per-tuple metadata. Then we propose to
build an Met-Cache (Metadata-enhanced tuple Cache)
in DRAM to (i) Cache tuples that are used in currently
running transactions or have recently been used, and (ii)
Augment each tuple with per-tuple metadata required by
concurrency control methods. In this way, Zen performs
concurrency control mostly in DRAM, avoiding writing
per-tuple metadata in NVM for tuple reads, and reduces
NVM reads for frequently accessed tuples.

– Log-free persistent transactions: We eliminate NVM
write redundancy by completely removing logs and
checkpoints for transactions in our durability scheme.
Each tuple in the base tables in NVM has a tuple ID field
and a Tx-CTS (Transaction Commit Timestamp) field.
Tx-CTS identifies the transaction that produces the ver-
sion of the tuple. At commit time, Zen persists modified
tuples in a transaction from the Met-Cache to the rele-
vant base tables in NVM. It writes to newly allocated or
garbage collected space without overwriting the previous
versions of the tuples. Themost significant bit in Tx-CTS
is used as a LP (Last Persisted) bit. After persisting the
set of modified tuples in a transaction, Zen sets the LP
bit and persists the Tx-CTS for the last tuple in the set.
Upon failure recovery, Zen can identify if the modifica-
tion of a transaction is fully persisted by checking the LP

bit. If it is set for one of the tuples, then the transaction
is committed. Otherwise, the transaction is considered as
aborted, and the previous tuple versions are used.

– Lightweight NVM space management: We aim to reduce
the persistence operations for NVM space management
as much as possible. First, we allocate large (2MB sized)
chunks ofNVMmemory from the underlying system and
initialize the NVM memory so that Tx-CTS=0. Second,
we manage tuple allocation and free without performing
any persistence operation. This is because using the log-
free persistence mechanism, Zen can identify the tuple
versions that are most recently committed upon recov-
ery. The old tuple versions are then put into the free
lists. Third, the allocation structures are maintained in
DRAM during normal processing. Zen garbage collects
old tuple versions for tuple allocations. Each thread has
its own allocation structures to avoid thread synchroniza-
tion overhead.

Moreover, we propose Zen+ by extending Zen with two
mechanisms, namely, MVCC-based adaptive execution and
NUMA-aware soft partition, to robustly and effectively sup-
port long-running transactions and NUMA architectures.

MVCC-based adaptive execution: We aim to (i) Effi-
ciently execute long-running transactions asmuchas possible
when there is no inherent conflict; (ii) Robustly support
long-running transactions even if there are conflicts; and (iii)
Effectively manage the system resource usage. For (i), Zen+
adopts MVCC as the concurrency control method to sup-
port long-running read-only transactions and light-weight
read-write transactions. For (ii) And (iii), we propose an
adaptive execution strategy with pre-defined resource usage
and roll back thresholds. Zen+ performs normal processing
while monitoring the thresholds. If any of the thresholds is
triggered, Zen+ stops all other transactions and exclusively
executes the privileged long-running transaction to comple-
tion.

NUMA-aware soft partition: In a machine with mul-
tiple CPU sockets, a processor can access its local NVM
memory significantly (e.g., 2-3x) faster than remote NVM
memory attached to another socket. Therefore, it is desirable
to minimize remote NVM accesses in the OLTP design. We
propose NUMA-local writes for Zen+. That is, threads in
Zen+ write only to local NVM, thereby eliminating remote
NVM writes. Moreover, Zen+ divides base tables into par-
titions and assigns partitions to NUMA nodes. To run a
transaction, Zen+ extracts the target tuple information of
the transaction as much as possible, computes the NUMA
affinity of the transaction based on the partitions of its tar-
get tuples, then executes the transaction on the NUMA node
with the highest affinity score. The partition-to-NUMA-node
mapping is soft in that Zen+ collects NUMA access statis-

123

Zen+: a robust NUMA-aware OLTP engine optimized for non-volatile main memory 125

tics for partitions and dynamically adjusts the assignment of
partitions to NUMA nodes.

The contributions of this paper are fourfold. First, we
identify the main design principles for NVM-based OLTP
engines by examining the strengths and weaknesses of three
state-of-the-art NVM-based OLTP designs. Second, we pro-
pose Zen, which reduces NVM overhead by three novel
techniques, namely the Met-Cache, log-free persistent trans-
actions, and light-weight NVM space management. Third,
we propose Zen+ by extending Zen with two novel mech-
anisms: MVCC-based adaptive execution for long-running
transactions, and NUMA-aware soft partition for NUMA
performance. Fourth, we evaluate the runtime and recov-
ery performance of our proposed solutions using YCSB and
TPCC benchmarks on a real machine equipped with Intel
Optane DC Persistent Memory. Experimental results show
that compared to existing designs, Zen achieves 1.0x-10.1x
improvements, while attaining fast recovery and support-
ing 10 different concurrency control methods. The two
mechanisms in Zen+ can robustly and effectively support
long-running transactions and NUMA architectures.

The rest of the paper is organized as follows. Section 2
provides the background and motivates the study of NVM-
based OLTP engines. Section 3 presents the design of Zen.
Section 4 proposes Zen+ to effectively handle long-running
transactions and NUMA architectures. Section 5 evaluates
our solutions, Zen and Zen+. Then, Sect. 6 discusses rel-
evant issues, including alternative index designs, optional
DRAM-based logs, variable length tuples, and the limita-
tions of Zen/Zen+. Finally, Sect. 7 concludes the paper.

2 Background andmotivation

We provide background on NVM and OLTP, examine exist-
ing OLTP engine designs for NVM, then discuss the design
challenges in this section.

2.1 NVM characteristics

There are several competing NVM technologies, including
PCM [44], STT-RAM [55],Memristor [3], and 3DXPoint [1,
21]. They share similar characteristics: (i) Like DRAM,
NVM is byte-addressable; (ii) NVM is modestly (e.g., 2–
3x) slower than DRAM, but orders of magnitude faster than
HDDs and SSDs; (iii) NVM provides non-volatile main
memory that can be much larger (e.g., up to 6TB in a dual-
socket server) than DRAM; (iv) NVM writes have lower
bandwidth than NVM reads; (v) To ensure that data is
consistent in NVM upon power failure, special persistence
operations with cache line flush (e.g., clwb) and memory
fence (e.g., sfence) instructions are required to persist data

from the volatile CPU cache to NVM, incurring drastically
higher (e.g., 10x) overhead than normal writes.

From previous work on NVM-based data structures and
systems [4–6,11–14,19,24,27,34,35,39,46,49,50,53,54], we
obtain three common design principles: (i) Put frequently
accessed data structures in DRAM if they are either transient
or can be reconstructed upon recovery; (ii) Reduce NVM
writes as much as possible; (iii) Reduce persistence oper-
ations as much as possible. We would like to apply these
design principles to the OLTP engine design.

2.2 OLTP inmainmemory databases

Main memory OLTP systems are the starting point to
design an OLTP engine for NVM. We consider concurrency
control and crash recovery mechanisms for achieving ACID
transaction support.

Recent work has investigated concurrency control meth-
ods for high-throughput main memory transactions [17,33,
38,48,51,57]. Instead of using two-phase locking (2PL) [7,
18], which is the standardmethod in traditional disk-oriented
databases, main memory databases typically exploit opti-
mistic concurrency control (OCC) [28] and multi-version
concurrency control (MVCC) [7] for higher performance.
Silo [48] enhances OCC with epoch-based batch timestamp
generation and group commit. MOCC [51] is an OCC-based
method that exploits locking mechanisms to deal with high
conflicts for hot tuples. Tictoc [57] removes the bottleneck
of centralized timestamp allocation in OCC and computes
transaction timestamps lazily at commit time. Hekaton [17]
employs latch-free data structures and MVCC for transac-
tions inmemory.Hyper [38] improvesMVCC for read-heavy
transactions in column stores by performing in-place updates
and storing before-image deltas in undo buffers. Cicada [33]
reduces overhead and contention of MVCC with multi-
ple loosely synchronized clocks for generating timestamps,
best-effort inlining to decrease cache misses, and optimized
multi-version validation. One common feature of the above
methods is that they extend every tuple or every version of
a tuple with metadata, such as read/write timestamps, point-
ers to different tuple versions, and lock bits for validation
and commit processing. These concurrency control methods
have achieved throughput of over one million transactions
per second (TPS) without persistence.

Similar to traditional databases, main memory databases
(MMDB) store logs and checkpoints on durable storage (e.g.,
HDDs, SSDs) in order to achieve durability [10,16,29,30,45,
59]. The main difference resides in the fact that all the data
fits into main memory in MMDBs. Hence, only committed
states and redo logs need to be written to disks. After a crash,
an MMDB recovers by loading the most recent checkpoint
from durable storage into main memory, then reading and
applying the redo log up to the crash point.

123

126 G. Liu et al.

(a) (b) (c) (d)

Fig. 1 OLTP engine designs for NVM

2.3 Existing OLTP engine designs for NVM

In this paper, we focus on the case where all data and
structures of the OLTP engine can fit into NVM memory.
We assume that the computer system contains both NVM
and DRAM memory, which are mapped to different virtual
address ranges in the software. For example, this corresponds
to the App Direct mode in 3DXpoint-based Intel Optane DC
Persistent Memory (OptanePM). A dual-socket server can
have up to 6TBofOptanePM. The ratio P ofNVM toDRAM
capacity is typically 4–16 in OptanePM.
MMDB with NVM capacity. As shown in Fig. 1a, MMDB
can leverage the NVM capacity by treating part of NVM
as slower volatilememory when the OLTP database is larger
thanDRAM.Like existingMMDBdesigns, the system stores
tuples and indices in volatile memory, and processes trans-
actions completely in volatile memory using normal load
and store instructions. For durability, the system places the
write-ahead logs (WAL) and checkpoints in NVM. It issues
special instructions (e.g., clwb and sfence) to persist log
entries and checkpoints. After a crash, tuples and indices in
volatile memory are considered lost. The recovery is based
on the logs and checkpoints in NVM.

This design suffers from two drawbacks. First, a modi-
fied tuple is to be written to both the WAL and checkpoints,
incurring two additional NVM writes for the tuple. If it is
stored in the volatile part of NVM, the tuple is written three
times in NVM. Second, as the database size increases, more
and more tuples reside in NVM. Since per-tuple metadata
is often modified even for tuple reads, read transactions still
perform a large number of NVM writes.

Logging is often one main performance bottleneck in
database systems. Various designs have been proposed to
exploit NVM for higher logging performance [19,20,23,
24,26,50]. In the context of NVM-based database systems,
recent studies aim to remove or reduce logging by perform-
ing out-of-place updates directly on the tuples [6,40,41]. We
discuss the latest of these designs, WBL, in the following.
WBL. Write-behind logging (WBL) [6] maintains indices
and a tuple cache in DRAM, as shown in Fig. 1b. Tuples
are fetched into the tuple cache for transaction processing.
WBL supports multiple versions of a logical tuple in NVM
by enhancing the tuple with per-tuple metadata, e.g., a trans-

action ID, commit timestamps, and a reference to previous
version of the tuple.A committing transaction persists amod-
ified tuple in the tuple cache by creating a new version of the
tuple in NVM. In this way, the previous version of the tuple
is available if a crash occurs at commit time. Unlike WAL,
the WBL log does not contain modified tuple data. A log
entry is written after a set of transactions commit. It con-
tains a persisted commit timestamp (cp), and a dirty commit
timestamp (cd). Since the persist operations issue memory
fence instructions (e.g., sfence), the existence of this log
entry indicates that any transactions with a commit times-
tamp earlier than cp must have successfully been persisted
to NVM. Upon crash recovery, the system checks the last log
entry and undoes any transactions with a timestamp in (cp,
cd). It rebuilds the indices in DRAM.

Compared to MMDB in Fig. 1a, WBL significantly
reduces the log size and does notmaintain checkpoints. Thus,
it writes a modified tuple exactly once to NVM, significantly
decreasing thenumber ofNVMwrites.However,WBLmain-
tains per-tuple metadata at every tuple in NVM. Therefore,
it suffers from frequent per-tuple metadata modifications.
FOEDUS. As shown in Fig. 1c, FOEDUS [27] stores tuple
data in snapshot pages in NVM, and employs a page cache in
DRAM. The page index in DRAM maintains dual pointers
for a page, i.e., a pointer to the page in the NVM snapshots,
and a pointer to the page in the page cache (if it exists). FOE-
DUS runs transactions in DRAM. If the page containing a
tuple required by a transaction is not in the page cache, the
system loads the page into the page cache and updates the
page index. At commit time, the system writes to the redo
logs in NVM. A background log gleaner thread periodically
collects logs and runs a map-reduce like computation to gen-
erate a new snapshot in NVM.

FOEDUS handles transactions completely in DRAM. As
a result, it avoids per-tuple metadata writes in NVM. How-
ever, there are three significant problems of this design. First,
the page granularity of caching results in NVM read ampli-
fication. A tuple read incurs the much larger overhead of
a page read. Second, the sophisticated map-reduce com-
putation causes many NVM writes. Finally, the FOEDUS
implementation uses the I/O interface to access NVM, which
does not take full advantage of the byte-addressable NVM.

123

Zen+: a robust NUMA-aware OLTP engine optimized for non-volatile main memory 127

3-Tier Storage Manager with DRAM, NVM, and SSDs.
Renen et al. propose a 3-tier storage manager that uses
DRAM and NVM as selective caches for data in SSDs [46].
Pages are loaded into DRAM from SSDs for DB accesses.
When a page is evicted from DRAM, it can be placed
into NVM for future reuse. Zhou et al. propose Spitfire
that exploits machine learning techniques to automatically
tune the policies for data migration in the 3-tier storage
design [60]. In comparison to the 3-tier design, we assume
that the OLTP database fits into NVM and propose an Met-
Cache inDRAM for data inNVM. To our knowledge, 6TB of
NVMis large enough for a significant number ofOLTP appli-
cations. Exploiting SSDs to support even larger databases is
an interesting direction in future work.

2.4 Design challenges

Given the existing designs, we examine three design chal-
lenges. (1) Tuple metadata modifications: In MMDB and
WBL, per-tuple metadata is stored with tuples in NVM.
Unfortunately, concurrency controlmethods (e.g., OCC vari-
ants and MVCC variants) may modify the metadata even
for tuple reads. (2) NVM Write Redundancy: In MMDB
and FOEDUS, a modified tuple is written to tuple heaps,
logs, checkpoints, and/or page snapshots in NVM. TheNVM
write amplification can negatively impact transaction per-
formance. (3) NVM space management: WBL performs
fine-grain space allocation for tuples. The WBL paper does
not describe space management in detail. A naïve approach
is to persist space allocation metadata to NVM (e.g., with
logging) for every allocation and free calls. This may incur
significant NVM persist overhead.

Figure 1d compares our proposed design, Zen, with
the three existing designs side by side. First, Zen main-
tains the metadata-enhanced tuple cache (Met-Cache) in
DRAM. Unlike the page cache in FOEDUS, the granular-
ity of Met-Cache is tuple. This avoids FOEDUS’s NVM
read amplification problem. Unlike WBL, Zen modifies per-
tuplemetadataonly in theMet-Cache for concurrency control
methods. Second, Zen completely removes logging. There
is no NVM write amplification for tuple writes. Finally, Zen
proposes a light-weightNVMspace allocation design, avoid-
ing NVM persist operations for tuple allocations and frees.

3 Zen design

We propose Zen, a high-throughput log-free OLTP engine
for NVM. Zen exploits the large capacity of NVM to support
OLTP databases much larger than DRAM, while addressing
the three design challenges.

3.1 Design overview

Figure 2 overviews the architecture of Zen. There is a hybrid
table (HTable) for every base table. It consists of a tuple heap
in NVM, an Met-Cache in DRAM, and per-thread NVM-
tuple managers. Moreover, Zen stores table schemas and
coarse-grain allocation structures in the NVMmetadata. Fur-
thermore, Zen keeps indices and transaction-private data in
DRAM.
NVM-tuple heap. An NVM-tuple is a persistent tuple in
NVM. Zen stores all tuples in a base table as NVM-tuples in
the NVM-tuple heap. The heap consists of fixed-sized (e.g.,
2MB) pages. Each page contains a fixed number of NVM-
tuple slots1. An NVM-tuple consists of a 16B header and
the tuple data. The NVM-tuple heap may contain several
versions of a logical tuple. The tuple ID and the transac-
tion commit timestamp (Tx-CTS) uniquely identify a tuple
version. The deleted bit shows if the logical tuple has been
deleted. The last persisted (LP) bit shows if the tuple is the last
tuple persisted in a committed transaction. The LP bit plays
an important role in log-free transactions (cf. Sect. 3.3). Note
that the header contains no field specific to particular concur-
rency control methods. The NVM-tuple slots are aligned to
16B boundaries so that an NVM-tuple header always resides
in a single 64B cache line. In this way, we can use one clwb

instruction followed by a sfence to persist the NVM-tuple
header.
Met-Cache. The Met-Cache manages a tuple-grain cache
in DRAM for the corresponding NVM-tuple heap. An Met-
Cache entry contains the tuple data and sevenmetadata fields:
a pointer to the NVM-tuple if it exists, the tuple ID, a dirty
bit, an active bit to indicate that the entry may be used by an
active transaction, a clock bit to support the cache replace-
ment algorithm, a copy bit to indicate if the entry has been
copied, and aCC-Metafield that contains additional per-tuple
metadata specific to the concurrency control method in use.
Zen supports a wide range of concurrency control methods
(cf. Sect. 3.3.2). Using the Met-Cache, Zen performs con-
currency control entirely in DRAM.
Indices in DRAM. We maintain indices for each H-Table
in DRAM. We rebuild the indices upon crash recovery. A
primary index is required and secondary indices are optional.
For the primary index, the index key is the primary key of
a tuple. The value points to the latest version of the tuple
in either (i) The Met-Cache or (ii) The NVM-tuple heap.
We use an unused bit of the value to distinguish the two
cases2. For secondary indices, the index value is the primary

1 For simplicity, Zen assumes that the tuple size is fixed. For exam-
ple, varchar(n) can be regarded as char(n). We discuss how to
support variable-sized tuples in Sect. 6.
2 Only 48 bits in a 64-bit address are used in current systems. The
highest bit is always 0 in user-mode programs.

123

128 G. Liu et al.

Fig. 2 Zen architecture

key of a tuple. Zen requires that the index structures support
concurrent accesses, and transactions can see only committed
index entries (previously modified by other transactions).
Transaction-private data. Zen runs multiple threads to
handle transactions concurrently. Each thread reserves a
thread-local space for transaction-private data in DRAM. It
records the transaction’s read, write, and insert activities.
OCC and MVCC variants maintain read, write, and insert
sets, while 2PL variants store the changes in the form of log
entries.
NVM space management. Zen uses a two-level scheme to
manage NVM space. First, the NVMpagemanager performs
page-level spacemanagement. It allocates andmanages 2MB
sized NVM pages. The map address and the HTable pages in
NVM metadata maintain the mapping from NVM pages to
HTables. Second, NVM-tuple managers perform tuple-level
space management. Each thread owns a thread-local NVM-
tuple manager for each HTable that the thread accesses. Each
NVM-tuplemanager consists of an NVM-tuple allocator and
an NVM-tuple collector. The allocator maintains a disjoint
subset of free NVM-tuple slots in the HTable. There are two
kinds of free slots: empty slots in newly allocated pages or
garbage collected slots. NVM is initialized with all 0s and
Tx-CTS=0 indicates empty slots. The collector garbage col-
lects stale NVM-tuples and puts them into the free list. All
collectors of the same HTable work cooperatively to recycle
NVM-tuples.

3.2 Metadata-enhanced tuple cache

For a HTable, we divide its Met-Cache into multiple equal-
sized regions, each for a transaction processing thread. The
NVM-tuple heap is also divided into per-thread regions. A

thread is responsible for managing its Met-Cache region and
its NVM-tuple heap region. It can read tuples in all regions,
but can only write to its own region. For a cache hit, the
thread can read the Met-Cache entry in any region. If the
thread wants to modify a tuple in another Met-Cache region,
it has to copy the entry into its own Met-Cache entry before
modifying it. It sets the copy bit of the original Met-Cache
entry. For a cache miss, the thread can bring an NVM-tuple
into its own Met-Cache region. If there is no empty entry
in the Met-Cache region, the thread has to pick and evict a
victim tuple from its region to make space for caching the
missedNVM-tuple. This design eliminates thread contention
for managing Met-Cache entries, and supports the binding
of DRAM and NVM address ranges to specific processor
cores.

We employ theCLOCKalgorithm forMet-Cache replace-
ment. The algorithm picks the first encountered entry whose
Active and Clock bits are both 0 as the victim. If Active is
set, the entry is being accessed by an active transaction. The
algorithm skips such an entry so that it will not replace Met-
Cache entries used by other running transactions. If Clock is
set, the entry has been used recently. We would like to keep
such entries in the cache. Active and clock bits are modified
using atomic compare-and-swap instructions.

We decide the Met-Cache size (Ci) for HTablei given the
available DRAM capacity (M), HTablei ’s size (Si), and the
average number (fi) of tuples accessed in H-Tablei per trans-
action. Assuming accesses are uniformly distributed across
a HTable, we can estimate the average number of Met-Cache
hits per transaction as:

Met-Cache Hits =
∑

i

fi Ci
Si

.

123

Zen+: a robust NUMA-aware OLTP engine optimized for non-volatile main memory 129

We would like to maximize the Met-Cache hits, while
satisfying the DRAM capacity constraint:

∑
i Ci ≤ M .

Moreover, we would like to ensure that every HTable gets
at least a minimum amount of cache space to support con-
currency control in DRAM. That is,Ci ≥ Cmin . If we denote
C ′
i = Ci − Cmin . The resulting problem is a knap-sack

problem. We can employ the classical greedy algorithm by
assigning cache space to the HTables according to the order
of descending fi

Si
.

Zen keeps no per-tuple metadata related to the concur-
rency control method for tuples stored in NVM. When an
NVM-tuple is fetched from the NVM to Met-Cache, it is
enhanced with the CC-Meta in the Met-Cache entry. CC-
Meta contains per-tuple metadata specific to the concurrency
control method in use. After that, Zen can run the concur-
rency control method entirely in DRAM because all the
tuples accessed by active transactions are in Met-Caches.
This design has the following benefits. (i) It shifts fine-grain
per-tuple concurrency controlmetadata reads andwrites from
NVM to DRAM. Hence, Zen enjoys fast per-tuple metadata
accesses. (ii) Tuple readswill never lead toNVMwrites at the
NVM-tuples. (iii) Aborted transactions do not incur NVM-
tuple write overhead. (iv) In-memory concurrency control
decreases the time that a transaction spends in the critical
code zone,whether acquiring critical resources or performing
consistency validation. Consequently, the overall transaction
abort rate may be reduced.

3.3 Log-free persistent transactions

3.3.1 Normal processing

Transaction processing in Zen consists of three components:
(i) Perform: Zen performs transaction processing in DRAM;
(ii) Persist: Zen persists newly written tuples to NVM; (iii)
Maintenance: Zen garbage collects stale tuples.

Figure 3 depicts the lifetime of a transaction. Suppose the
table keeps account balances for customers. Initially, X has
$500, Y has $100, and Z has $100. The transaction trans-
fers $100 from X to Y and $100 from X to Z. The upper
part of Fig. 3 shows the system state before the transaction.
The NVM-tuple heap contains five tuples, among which R:d
has been deleted and garbage collected. Q:300 is cached in
Met-Cache. The index keeps track of the locations of the
valid tuples. The allocator records the three empty NVM-
tuple slots.
Perform. A transaction obtains a timestamp when it starts.
For each tuple that it requests, the transaction looks up its
location in the primary index. If the tuple is in NVM, the
transactionfinds a (victim) entry inMet-Cachewith the cache
replacement algorithm, builds the Met-Cache entry by read-
ing the requested NVM-tuple and enhancing it with per-tuple
CC-Meta specific to the concurrency control method in use,

Fig. 3 Illustration of perform, persist, and maintenance using a trans-
action (X− = 200; Y+ = 100; Z+ = 100)

and updates the index with the Met-Cache entry location.
Note that Zen does not need to write the victim entry to
NVM for the following reasons. First, if the entry is only
read by previous transactions, then it is not changed and can
be discarded. Second, if the entry is generated/modified by a
previously committed transaction, then it must have already
been persisted to NVM at commit time. Third, if the entry is
modified by an aborted transaction, it is invalid and should
be discarded.

Zen runs concurrency control entirely in DRAM with the
help of Met-Cache. If there is no conflict and the trans-
action can commit, Zen moves the transaction into Persist
processing. If the transaction has to abort, Zen checks if any
Met-Cache entry accessed by the transaction is dirty. For
a dirty entry, Zen restores the entry from the NVM-Tuple
pointed by the NVM-Tuple pointer so that the retry of the
transaction will find the entry in Met-Cache.

The lower part in Fig. 3 shows the system state after
the transaction. In Perform processing, Zen brings the three
tuples requested by the transaction, i.e., X, Y, Z, into Met-
Cache. The index is updated accordingly. The transaction
modifies X to 300, Y to 200, and Z to 200 inMet-Cache. The
transaction-private data keeps track of the read andwrite sets.
Persist. Zen persists the generated and modified tuples of a
transaction to NVM with no logs. The challenge is to per-
sist multiple tuples without writing redo log records and the
commit log record. The basic ideas of our solution are as
follows. First, we persist a tuple to a free NVM-tuple slot.
In this way, the previous version of the tuple is intact during
persist processing. Zen can fall back to the previous version
in case of a crash. This idea has already been proven suc-
cessful in WBL. Second, we mark the LP bit of the last tuple
to persist in the transaction using an NVM atomic write. We
ensure that all the tuples are persisted before persisting the
LP bit. In this way, the LP bit plays the same role as a com-
mit log record. During recovery, if the LP bit exists, then the
transaction has committed. All the tuples generated/modified
by the transaction must have been successfully persisted to

123

130 G. Liu et al.

NVM. Otherwise, the crash occurs in the middle of persist-
ing the transaction. Therefore, Zen discards anyNVM-tuples
written by the transaction.

Algorithm 1 shows the persist processing for changed
tuples. It persists all the tuples except the line that contains
the header of the last tuple (Line 2-8). The cacheline size is
64B. The algorithm persists 64B lines occupied by a tuple
using for-loops (Line 4-5 and 7-8). Note that as long as the
tuples are flushed to NVM, the order of the flushes is not
significant. Therefore, we need to issue only a single sfence
(Line 9) to ensure that all previous clwbs complete. In the
end, the algorithm sets the LP of the last tuple (Line 10)
and flushes the line that contains the header of the last tuple
(Line 11). Note that the header must reside in a single 64B
line because NVM-tuple slots are 16B aligned and the header
is 16B large.

Interestingly, the algorithm is optimized to not issue
sfence after the last clwb. This is correct because recov-
ery processing can correctly handle either case where LP is
set or not, as discussed in the above. Moreover, any sfence

later issued by any thread will ensure the last clwb in the
algorithm completes. For example, a communication thread
can issue a sfence before communicating a set of transaction
results to database clients.

As shown in the lower-right part of Fig. 3, Zen persists the
newly modified tuples X’, Y’, and Z’ using the three empty
NVM-tuple slots f, g, and h. Z’ is the last tuple to persist.
Therefore, Zen sets and flushes the LP bit in the header of Z’
after persisting X’, Y’, and all but the first line of Z’.
Maintenance. To reduce contention, each thread has its pri-
vate allocator and garbage queue for NVM-Tuple allocation.
A thread garbage collects an NVM-tuple version when it
finds that a more recent version exists. The garbage collec-
tion decision ismade in two situations. First, when it commits
a transaction that overwrites a tuple, the thread garbage col-
lects the old NVM-tuple version unless the Met-Cache entry
is copied from another region. Second, before it evicts an
entry E from its Met-Cache region, the thread garbage col-
lects the NVM-tuple pointed by E if E’s copy bit is set. Note
that E must have been copied to another region by a commit-

ted transaction T , and T must have written a new version of
the tuple3. In this way, a thread garbage collects NVM-tuples
only in its own region, and an old tuple version is eventually
garbage collected.

Entries in the garbage queue cannot be directly freed
because the related NVM-tuple versions may still be used
by other transactions (e.g., in MVCC). An entry contains the
NVM-tuple pointer and its Tx-CTS. Zen computes a global
minimumTx-CTSperiodically by taking theminimumof the
last committed transaction’s Tx-CTS in every thread. Hence,
no running transactions access entries with Tx-CTS < the
minimum Tx-CTS. Such entries can be safely moved from
the garbage queue to the allocator free list.

For normalOLTPworkloads, the garbage queues are often
quite short. This is because every transaction thread tries to
garbage collect and recycle stale NVM-tuple versions after
it completes each transaction. Stale NVM-tuple versions are
often reclaimed in a short period of time and consume only
a small amount of NVM space. On the other hand, if there is
a long-running transaction, it may prevent the minimum Tx-
CTS from being updated, and the garbage queues can grow
drastically. We discuss how to robustly support long-running
transactions in Sect. 4.1.

As shown in the lower-left part of Fig. 3, Zen puts the old
versions ofX,Y, andZ into the garbage queue.Moreover, Zen
moves the R:d entry from the garbage queue to the allocator
free list when it finds that the entry’s Tx-CTS< theminimum
Tx-CTS.

3.3.2 Flexible support for wide varieties of concurrency
control methods

Our transaction processing design provides a framework to
flexibly support wide varieties of concurrency control meth-
ods. We show the applicability of Zen to 10 concurrency
control methods in our experiments in Sect. 5.4, including
three 2PL variants (2PL with deadlock detection, wait and
die, and no waiting [56]), three OCC variants (OCC [28],
Silo [48], andTictoc [57]), threeMVCCvariants (MVCC [7],
Hekaton [17], andCicada [33]), and a partition-basedmethod
(H-Store [47]). To support a concurrency control method, we
adapt the CC-Meta field of Met-Cache entries to hold per-
tuple metadata required by the method. For 2PL variants,
CC-Meta stores the locking bits. For OCC variants, CC-
Meta can includewrite timestamp, read timestamp,write lock
bit, and/or latest version bit. For MVCC variants, CC-Meta
often contains multiple timestamps and version link point-
ers. Importantly, the concurrency control method can process

3 T must have committed. If T were running, then E’s active bit should
be 1 and it could not be chosen as the victim. If T had aborted, then T
would have cleared E’s copy bit.

123

Zen+: a robust NUMA-aware OLTP engine optimized for non-volatile main memory 131

the metadata-enhanced tuples in Met-Cache and entirely in
DRAM.

We consider the support of versions. Concurrency con-
trol methods can be divided into two classes: single-version
methods and multi-version methods. Note that it is Met-
Cache that supports the versions required by concurrency
control methods. NVM-tuple heap supports multiple ver-
sions for the purpose of removing redo log. As described
in Sect. 3.3, committed versions of NVM-tuple are always
persisted to NVM. This is regardless of the number of ver-
sions in Met-Cache. For single-version methods, Met-Cache
holds a single version for a tuple. While there can be mul-
tiple committed NVM-tuple versions in NVM-tuple heap,
only the latest version can be cached in Met-Cache. For
multi-versionmethods,Met-Cache holds all the versions that
are actively accessed by running transactions. A transaction
will create a new version in Met-Cache for an overwrite.
The cache replacement algorithm will not replace theseMet-
Cache entries because their active bits are set. Zen clears the
active bit of an Met-Cache entry during garbage collection
when the entry’s Tx-CTS < the global minimum Tx-CTS.
This guarantees that all the tuple versions that are used by
any running transactions are kept in Met-Cache. The multi-
version methods typically maintain a linked list for the active
versions of the same logical tuple inMet-Cache. The primary
index points to the most recent version. Old active versions
can be found in the version linked list.

3.3.3 Crash recovery without logs

After a crash, the data structures in DRAMare lost, including
indices, NVM-tuplemanagers,Met-Caches, and transaction-
private data. We need to reconstruct the indices and the
tuple-level NVM space management structures in NVM-
tuple managers. Met-Caches and transaction-private data do
not need to be recovered. NVM persisted data consists of
the NVM metadata (i.e., table schemas and metadata for
page-level NVM space management) and committed tuple
versions in NVM-tuple heaps.

Figure 4 depicts an example NVM-tuple heap after a sys-
tem failure. We see that the heap contains tuples written by
four transactions, i.e., 1000, 1003, 1015, and 1016. The LP
bits of (tupleID, Tx-CTS)=(101,1000) and (102,1003) are
set. Thus, transaction 1000 and 1003 have committed. How-
ever, the other two transactions have not completed because
the LP bits of their tuples are all 0.

During recovery, Zen runs multiple threads. Each thread
scans an NVM-tuple heap region. A naïve algorithm scans
the region twice. The first scan computes the maximum com-
mitted transaction timestamp by examining the LP bits. Then
the second scan identifies all the committed tuples by com-

Fig. 4 An NVM-tuple heap region after failure

paring their timestamps with the maximum timestamp. We
propose an improved algorithm inAlgorithm 2 to avoid scan-
ning the data twice. The basic idea is to use the maximum
timestamp seen so far to identify as many committed tuples
as possible. Only uncertain cases need to be revisited again.
We find that the average number of revisits is O(log(n)),
where n is the number of NVM-tuple slots in the region.
Algorithm description.Algorithm 2 uses ts-commit to com-
pute the maximum committed timestamp seen so far. Zen
updates ts-commit whenever it encounters a tuple with LP
set (Line 6-7). If a tuple’s timestamp ≤ ts-commit, Zen con-
siders the associated transaction has committed. Zen updates
the index with the tuple (Line 11). If the index contains a
version of the tuple, Zen compares the current tuple with the
version in the index. Zen keeps the new version in the index
and puts the old version (if exists) into the free list (Line 24-
31). When a tuple’s timestamp > ts-commit, Zen cannot tell
the state of the associated transaction at this moment. It puts
the tuple into a pending list (Line 13).

After the per-thread region is scanned, ts-commit is the
maximumcommitted timestamp in this region. Since a thread
canwrite only to its own region, all the tuple writes of a trans-
action go to the same region. This means the scan has seen all
the tuples written by the transactions in this region. There-
fore, a transaction with Tx-CTX > ts-commit must have
not committed successfully. The crash must occur when the
transaction was being persisted. Then, Zen revisits the tuples
in the pending list. If a tuple’s timestamp ≤ ts-commit, then
Zen updates the index with the tuple and possibly garbage
collects an old version of the tuple in the index (Line 16). If
a tuple’s timestamp > ts-commit, Zen discards the tuple by
marking the tuple slot empty (with Tx-CTS=0) and puts it
into the garbage queue (Line 19-20).
Correctness. Algorithm 2 correctly identifies all committed
tuples in the region. First, if Tx-CTS≤ ts-commit, then trans-
action Tx-CTS has committed. This is because the tuples in
the region are written by a single thread, and the transac-
tion timestamp of the same thread monotonically increases
(though timestamps across different threads may not have a
total order in certain concurrency control schemes). Second,
the algorithm performs the checking in the main scan loop,
then it checks the uncertain pending cases again. As a result,
all the committed tuples are identified.

123

132 G. Liu et al.

Moreover, the algorithm correctly reconstructs the index.
It calls updateIndexGC for committed tuples that are not
deleted, which puts the latest version of the tuple in the index.
The algorithm also collects all the unused NVM-tuple slots
(i.e., old tuple versions, deleted tuples, and empty tuple slots)
into the free list.

Furthermore, Algorithm 2 is idempotent. It does not mod-
ify committed tuples. It marks uncommitted tuples as empty
slots. As a result, when there is a crash during recovery, we
can re-run the algorithm to compute the same ts-commit and
rebuild the index and the free list in the same way.

Finally, we consider the case where a crash occurs, the
system recovers and processes transactions for a while, then
a second crash occurs. The normal transaction processing and
the recovery after the second crash will not see any uncom-
mitted tuples resulted from the first crash because they have
been marked as empty slots.
Efficiency. A tuple in the pending list is examined twice in
Algorithm 2. Therefore, the size of the pending list decides
the benefit of the proposed algorithm compared to the naïve
algorithm.We can prove the following theorem,which shows
that the pending list is quite small.

Theorem 1 The size L of the pending list is O(ln(n)) on
average, where n is the number of NVM-tuple slots in the
region.

3.3.4 Optimization for accessing multiple tables

For multiple tables, Zen still sets and persists the LP flag
only for the last committed tuple regardless of the associated
tables in a transaction, rather than setting the LP flag for one
tuple per table. However, randomly distributed LP flags at
tables incur overhead for crash recovery because our recovery
algorithm needs to scanmore tuples to find LP flags and faces
more uncertain tuple versions.

To optimize recovery performance, Zen chooses the table
to persist LP in a pre-defined order. During recovery, Zen
scans all tuples of tables following the sameorder. In thisway,
Zen identifies all theLPflags faster and earlier in fewer tables.
This order could be set globally by the database administrator
for each database instance. It is advisable to set the table that
serves as application logging or is frequently modified as
the first table. For example, in the TPCC benchmark, we put
the history table and the order table as the first two tables in
the pre-defined order to persist LP. Besides, Zen provides a
default order, e.g., the lexicographical order of table name.

When adapting this optimization, Zen needs to sort the
write set of each transaction at its commit stage. It incurs
little overhead because most short OLTP transactions write
a small number of tuples. Typically, their write set is small
enough to fit in CPU cache.

3.4 Lightweight NVM spacemanagement

Our two-level NVM space management design incurs little
overhead of persisting NVM. First, only the page-level man-
ager persists metadata. Since our page granularity for NVM
is 2MB, the persist operations for recording the page allo-
cation and page-to-HTable mapping in NVM are infrequent.
Second, the tuple-level manager performs garbage collec-
tion and NVM-tuple allocation entirely in DRAM without
accessing NVM during normal processing. This is feasible
because the writing of a committed tuple serves the purpose
of marking the NVM-tuple slot as occupied. We do not need
to record separate per-tuple metadata in NVM for tuple allo-
cations. During crash recovery, Zen scans the NVM-tuple
heap and is able to determine the state of each NVM-tuple
slot by examining its header, as described in Sect. 3.3.3. Con-
sequently, Zen completely removes the cost of NVM write
and persist operations for tuple-level NVM allocation.

We design the NVM-tuple manager to be decentralized
to decrease thread contention. Each thread manages its own
NVM-tuple heap region. It allocates NVM-tuple slots from
its region. It collects garbage and frees NVM-tuple slots in
its region. When the free list is empty, and there is a tuple

123

Zen+: a robust NUMA-aware OLTP engine optimized for non-volatile main memory 133

allocation request, the NVM-tuple manager asks the NVM
page manager to allocate a new 2MB NVM page. It divides
the newly allocated page into empty slots and put them into
the free list. As described previously, empty slots’ Tx-CTS
are 0 since NVM space is initialized with 0 at setup time.

Two implementation details help reduce the impact of
garbage collection on individual transaction latencies. (i) The
per-thread garbage queue and free list are implemented in
DRAMwithout anyNVMoverhead.Garbage collection does
not have thread contention. (ii) We limit the number of items
to scan in the garbage queue per transaction unless NVM
space is used up. This bounds the impact of garbage queue
scan on the latency of a single transaction.

Moreover, Zen persists a tuple to a location different from
its previous version in NVM. This helps wear-leveling for
hot tuples because Zen decreases hot spot writes in NVM.

4 Zen+: Improving robustness of Zen

In this section, we study how to robustly and effectively
support long-running transactions and NUMA architectures.
We propose Zen+ that extends Zen with two novel tech-
niques: MVCC-based adaptive execution and NUMA-aware
soft partition. In the following, Sect. 4.1 describes the sup-
port for long-running transactions, while Sect. 4.2 focuses
on NUMA-aware solutions.

4.1 Support for long-running transactions

A typical OLTP transaction performs a small number of
reads and writes. In contrast, a long-running transaction may
read or write a large number of tuples. This may severely
impact the performance of an OLTP system for the following
two reasons. First, a long-running transaction may occupy
resources (such as locks, memory, and CPU cores) for a
long period of time, stalling or slowing down other concur-
rent transactions. Second, the amount of work required for
a long-running transaction could be several orders of mag-
nitude higher than that for a typical OLTP transaction. The
two factors combined can significantly reduce the transac-
tion throughput of the system. This is especially painful for
a main memory-based OLTP engine, which is capable of
supporting millions of transactions per second. As a result,
many existing main memory-based OLTP solutions tend to
trade long-running transactions for better throughput [25].
While challenging, it is important for production systems
to robustly support long-running transactions. Therefore, we
consider how to robustly and effectively handle long running
transactions in Zen+.

4.1.1 Challenges

Long-running transactions pose twomain types of challenges
to (NVM) main memory-optimized OLTP engines. In the
following, we discuss the challenges with an emphasis on
Zen’s structures as described in Sect. 3.

Concurrency control challenge. A long-running transac-
tion may conflict with concurrent short transactions. That
is, the read set and write set of a long-running transaction
may overlap with those of concurrent short transactions.
Let us consider the behavior of long-running transactions
under different concurrency control methods. First, when a
locking-based concurrency controlmethod is in use, the long-
running transaction has to obtain a large number of locks
(even for reads), incurring significant locking overhead. It
can be easily stalled by other concurrent short transactions
holding relevant locks. Then the long-running transaction
can block newly issued short transactions because of the
locks that it holds. Such poor behavior can cause severe sys-
tem performance degradation. Second, when an OCC-style
orMVCC-style concurrency control method is in use, a long-
running transaction may be frequently rolled back because
short transactions encounter few conflicts and aremore likely
to succeed. This can lead to a considerable amount of wasted
computation.

Resource usage challenge. A long-running transaction con-
sumes and occupies a large amount of resource in an OLTP
system. This may exceed the capacity of certain internal
data structures and lead to abnormal behaviors even if there
is no conflict across transactions. In Zen, the Met-Cache
data structure in DRAM holds the subset of tuples being
actively used in transactions. It is possible that the number
of tuples accessed by a long-running transaction may exceed
the capacity of the Met-Cache. This problem can block the
execution of not only the long-running transaction itself,
but also other concurrent short transactions. Moreover, the
garbage collector plays a key role in NVM space manage-
ment. It reclaims an NVM-tuple entry only if its Tx-CTS
is less than the global minimum Tx-CTS, which guaran-
tees the entry is not used by any active transaction. Note
that the global minimum Tx-CTS is periodically computed
by taking the minimum of last committed Tx-CTS for all
threads. However, the last committed Tx-CTS of the thread
running the long transaction can bemuch smaller than that of
other threads running short transactions. Consequently, the
long-running transaction can prevent the update of the global
minimumTx-CTS, and hence stop the garbage collector from
reclaiming old NVM-tuple versions in the whole system.

Böttcher et al. propose to eagerly prune obsolete tuple
versions in garbage collection in MVCC-based in-memory
databases [9]. In this way, resource usage for both short and

123

134 G. Liu et al.

long transactions can be reduced. Please note that the eager
pruning technique is orthogonal to our proposed solution in
Sect. 4.1.2.While eager pruningmitigates the resource usage
problem, our proposed solution detects the cases that the
resources are about to be used up, and provides a safety net
to robustly support such cases. Combining eager pruning and
our solution is an interesting research direction to investigate
in the future.

4.1.2 Our solution: MVCC-based adaptive execution

Given the above challenges, our design goal is threefold: (i)
Efficiently execute long-running transactions asmuch as pos-
sible when there is no inherent conflict; (ii) Robustly support
long running transactions even if there are conflicts; and (iii)
Effectively address the resource usage challenge.

For (i), we consider two types of long-running transac-
tions: read-only long-running transactions, and read-write
long-running transactions. The former is quite common.
Examples include real-time analytics and ad-hoc queries. In
contrast, it is less common for a transaction to modify a large
number of tuples. Therefore, wewould like to efficiently sup-
port read-only long running transactions, while robustly run
read-write long-running transactions.

For this purpose, we choose an MVCC-style concurrency
control method4. For a read-only transaction, Zen+ sets its
commit timestamp to the current globalminimumTx-CTS-1.
In this way, read-only transactions see a consistent snapshot
of the database before the start of all the other concurrently
running read-write transactions.Moreover, when a read-only
transaction incurs a Met-Cache miss, the transaction directly
reads the target NVM-tuple without fetching the tuple into
the Met-Cache, thereby reducing its resource usage. This
is correct because all tuple versions with timestamps ≥ the
global minimum Tx-CTS are still cached in the Met-Cache.
However, a read-only transaction may still not proceed to
completion in some cases because the transaction stalls the
garbage collection of other concurrent transactions and the
other transactions may use up NVM. Hence, Zen+ is obliged
to handle the resource usage challenge for even read-only
transactions.

For (ii) and (iii),we propose an adaptive execution strategy
with pre-defined resource usage and roll back thresholds. Our
adaptive execution strategy includes two stages: the detect-
ing stage and the exclusive stage. In the detecting stage, Zen+
performs normal processing for transactions, while monitor-
ing the resource usage and counting the number of retries of
transactions. If the resource usage or the amount of wasted

4 Please note that the choice of MVCC-style concurrency control
method is only required by Zen+’s support for long-running transac-
tions. Other techniques in this paper can flexibly support a wide range
of concurrency control methods.

Fig. 5 Illustration of the two stages: the detecting stage and the exclu-
sive stage (ts: timestamp of a transaction, gc: garbage queue length)

work due to retries goes beyond the pre-defined thresholds,
Zen+ marks a long-running transaction as a privileged trans-
action and switches into the exclusive stage. In the exclusive
stage, Zen+ stops all other transactions and exclusively runs
the transaction to completion.

Figure 5 depicts the two stages. In the detecting stage, a
thread executes a long-running transaction, starting at times-
tamp 100. The length of the garbage queue of the thread is
10. Meantime, two other threads execute a number of nor-
mal transactions. As the long-running transaction blocks the
update of the globalminimum timestamp, the garbage queues
of the threads running normal transactions increase consid-
erably. Then, certain pre-defined threshold(s) are met and the
long-running transaction is detected as the privileged trans-
action. Zen+ switches to the exclusive stage and runs the
privileged transaction to completion before resuming normal
execution in the detecting stage.

Detecting long-running transactions. As illustrated in
Fig. 6, a transaction is detected as a privileged long-running
transaction if at least one of the following three conditions is
satisfied:

– Condition 1: The transaction is a read-write transaction
and the number of accessed tuples of the transaction
is beyond a pre-defined threshold α. This condition
constrains the consumption of the Met-Cache by the
transaction.

– Condition 2: The size of the available NVM memory in
the NVM page allocator is below a pre-defined threshold
β. This condition indicates that Zen+ is about to use up
the available NVM space.

– Condition 3: The amount of wasted work is beyond a pre-
defined threshold γ . This condition guarantees that any
long-running transaction can commit successfully after
a limited number of tries.

For Condition 1 and 3, the relevant transaction is marked as
the privileged transaction. For Condition 2, the transaction

123

Zen+: a robust NUMA-aware OLTP engine optimized for non-volatile main memory 135

Fig. 6 Three conditions that trigger the exclusive stage

with the largest number of accessed tuples is marked as the
privileged transaction.
Choice of α. α is specified as a pre-defined percentage of a
Met-Cache region, as shown in Fig. 6. This threshold limits
the maximal Met-Cache space that a read-write transaction
can consume in normal execution during the detecting stage.
A naïveway is to setα to be 100% in hope that a long-running
transaction spends as much time as possible in normal exe-
cution, and reduces the chance to switch to the expensive
exclusive execution state. However, the Met-Cache region
can hold tuple versions that are copied to other regions and
actively used by other concurrently running transactions. As
a result, the Met-Cache region could be filled before the
100% threshold is reached. Hence, we need to choose a lower
threshold. If we have knowledge of the OLTP workload, we
can estimate the average number of tuples accessed by a nor-
mal (short) transaction. Then we can compute the amount of
Met-Cache region space that should be reserved for concur-
rently running transactions.Note that aMet-Cache region can
be of several GBs in a typical servermachine. This capacity is
often large enough to cache millions of tuples. Therefore, the
reserved space will be a small percentage of the Met-Cache
region. In practice, we find that reserving 5% of the space is
often good enough. We set α to 95% in our experiments.
Choice of β. β is specified as a pre-defined percentage of the
available page-grained NVM space, as shown in Fig. 6. As
a long-running transaction prevents the update of the global
minimum timestamp, NVM-tuple versions can no longer be
reclaimed. Consequently, the NVM-tuple space managers
cannot reuse reclaimed NVM slots for newly written tuple
versions. They have to request the NVM page manager to
allocate new NVM pages. Therefore, the extensive con-
sumption of NVM pages is an indication of long-running
transactions. On the one hand, we must ensure that the NVM
space is not used up. Otherwise, allocation requests would
fail and no transactions that write new tuple versions could
commit. The whole system would come to a stop, without
making forward progress. On the other hand, we do not want
to have a threshold that is too loose. Otherwise, the expensive

exclusive stage may be falsely triggered. We find that β=5%
is a good setting, which we use in our experiments.
Choice of γ . γ is specified as a pre-defined tuple count to
limit the wasted work due to retries, as shown in Fig. 6. If a
transaction aborts and retries, Zen+ counts the total number
of tuples accessed by the transaction in all its retries. This
count is maintained as transaction-private data. It measures
the total amount of wasted work because of the retries of
the transaction. If the characteristics of the OLTP workload
are known, we can estimate the maximum number of normal
rollbacks and retries of a transaction because of conflicts
with concurrent transactions. Then, the multiplication of this
number of retries and the average number of tuples accessed
by a transaction gives a lower bound of γ . On the other hand,
we can empirically set a threshold for the wasted work in
terms of wall-clock time. Given the latencies and bandwidths
of NVM reads and NVM writes, it is easy to compute the
number ofNVMtuples that can be visitedwithin the specified
time. This will give an upper bound of γ . We set γ to 16
million in our experiments. This translates to about 10s of
wasted work due to retries.
Exclusive stage. In the exclusive stage, Zen+ runs the privi-
leged transaction exclusively to completion. The transaction
enjoys all the system resources.

The middle part of Fig. 5 depicts the long-running trans-
action in the exclusive stage. Zen+ uses a global exclusive
flag (G-EX) to protect the entrance and exit of the exclusive
stage. 1©When a triggering condition is met and a long-
running transaction is detected, Zen+ locks G-EX using a
compare_and_swap. 2©The privileged transaction waits for
other concurrent transactions to end. Each transaction checks
G-EX periodically. If it sees that G-EX is locked, a transac-
tion aborts unless it is already in the process of committing
its changes. In a short period of time, all other transactions
either commit or quickly abort. 3©The privileged transac-
tion enjoys all resources and executes its transaction logic
to completion. The privileged transaction follows the same
procedure in the log-free persistent transactions except that
it directly writes NVM if its Met-Cache region is used up.
4© Since the thread cooperative garbage collection mecha-
nism stops in the exclusive stage, the privileged transaction is
responsible for reclaiming stale NVM-tuples for all threads
in the maintenance phase at the end of the exclusive stage. It
checks the garbage queue of every thread and moves NVM-
tuple versions in the queue to the corresponding free list. If all
NVM-tuples in a NVM page are freed, then it frees the entire
NVM page5. Note that we can employ the implementation
detail (ii) in Sect. 3.4 to limit the amount of space manage-

5 A per-page counter can be kept in the NVM-tuple manager to keep
track of the number of allocated slots in the page. The counter is updated
for tuple allocations and frees. When the counter decreases to 0, we can
return the page to the NVM page manager.

123

136 G. Liu et al.

ment work, and leave part of the work to the corresponding
threads in normal execution. 5©The privileged transaction
unlocks G-EX and completes its execution. Zen+ switches
back to the detecting stage. All threads resume to handle new
or aborted transactions.

Zen+ is recoverable when the system crashes during the
exclusive stage. This is because the privileged transaction
follows the same persistence procedure as in normal execu-
tion. Therefore, the same arguments as in Sect. 3.3.3 show
that Zen+ can correctly recover from crashes.

4.2 Support for NUMA architectures

Multi-socket (e.g., dual-socket/quad-socket) machines are
popular today. NUMA architectures allow more CPUs and
memory resources to be integrated in a single machine. A
k-socket machine can provide k times as large NVM mem-
ory capacity, and k times as high CPU computing power
as a single-socket machine. We would like Zen+ to effec-
tively exploit NUMA architectures to support larger OLTP
databases with higher transaction performance.

In Sect. 4.2.1, we first review background on existing
optimizations for NUMA systems and consider their appli-
cability to Zen+. Then, we propose our NUMA-Aware soft
partition design in Sect. 4.2.2.

4.2.1 Background

In a multi-socket machine, NVDIMMs are attached to dif-
ferent sockets. For Intel Optane DC Persistent Memory, the
NVM attached to different sockets are identified as different
special devices (e.g., in Linux), and can be mapped to dif-
ferent virtual address regions in software. We use the term
NVM NUMA node i to denote the NVM attached to CPU
socket i and also the corresponding virtual memory region.
Hence, software can control the space allocation and data
accesses to different NVM NUMA nodes.

Previous work studies the placement and migration of
threads and data to reduce remote memory accesses and bal-
ance CPU loads for operating systems [8,32], in-memory
indices [36], execution of analytical queries [31,37,42,43],
and graph analytics [22] in DRAM-based NUMA systems.
In the context of NUMA systems equipped with NVMmem-
ory,Wang et al. investigateNUMA-aware threadmigration in
file systems [52]. They propose to migrate only threads but
not data because (i) NVM writes are more expensive than
NVM reads and (ii) NVM has limited write endurance.

H-Store [47] assumes that an OLTP database can be
fully partitioned. It runs a dedicated thread per partition that
handles the transactions accessing tuples in the partition.
With this assumption, H-Store achieves high throughput for
transactions that access only one partition. It can support
NUMA architectures nicely by co-locating each partition

and its dedicated thread and distributing the partitions across
NUMA nodes. However, when this assumption is not satis-
fied, transactions that access multiple partitions suffer from
significantly lower performance. Other mainstream OLTP
engines mainly rely on the operating system for NUMA-
aware thread scheduling and data placement.

From the related work, we extract the following three
design principles: (i) Remote NVM accesses should be
reduced as much as possible; (ii) Data migration incurs
expensive NVM writes, and therefore should not be exten-
sively used; (iii)Workload characteristics are important (e.g.,
if transactions mostly focus on one of the partitions, the
database partitioning approach can support NUMA archi-
tectures well). We follow these principles to consider NVM
and NUMA properties, and workload characteristics in our
NUMA-aware optimization in Zen+.

4.2.2 Our design: NUMA-aware soft partition

We begin our description with a naïve NUMA-agnostic solu-
tion. Then, we exploit the Zen structures to perform only
NUMA-local writes. Finally, we extend NUMA-local writes
and propose the technique of NUMA-aware soft partition.
Naïve NUMA-agnostic design. The naïve design is shown
in Fig. 7a. It maintains a shared pool of DRAMmemory and
a shared pool of NVM memory. All threads allocate DRAM
or NVM resources from the shared pools. DRAM and NVM
pages are allocated in an interleaved fashion across NUMA
nodes6. With this design, Zen allocates the Met-Cache and
theNVM-Tuple heap pages from the sharedDRAMpool and
the shared NVM pool, respectively.

The naïve design is NUMA-agnostic in that it does not
specially co-locate threads and data to reduce remote mem-
ory accesses. Suppose there are k NUMAnodes (e.g., k=2 for
a dual-socketmachine). Because of the interleaved allocation
policy, an allocated DRAM/NVM page is equally likely to
reside in one of the k NUMA nodes. Therefore, the probabil-
ity of local DRAM/NVM accesses is 1

k , and that of remote
accesses is k−1

k . Wewould like to devise NUMA-aware solu-
tions that significantly improve upon the naïve design.
NUMA-local write. NVM writes are more expensive than
NVM reads. Remote NVM writes are even more costly.
Thus, the first idea that comes to our mind is to eliminate
remote NVM writes and perform only NUMA-local writes.
As depicted in Fig. 7b, the design manages separate DRAM
and NVM pools for NUMA nodes, and binds threads to
CPU cores in different CPU sockets. A thread running on
CPU socket i allocates DRAM and NVM space from the
local pools of NUMA node i . A thread can read local or

6 This is similar to the interleaved NUMA allocation policy in the oper-
ating system. However, when NVM is in the App Direct mode, the OS
policy cannot be directly applied to NVM.

123

Zen+: a robust NUMA-aware OLTP engine optimized for non-volatile main memory 137

(a) Naïve NUMA-agnostic design (b) NUMA-local write (c) NUMA-aware soft partition

Fig. 7 NUMA-related designs and optimizations

remote DRAM/NVM. However, it can write to only local
DRAM or local NVM, thereby completely avoiding remote
writes.

This design fits the architecture of Zen well. First, a
Zen thread can allocate its Met-Cache region and its NVM-
tuple heap pages from the local DRAM and NVM pools,
respectively. Second, Zen’s Met-Cache does not perform
remote writes. A thread can read entries in other Met-Cache
regions, but it cannot write to other Met-Cache regions.
This is designed originally for reducing thread contentions.
We can leverage the same facility to achieve NUMA-local
DRAM writes. Third, when committing a transaction, a
thread allocatesNVM-tuple space from theNVM-tupleman-
ager, which in turn allocates pages from the local NVM
pool. Therefore, Zen performs only NUMA-local NVM
writes.

While this design removes remote writes, it does not opti-
mize for remote reads. Note that tuples can be migrated
across NUMA nodes. When it wants to update a tuple that
is cached in another Met-Cache region, a thread copies the
Met-Cache entry to its local Met-Cache region. At com-
mit time, it writes the new version of the tuple to its local
NVM NUMA node. This essentially migrates the tuple. In a
pathological case, a sequence of back-to-back transactions
T xn_1, T xn_2, T xn_3, ... update the same tuple. Odd-
numbered transactions are scheduled to run on NUMA node
1, while even-numbered transactions are scheduled to run on
NUMA node 0. Then the new versions of the tuple ping-
pong between the two NUMA nodes, incurring a great many
remote reads. We would like to avoid such cases as much as
possible.
NUMA-aware soft partition. The static database par-
titioning approach as described in Sect. 4.2.1 provides
a simple solution to the above problem if a transaction
always visits data in a single partition. However, real-
world OLTP workloads are often more dynamic. It is likely
that a transaction visits tuples in more than one parti-
tion.

We propose NUMA-aware soft partition to cope with
the dynamic workload behaviors. Zen+ divides base tables
into partitions, and maps partitions to NUMA nodes. For
an incoming transaction, Zen+ computes its NUMA affin-
ity based on the partitions that it is about to visit, then
assigns the transaction to the most relevant NUMA node.
By “soft,” we mean that Zen+ collects partition statistics and
dynamically adjusts the mapping from partitions to NUMA
nodes.

In the following, we describe the construction of parti-
tions, the assignment of transactions, the dynamic partition
mapping, and the parameter choices in detail.
(1) Partitions. A table is partitioned by applying a hash
function on the partition key (e.g., hash(key)%part_si ze).
Please note that the partition is logical. There is no phys-
ical partitioning step that copies tuples into contiguous
memory regions. Instead, through the NUMA-aware trans-
action assignment, the new versions of tuples in a par-
tition tend to be written to the same NUMA node by
NUMA-local writes. In this way, the tuples in a parti-
tion are likely to eventually co-locate in the same NUMA
node.

The default partition key of a table is its primary key,
which leads to even distribution of tuples to partitions. How-
ever, in some cases, tuples of multiple related base tables
are frequently visited together in a transaction. Hence, it is
desirable to have the related tuples in the same partition.
We observe that the relationship between tuples is typically
expressed as foreign key references. That is, the primary key
of one table is referenced in other related tables as foreign
keys (e.g., warehouse ID in TPCC). Consequently, we can
judiciously select foreign keys as the partition key for the
related tables so that related tuples belong to the same parti-
tion.

Zen+ has two global data structures for partitions. There
is a global hash map part_map that maps every partition to
a NUMA node. Then, Zen+ keeps access_count for each
thread and each partition.

123

138 G. Liu et al.

(2) NUMA-Aware transaction assignment. Algorithm 3
considers load balancing and NUMA affinity for assigning
transactions to NUMA nodes.

For load balancing purpose, if the loads across NUMA
nodes differ greatly, Zen+ chooses the node with the low-
est load to run the transaction (Line 6). Zen+ obtains CPU
utilization by reading /proc/stat. From our experience,
unbalanced load is often caused by changing workload.

For NUMA affinity, Zen+ examines each request (data
operation, e.g., SQL select, update, insert, delete) in the trans-
action (Line 14). It attempts to extract the base table and the
primary/foreign key of each accessed tuple, then computes
its partition ID (Line 15-16). This is feasible for point oper-
ations (e.g., when keys are specified in the “where” clause)
but may fail for more complex requests. If the partition ID
is identified, the algorithm maps the partition to its NUMA
node and accumulates a vote for the node (Line 17-18). It
chooses the NUMA node with the highest vote (Line 22). In
case that all votes are 0, which means that all requests are
complex, the algorithm chooses a node randomly (Line 19-
20). The time complexity of this procedure is O(n), where n
is the number of requests in a transaction.

Finally, Zen+ assigns the transaction to a thread in the
chosen NUMA node in a round-robin fashion (Line 9).
(3) Dynamic mapping of partitions to NUMA nodes. The
system periodically invokesAlgorithm 4 to dynamicallymap
partitions to NUMA nodes. The algorithm aims to (i) Dis-
tribute hot spots across NUMA nodes, and (ii) Balance the
number NVM accesses for the NUMA nodes.

First, the algorithm computes per-partition access counts
(pt_cnt) and per-node-partition access counts (nd_pt)
based on the global access_count (Line 4-10). Second, it
examines the partitions from the hottest to the coldest (Line
13). That is, it follows the descending order of the accumu-
lated per-partition access counts. Third, in every iteration,
the algorithm checks all the NUMAnodes to find a candidate
node tomap the current partition. The algorithm excludes any
node whose assigned load is already unbalanced (i.e., over
10% higher than the minimum load) (Line 17). It also guar-
antees that the number of partitions assigned to each node is
roughly the same (Line 17). Then, the candidate is chosen as
the node that sees the largest number of accesses for the parti-
tion (Line 18-19). Fourth, the algorithm compares the access
counts of the candidate and the original node. If the candidate
sees much higher counts, then the global mapping is changed
(Line 22). Finally, the algorithm accumulates mapped parti-
tions and access counts for the chosen node (Line 25-26)
before processing the next partition.

The algorithm complexity is O(P(log(P) + T), where P
is the number of partitions and T is the number of threads.
(4) Parameter choices. δ and η are both tunable parame-
ters. δ controls the threshold to detect unbalanced load. η

sets the difference between the candidate and original nodes
to remap partitions. Another parameter is the number of par-
titions. As the number of partitions increases, the number of

123

Zen+: a robust NUMA-aware OLTP engine optimized for non-volatile main memory 139

tuples in a partition decreases. It is more flexible to schedule
the partitions across NUMA nodes. However, the number of
partitions cannot be too large. Otherwise, the global mapping
structure (part_map) and the partition statistics (part_map)
cannot fit into the last-level CPU caches. In our experiments,
we set δ=0.3, η=1.2, and use 2048 partitions.

5 Evaluation

We run real-machine experiments to compare the perfor-
mance of our proposed solutions with existing OLTP engine
designs for NVM in this section.

5.1 Experimental setup

Machine configuration. The machine is equipped with 2
Intel Xeon Gold 5218 CPUs (16 cores/32 threads, 32KB
L1I, 32KB L1D, and 1MB L2 per core, and a shared 22MB
L3 cache). There are 384GB (12x32GB) DRAM and 1.5TB
(12x128GB) 3DXPoint-based Intel Optane DC Persistent
Memory NVDIMMs in the system. We configure the sys-
tem to run in the App Direct mode where both NVM and
DRAM can be mapped to the virtual address of software.
The machine runs Ubuntu 18.04.3 LTS with the 4.15.0-70-
generic Linux kernel. We install file systems with fs-dax
mode to the NVM, then use libpmem in PMDK to map
NVMfiles to the virtual memory of a process.We issue clwb
and sfence to persist data to NVM. All code is written in
C/C++ and compiledwith gcc 7.5.0. To avoidNUMAeffects,
by default, we run the experiments on a single CPU socket
with its associated NVM and DRAM, except for the experi-
ments in Sect. 5.6 where we examine our optimizations for
NUMA architectures. In our experiments, we set the NVM
size according to the database sizes in the benchmarks and
vary the DRAM size to model different ratio P of NVM to
DRAM. Presently, P can be 4, 8, and 16 for OptanePM [1].
OLTP engine designs to compare. In Sect. 5.2–5.4, we
compare the following four designs: (i) MMDB with NVM
capacity (mmdb), (ii) Write-behind logging (wbl), (iii) FOE-
DUS (foedus), and (iv) Zen (zen).

We control the NVM usage to a specific size by using
pmem_mmap. We limit the DRAM usage by allocating a large
DRAM from the system and manage DRAM space by our-
selves. Note that the engines run in main memory without
accessing any data files on disk. Therefore, they cannot lever-
age other DRAM space available in the system, such as the
OS page cache. We keep the indices and transaction-private
data in DRAM and adapt the size of other data structures
(e.g., Met-Cache) to the remaining DRAM.

For FOEDUS [27], we obtain the code from the author
and modify it to store logs and snapshots in real NVM hard-
ware. FOEDUS implements its own method of concurrency

control. ForMMDB,WBL, andZen,wewrite two implemen-
tations based onCicada [33] andDBx1000 [56], respectively.
We measure transaction processing and crash recovery per-
formance using theCicada-based implementations. Then,we
use the DBx1000-based implementations to demonstrate the
applicability of our design to 9 concurrency control meth-
ods besides Cicada. For MMDB, we optimize the logging
procedure to combine the log records of a transaction and
write them together at commit time using sequential NVM
writes, clwbs, and a single sfence.We implement decentral-
ized logs to reduce contention. That is, each thread writes its
log to a separate NVM buffer. When the database cannot fit
into DRAM, MMDB uses part of NVM as volatile memory
to store base tables. We disable checkpoints when measuring
transaction throughput of MMDB. ForWBL, our implemen-
tation follows the description of the WBL paper closely for
persisting tuples, writing WBL logs, and recovery. It writes
a WBL log record roughly every 100us. We apply the light-
weight NVM space management to WBL. The Zen design is
described in detail in Sect. 3.

In Sect. 5.5 and 5.6, we implement Zen+ by extending the
Cicada-based implementation with support for long-running
transactions and NUMA architectures. As previous OLTP
engines (i)–(iii) do not support similar features, we mainly
compare various design choices in Zen+.
Benchmarks.we runYCSB [15] andTPCC [2] benchmarks.

YCSB is a widely used key-value workload representative
of transactions handled by web companies. In our experi-
ments, the YCSB database consists of a single table. Every
tuple contains an 8B primary key and ten 100-byte columns
of random string data. The size of a tuple is approximately
1KB. EachYCSB transaction consists of 16 random requests
by default. Given the primary key, a read request retrieves
a tuple, and a write request modifies a tuple. We vary two
parameters in the workload: (1) Percentage of read requests:
Read-Only(RO, 100% read), Read-Heavy (RH, 90% read,
10%write), Balanced (BA, 50% read, 50%write), andWrite-
Heavy (WH, 10% read, 90% write); and (2) The θ parameter
of the Zipfian distribution: No-Skew (θ = 0), Low-Skew
(θ = 0.6), and High-Skew (θ = 0.95). Note that No-Skew
has no request locality. It models the worst-case scenario
for cross visiting different Met-Cache regions. High-Skew
models the scenario of high transaction contentions. We use
a 256GB YCSB database in most experiments so that the
database can fit into the NVM, but is larger than the avail-
able DRAM. We use another 100GB YCSB database in the
recovery experiments to understand the impact of data size
on recovery performance.

TPCC simulates an order entry application of a whole-
sale supplier. There are five transaction types. Among the
five types, New-Order and Payment transactions modify the
database and account for 88% of all transactions. We con-
figure the benchmark to use 2048 warehouses and 100,000

123

140 G. Liu et al.

items. The initial footprint of the database is approximately
205GB, which is larger than the available DRAM.

Unless otherwise noted, for each experiment, each thread
runs 500 thousand random transactions to warm up the
system; then, we measure the throughput by running 500
thousand random transactions per thread.

5.2 Transaction performance

5.2.1 YCSB performance

Varying read/write ratio and data skew. We run the YCSB
benchmarkwhile varying the percentage of read requests and
the Zipf’s θ parameter in Fig. 8.

Among the four OLTP engines, FOEDUS has the worst
performance. It suffers from the NVM read amplification
problem due to page-grained caching. Moreover, the map-
reduce computation, which merges logs to snapshots, incurs
computation overhead and NVM write cost. Finally, the
implementation employs heavy-weight file system interface
and persists pages to NVM with msync. As a side effect, we
do not count clwb and sfence for FOEDUS.

WBL gives the second worst performance. WBL main-
tains per-tuple metadata in NVM. Hence, it incurs a large
number of NVM writes and persists for the per-tuple meta-
data. This is confirmed by Fig. 11 and 12. Compared with
MMDB and Zen, WBL sees drastically more sfences in
most cases, and sees significantlymoreclwbswhen thework-
load has high skews.

MMDB achieves better performance than WBL. Unlike
WBL, MMDB considers the database to be in volatile mem-
ory. Therefore, it does not persist per-tuple metadata. The
main problem is NVMwrite amplification. If a tuple is in the
(volatile) part of NVM, it is written to NVM twice, i.e., to
the (volatile) part of NVM and to the log in NVM. (Note that
this set of experiments do not perform checkpoints.)

Zen achieves better performance than MMDB mainly
because Zen performs fewer NVM writes. For a commit-
ted transaction, Zen performs 1 NVM write per tuple write,
and 0 NVMwrite for tuple reads. In the case of MMDBwith
NVM capacity, when P = 4, 75% of data reside in NVM.
MMDB writes per-tuple concurrency control metadata even
for tuple reads. A tuple write also creates a new version
and incurs logging on NVM. Hence, MMDB performs an
average 0.75×(1+1)+1=2.5 NVM writes per tuple write and
0.75×1=0.75 NVM write per tuple read. This explains the
significant advantage of Zen over MMDB for Read Only or,
No Skew and Low Skew cases. For an aborted transaction,
Zen frees resources without writing to NVM. In contrast,
MMDB still writes the per-tuple metadata and new tuple ver-
sions. Hence, it incurs an average 1.5 NVM writes per tuple
write and 0.75 NVMwrite per tuple read. This explains why
Zen outperforms MMDB under High Skew.

Fig. 8 YCSB performance with P = 4 and 16 threads

Fig. 9 YCSB performance with P = 8 and 16 threads

Fig. 10 YCSB performance with P = 16 and 16 threads

Fig. 11 Clwb counts (High skew, P = 4, 16 threads)

Fig. 12 Sfence counts (High skew, P = 4, 16 threads)

Fig. 13 Abort rate (High skew, P = 4, 16 threads)

123

Zen+: a robust NUMA-aware OLTP engine optimized for non-volatile main memory 141

Fig. 14 Cache miss (High skew, P = 4, 16 threads)

Fig. 15 Standard workloads (Low skew, P = 4, 16 threads)

Fig. 16 YCSB scalability (High skew, balanced, P = 4)

Our proposed design, Zen, achieves the best performance.
Compared with MMDB, WBL, and FOEDUS, Zen achieves
1.25x–5.29x speedup for Read-Only, 1.00-7.86x speedup for
Read-Heavy, 1.54x-7.50x speedup for Balanced, and 2.16x-
10.12x speedup forWrite-Heavy. Zen successfully addresses
the three design challenges with Met-Cache, log-free trans-
actions, and light-weight NVM space management. From
Fig. 11, we see that Zen issues much fewer clwb instruc-
tions than MMDB and WBL for Read-Only because Zen
incurs no NVMwrites, while MMDB and WBL still need to
persist their logs. Moreover, Zen issues at most one sfence

per transaction. This is the same as MMDB, but much bet-
ter than WBL, which writes and persists per-tuple metadata
to NVM. Furthermore, the speedups of Zen over the other
designs increase as the percentage of writes, showing the
benefit of Zen in reducing NVM write overhead.

We see two general trends for all the engine designs. First,
transaction throughput increases as the percentage of read
requests because there are fewer NVMwrites and persists as
shown in Fig. 11. Second, higher skews bring two effects.
The performance for Read-Only, Read-Heavy, and Balanced
is better because more data are found in DRAM. However,
higher skews result in more contention for Write-Heavy as
shown in Fig. 13. As a result, we see lower transaction
throughput. Interestingly, Zen has fewer aborts in Balanced
andWrite-Heavy for skewed workload compared to MMDB
andWBL. As writes become more, Met-Cache may be more

Fig. 17 NVM space management (P = 4, 16 threads)

Fig. 18 Percentiles (No skew, P = 4, 16 threads)

Fig. 19 Zen vs. ideal MMDB (P = 4, 16 threads)

frequently updated. As a result, Zen has better cache perfor-
mance as shown in Fig. 14. We attribute the reason to our
fine-grained Met-Cache because the cache provides lower
data accesses latency for hot tuples, which makes the pro-
cess to detect conflicts faster. On average, Zen spends less
time in critical region for concurrency control. Hence, trans-
actions in Zen face fewer conflicts because the writes keep
the Met-Cache updated in time.
Varying NVM/DRAM size ratio. We show YCSB trans-
action performance for P=16 in Fig. 10. Zen is the best
performing OLTP engine design among the four designs.
Compared with MMDB, WBL, and FOEDUS, Zen achieves
1.34-5.35x speedup for Read-Only, 1.13-5.59x speedup for
Read-Heavy, 1.02x-4.20x speedup for Balanced, and 1.02x-
5.58x speedup for Write-Heavy. We also observe similar
trends as P=4 compared with Fig. 8.Moreover, as P increases
and DRAM becomes smaller compared to NVM, all engine
designs see decreasing throughput because more accesses
have to visit NVM. Furthermore, for the case of P=16,Write-
Heavy or Balanced, and No Skew, Zen and MMDB show
similar performance because the bottleneck is the NVM per-
sist operations. Zen persists a modified tuple to NVM-tuple
heap, whileMMDBpersists the tuple to the log. Both designs
issue a single sfence per transaction. In another typical set-
ting P=8, we observe similar results as shown in Fig. 9.

123

142 G. Liu et al.

Fig. 20 TPCC performance (16 threads)

Standard YCSB workloads. We run experiments for the
five standard workloads of YCSB [15] under low skew, P=4,
and 16 threads in Fig. 15: (A) 50% read, 50% update; (B)
95% read, 5% update; (C) 100% read; (D) 95% read recent,
5% insert; and (E) 95% scan, 5% insert. Note that the Read
Only case in the previous experiments is workload (C), and
the Balanced case is workload (A). From Fig. 15, we see that
Zen achieves 1.15x–1.82x improvements over MMDB, and
1.36x–3.04x improvements over WBL.
YCSB scalability. We study the scalability of the four OLTP
engine designs in Fig. 16. We set P=4 and use Balanced,
High Skew requests in the experiments. We vary the number
of threads from 1 to 32. From the figure, we see that Zen
scales up better thanMMDB,WBL, andFOEDUS. First, Zen
conducts concurrency control completely inDRAM.Second,
the Met-Cache hit rate is 85% for High Skew workloads.
This makes Zen’s efficiency close to that of pure in-memory
database. Third, Zen incurs less cost for aborts because an
aborted transaction does not write to NVM.
Benefit of light-weight NVM space management.Wecom-
pare the transaction performance of Zen with and without
the light-weight NVM space management in Fig. 17. The
naïve design records and persists the metadata of every tuple
allocation in NVM. From the figure, we see that the two
designs have similar performance for Read-Only because
there are few NVM-tuple allocation requests. For the other
cases, Zen significantly out-performs the naïve design. Com-
pared to the naïve design, Zen achieves 1.41x–1.52x speedup
for Read-Heavy, 1.32x–2.26x speedup for Balanced, and
1.30x–2.52x speedup for Write-Heavy. Moreover, Fig. 18
studies the impact of garbage collection activities on trans-
action latencies.Note thatwe choose no skew tominimize the
impact of transaction conflicts and aborts. The figure shows
that 99th percentile latencies are only slightly larger than
the average latencies, indicating that the garbage collection
works smoothly.
Comparison to ideal MMDB.Wecompare the performance
of Zen with ideal MMDB in Fig. 19. For ideal MMDB, we
reduce the database size to 100GB and fit it into DRAM;
then, we run MMDB without checkpointing. In this way,
ideal MMDB performs no NVM reads, and almost optimal
number of NVMwrites and persists for write requests. Zen’s
database is 256GB large. Zen (small) has a 100GB database

Fig. 21 TPCC scalability (P = 4)

as MMDB. Both Zen (small) and Zen can use 64GBDRAM.
As shown in Fig. 19, we see that Zen (small) is only slightly
(6%–11%) slower than idealMMDB, showing the benefits of
our proposed optimization techniques. Note that Zen (small)
performs better than Zen because a larger fraction of tuples
of Zen (small) are in Met-Cache.

5.2.2 TPCC performance

TPCC performance. We run the TPCC benchmark using 16
threads while varying the memory configuration. As shown
in Fig. 20, the TPCC experiment shows the same trend as the
YCSB experiment. Zen is the best performing OLTP engine
design among the four designs. Compared with MMDB,
WBL, and FOEDUS, Zen achieves 1.56x–3.98x speedup
whenP=4, 1.72x–4.63x speedupwhenP=8, and 1.75x–4.79x
speedup when P=16.
TPCC scalability. We study the scalability of the four OLTP
engine designs using TPCC benchmark.We set P=4 and vary
the number of threads from 1 to 32. As shown in Fig. 21, all
designs scale well to 32 threads. We attribute the good scala-
bility to the modestly low contention in the TPCC workload.
Zen performs the best in all designs. Zen achieves a transac-
tion throughput of 1.36 million transactions per second when
using 32 threads.

5.3 Recovery performance

In this section, we evaluate the recovery time of the OLTP
engine designs using YCSB and TPCC benchmark. For each
benchmark, we first execute a fixed number of transactions
and then force a hard shutdown of the DBMS (SIGKILL).
After that, we measure the time for the system to restore
to a consistent state, where the effects of all committed
transactions are durable and the effects of the uncommitted
transactions are removed. We configure the ratio of NVM
to DRAM capacity to be 4 and use 16 parallel threads for
recovery processing. We consider MMDB, WBL, and Zen
for recovery performance. We omit FOEDUS because it has
the worst transaction performance and the implementation
does not provide a straightforward way to perform recovery.
ForMMDB,we assume that there is a checkpoint before run-
ning the benchmark.We do not takemore checkpoints during
the run. Therefore, the recovery process reads the checkpoint

123

Zen+: a robust NUMA-aware OLTP engine optimized for non-volatile main memory 143

(a) (b) (c)

Fig. 22 Recovery performance (P = 4, 16 parallel threads)

and applies redo logs to bring the database state up to date. For
WBL, we read theWBL to obtain the pairs of persisted com-
mit timestamp (cp), and dirty commit timestamp (cd). Then
we scan the tuples in NVMwhile comparing the tuple times-
tamps with the (cp, cd) pairs to identify committed tuples.
The reconstruction of indices is similar to Zen.
Recovery for YCSB.We use two database sizes, i.e., 100GB
and 256GB, in the YCSB recovery experiments. We run 4
million and 16million transactions before the system failure.
As shown in Fig. 22a, MMDB takes 85.9s to recover from
the system failure for the 100GB database. In contrast, WBL
and Zen take 2.6s and 3.1s, respectively. They are an order of
magnitude faster than MMDB. MMDB spends most time in
loading the checkpoint and redoing logs,whileWBLandZen
spendmost time in scanning tuples in NVMand restoring the
indices.However, because of the uncertainty of themaximum
committed transaction timestamp, Zen needs to check the LP
flag, Deleted flag, and Tx-CTS for each NVM-Tuple, which
accounts for the additional time compared with WBL.When
we increase the number of transactions from 4 million to 16
million, MMDB takes an additional 28.2s, while WBL and
Zen take merely 0.49s and 1.12s more time, respectively.

When the data size increases from 100GB in Fig. 22a
to 256GB in Fig. 22b, all three solutions take significantly
longer to recover. For Zen, the time complexity of the recov-
ery algorithm is O(n+ln(n)), where n is the number of tuple
versions in aNVM-tuple region. Therefore, the recovery time
grows linearly as the number of tuples per NVM-tuple region
increases. Suppose the entire 1.5TB of NVM in the exper-
imental machine is filled with tuples and all the 64 threads
are used to scan the data in parallel. Then the recovery time
can be roughly estimated to be 1.5TB/100GB * 16 threads/64
threads = 3.75x as large as that for an 100GB database. Since
themain operations of Zen are scanning tuples and rebuilding
indices, persistent indicesmay effectively reduce its recovery
time. We discuss persistent indices in Sect. 6.
Recovery for TPCC.Weconduct theTPCC recovery experi-
ment. TheTPCCdatabase contains 2048warehouses.We use
16 parallel threads. As shown in Fig. 22c, we observe simi-
lar trends as the YCSB recovery experiment. MMDB takes
282.1s (297.1s) for 4 million (16 million) transactions. WBL
takes 10.2s (11.1s) and Zen takes 10.1s (11.3s) for 4 million

Fig. 23 YCSB performance with 10 concurrency control methods
(High skew, balanced, P = 4, 16 threads)

(16million) transactions. Zen andWBL recover dramatically
faster than MMDB.

5.4 Wide applicability to concurrency control
methods

Figure 23 demonstrates that Zen supports a wide variety of
concurrency control methods, including three 2PL variants
(2PL with deadlock detection, wait and die, and no wait-
ing [56]), three OCC variants [28,48,57], three MVCC vari-
ants [7,17,33], and a partition-based method (H-Store [47]).
Our implementation for 9 of the above 10 methods (except
Cicada) is based on DBx1000, an in-memory OLTP testbed
for concurrency control research. For completeness, we
include the Cicada results from Fig. 8 in Fig. 23. How-
ever, please note that the results are not directly comparable
because the implementations in DBx1000 and Cicada are
different. For example, DBx1000 simplifies space manage-
ment by not reclaiming space for old tuples (which is only
OK for short test runs). We configure P to be 4. We use a
160GB YCSB benchmark under High Skew and Balanced
configuration with 16 threads.

Comparing ZenwithMMDB,we find the following. First,
Zen achieves 1.10x-2.46x speedup in all concurrency control
methods. Second, Zen achieves higher speedup for OCC and
MVCCmethods comparedwith 2PLvariants. This is because
Zen is more likely to run transactions in DRAM. Aborts are
also less costly in Zen because aborted transactions do not
write to NVM. In contrast, in 2PL methods, conflicts are
handled at each data access, which limits the performance
of Zen. Third, Zen shows limited improvement in partition-
based concurrency control method because cross-partition
transactions become the bottleneck under High Skew. The
coarse-grained lock of partition limits the performance of all
OLTP engine designs.

Comparing Zen with WBL, we see that Zen achieves
1.11x-4.58x speedup in all concurrency control methods.
Moreover, in OCC and MVCC variants, the performance
gains of Zen are larger. Zen fully exploits DRAM for con-
currency control,whileWBLmaintains concurrency control-
related per-tuple metadata in NVM. Hence, WBL sees small
grained accesses in NVM, which limits its throughput.

123

144 G. Liu et al.

5.5 Support for long-running transactions

In this section, we evaluate Zen+’s support for long-
running transactions. We use YCSB benchmark with 256GB
database, the low skew balanced setting, P=4, and 16 threads.
AMet-Cache region is 4GB large, which can cache 4 million
tuples. We set α = 95%, β = 5%, γ = 16 million.
Impact of read-only long-running transactions. The first
experiment studies the behavior of read-only long-running
transactions in Zen+. One thread (denoted as S) performs
large scan transactions from time to time, while the other 15
threads run normal YCSB transactions. As shown in Fig. 24,
thread S first executes 50 thousandYCSB transactions. Then,
it goes into a long-running transaction that scans 2GB data
(i.e., 2 million tuples). After that, it executes another 50 thou-
sand YCSB transactions, and then a second long-running
transaction that scans 8GB data (i.e., 8 million tuples). The
exclusive stage is not triggered in the experiment. Overall,
we see a merely 11% throughput loss.
Impact of read-write long-running transactions. The sec-
ond experiment studies the impact of read-write long-running
transactions. Thread S performs long-running update trans-
actions, while the other 15 threads run normal YCSB
transactions. Note that we must avoid any conflicts between
normal transactions and the long running transaction. Other-
wise, the commit of a conflicting normal transaction would
abort the long-running transaction. For this purpose, we
configure the normal transactions and the long-running trans-
actions to use disjoint key ranges. Thread S performs 50
thousand normal YCSB transactions, then updates 2GB data
(2 million tuples), then runs another 50 thousand normal
YCSB transactions, then updates 8GBdata (8million tuples).
As shown in Fig. 25, we observe that the 2GB update is han-
dled in normal execution while the 8GB data update triggers
the exclusive stage. Zen+ switches to the exclusive stage at
around 21s. The throughput curve drops to 0 at this point.
After the long running transaction completes, Zen+ resumes
normal execution. The system throughput rises to the nor-
mal level. While its performance is poor, the exclusive stage
improves the robustness of Zen+. Nevertheless, we expect
such case is rare.
Slowdowns due to long-running transactions. We use one
thread to perform back-to-back long-running transactions.
We consider three types of long-running transactions: scan
2GB, scan 8GB, and update 2GB data. We omit the update
of 8GB data because it constantly triggers the exclusive
stage. As shown in Fig. 26, the scan-based long-running
transactions cause 9.4–24.9% slowdowns compared with the
baseline without long-running transactions. Because Zen+
employs MVCC, the influence of read-only long-running
transactions is limited. In comparison, the update-based long-
running transactions cause 17.3–73.7% slowdowns com-
pared with the baseline. As the write ratio increases and the

Fig. 24 Experiment with long-running scan transactions (Low skew,
balanced, P = 4, 16 threads)

Fig. 25 Experiment with long-running update transactions (Low skew,
balanced, P = 4, 16 threads)

Fig. 26 Performance with long-running transactions (P = 4, 16
threads)

workload skew increases, the throughput decreases signifi-
cantly. This is because read-write long running transactions
incur more conflicts between transactions.

5.6 Support for NUMA architecture

In this section, we evaluate Zen+’s support for NUMA archi-
tectures. The experimental machine has two NUMA nodes.
Overall YCSB performance of Zen+. We compare four
cases: remote, local, naïve, and soft partition. One extreme
is remote, where 16 threads run in CPU socket 0 but use
remote DRAM and NVM in NUMA node 1. It gives the per-
formance lower bound. The other extreme is local, where
16 threads run in CPU socket 0 and use local DRAM and
NVM in NUMA node 0. It shows the performance upper
bound. Note that the result of local is directly comparable
with the experimental results in previous subsections. naïve
and soft partition run 8 threads in either of the two NUMA
nodes. naïve is NUMA-agnostic. It allocates memory using
a shared pool of DRAM and a shared pool of NVM. In com-
parison, our proposed solution, NUMA-aware soft partition

123

Zen+: a robust NUMA-aware OLTP engine optimized for non-volatile main memory 145

Fig. 27 Performance of NUMA designs (P = 4, 16 threads)

Fig. 28 Comparison with NUMA-local write design (P = 4, 16
threads)

Fig. 29 Scalability of NUMA designs (P = 4, low skew, balanced)

aims to reduce remote memory accesses while balancing the
load across NUMA nodes. We empirically set the number
of partitions to 2048 so that the global partition map and
statistics collection structures can reside in the L3 cache.

As shown in Fig. 27, remote and local achieve the
worst and the best performance as expected. naïve achieves
1.03x-2.17x speedups compared with remote. soft partition
achieves 1.13x-3.72x speedups compared with the remote.
It performs NUMA-local writes to eliminate remote NVM
writes. It also decreases remote reads by NUMA-aware
transaction assignment. In general, as the workload skew
increases, the performance of both naïve and soft partition
increases because of better memory locality. As the write
ratio increases, their performance decreases because NVM
writes are more costly than NVM reads.
NUMA-aware soft partition vs. NUMA-local write. We
compare the NUMA-aware soft partition design with the
NUMA-local write design. As shown in Fig. 28, soft parti-
tion outperforms numa-local write in most workload setting
by up to 1.32x. In the read-only cases, soft partition cannot
adjust the store position of tuples. The NUMA-aware trans-
action assignment and dynamic mapping of partitions may
incur at most 5% overhead.

Fig. 30 Thread distribution strategies (P = 4, low skew, balanced)

Fig. 31 TPCC NUMA performance (16 threads, evenly distributed)

Scalability. Figure 29 studies the scalability of the four cases
by varying the number of threads from 1 to 64. Note that
there are 16 cores/32 threads in each CPU socket. We extend
remote and local curves beyond 32 threads as flat lines. From
the figure, we see that soft partition scales up to 64 threads.
It outperforms naïve by up to 1.36x because of its better
read-write locality.
Thread to node binding strategy. We consider two strate-
gies to bind threads to NUMA nodes for soft partition.
Suppose the OLTP engine is allowed to run T threads. The
evenly distribution strategy binds T /2 threads to each of the
NUMAnodes. In contrast, theNUMAgroup strategy exploits
as many CPU cores as possible in one NUMA node, before
considering the other NUMA node. For example, if T=20,
then evenly distribution binds 10 threads to either NUMA
node, while NUMA group puts 16 threads to NUMA 0 and 4
threads to NUMA 1. As shown in Fig. 30, we observe that
NUMAgroup outperforms evenly distribution by up to 1.24x.
As the number of threads increases from 1 to 16, NUMA
group significantly outperforms evenly distribution because
NUMAgroup exploits bettermemory locality.Note thatwhen
there are 32 or 64 threads, the two strategies are the same. As
the number of threads increases from 32 to 64, NUMA group
slightly outperforms evenly distribution, but the benefit is less
significant because the distribution strategies become simi-
lar with more threads. Overall, it is advisable to use NUMA
group if possible.
TPCC performance of Zen+. Finally,we conduct the exper-
iment in a benchmark with multiple related tables. We run
the TPCC benchmark as specified in the previous section.
There are 2048 warehouses. We use the warehouse id to par-
tition the tables and evenly distribute the partitions between
NUMA nodes. As shown in Fig. 31, compared with the

123

146 G. Liu et al.

ideal local case, soft partition shows only 10.2% slowdown.
Compared to naïve, soft partition achieves a factor of 1.54x
improvement. This shows that soft partition captures the
characteristics of the TPCC workload well, and it can effec-
tively reduce remote accesses across NUMA nodes.

6 Discussion

In this section, we discuss a number of interesting design
issues for Zen/Zen+.
Alternative Index Designs. In the current design, we put the
indices in DRAM and prove the scheme reasonable. Note
that index design is orthogonal to the three main techniques
of Zen, i.e., Met-Cache, log-free persistent transactions,
and light-weight NVM space management. It is possible to
employ persistent indices like NV-Tree [54], WB-Tree [12],
FP-Tree [39],HiKV[53], andLB+tree [34] to improve recov-
ery performance. Besides, we can exploit previous index
designs to reduce DRAM space consumption for indices.
The dual-stage hybrid index architecture [58] saves space
by placing aged index entries into a more compact struc-
ture. Selective persistence inNV-Tree [54], FP-Tree [39], and
LB+-Tree [34] places non-leaf nodes of B+-Trees in DRAM
and leaf nodes in NVM. Note that these alternative designs
have been shown to have similar index performance to orig-
inal DRAM-based indices.
Optional DRAM-based logs.Zen removesNVM-based log-
ging to reduce NVM writes for better OLTP throughput.
However, we can optionally writeDRAM-based logs for sup-
porting log shipping to a hot standby and archive the logs
for supporting point-in-time recovery and disaster recovery.
Since such logs are not required for persistence in Zen, the
logs do not need to be “write-ahead” and can be handled with
little impact on transaction performance.
Dealing with variable-sized tuples. In our current imple-
mentation, we treat the maximum size of the variable-sized
tuples in a table as the “fixed size” in NVM-tuple allocation.
To better utilize main memory space, we discuss an alterna-
tive design in the following. In DRAM, we exploit a memory
heap to store variable-sized fields. A tuple in the Met-Cache
can store pointers to these fields. Hence, variable-sized tuples
can be handled as fixed-sized tuples. In NVM, we maintain
multiple NVM page types such that the tuple slots in a type-i
page are of 2i bytes large. Then, a tuple of length L is stored
in a type-i page such that 2i−1 < L ≤ 2i . We can per-
sist variable-sized tuples in proper fixed-sized slots. Like our
current design, NVM tuple allocation incurs no NVMwrites.
One problem of this approach is that we now have multiple
NVM page types for every table. To simplify the manage-
ment of NVM pages, we can use part of the 63-bit tuple ID

to include the table ID so that the tuple ID is unique across
the OLTP database. In this way, we only need to manage a
single set of NVM page types because tuples from different
tables can be mixed in the same page.
Limitations of Zen/Zen+. First, Zen/Zen+ cannot support
OLTP databases larger thanNVMmemory. It would be inter-
esting to study Zen’s optimizations to improve the 3-tier
design [46,60]. Second, a long-running read-write trans-
action may trigger the exclusive mode and delay other
transactions. It is challenging to support such transactions
well in any OLTP design. Users may be advised to rewrite
the transaction as smaller tasks for better performance. For
Zen+, the parameters of theMVCC-based adaptive execution
technique can be better tuned. However, this often requires
a good knowledge of the OLTP workload. It is interesting to
automatically tune the parameters by dynamically observing
the workload. Finally, NUMA-aware soft partition in Zen+
requires users to declare partition keys. This optimization
also relies on the identification of partition IDs for trans-
action operations. Therefore, it mainly targets short/simple
transactions.

7 Conclusion

In this paper, we study the OLTP engine design for NVM
memory. After examining the existing OLTP engine designs
forNVM,we find three design challenges: (i) Tuplemetadata
modifications, (ii) NVM write redundancy, and (iii) NVM
space management. We propose Zen, a high-throughput
log-free OLTP engine for NVM. Zen employs three novel
techniques to reduceNVMoverhead, namely theMet-Cache,
log-free persistent transactions, and light-weight NVMspace
management. Moreover, we propose Zen+, which extends
Zen with MVCC-based adaptive execution and NUMA-
aware soft partition to robustly and effectively support
long-running transactions and NUMA architectures. Experi-
mental results on a real machine equipped with Intel Optane
DC Persistent Memory show that Zen achieves 1.0x-10.1x
improvements over existing NVM-based designs for YCSB
and TPCC benchmarks. The recovery time of Zen is on the
order of a few seconds for a database of a few hundred GB
in size. Moreover, experimental results also show that Zen+
supports both read-only and read-write long-running trans-
actions with reasonable cost. NUMA-Aware soft partition
adapts to workloads and achieves the performance close to
the local NUMA setting. In conclusion, we believe Zen/Zen+
is a viable solution to support OLTP transactions in NVM-
based system.

Acknowledgements This work is partially supported by National Key
R&DProgramofChina (2018YFB1003303) andNatural Science Foun-
dation of China (62172390). Shimin Chen is the corresponding author.

123

Zen+: a robust NUMA-aware OLTP engine optimized for non-volatile main memory 147

References

1. Intel Optane DC persistent memory architecture and technol-
ogy. https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html (2019)

2. TPC benchmark C. http://www.tpc.org/tpcc/ (2020)
3. Apalkov,D., Khvalkovskiy,A.,Watts, S., Nikitin, V., Tang,X., Lot-

tis, D., Moon, K., Luo, X., Chen, E., Ong, A., Driskill-Smith, A.,
Krounbi, M.: Spin-transfer torque magnetic random access mem-
ory (STT-MRAM). ACM J. Emerg. Technol. Comput. Syst. 9(2),
1–35 (2013)

4. Arulraj, J., Levandoski, J.J., Minhas, U.F., Larson, P.: Bztree: A
high-performance latch-free range index for non-volatile memory.
Proc. VLDB Endow. 11(5), 553–565 (2018)

5. Arulraj, J., Pavlo, A., Dulloor, S.: Let’s talk about storage &
recovery methods for non-volatile memory database systems. In:
Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, pp. 707–722. Melbourne, Victoria, Aus-
tralia, 31 May–4 June (2015)

6. Arulraj, J., Perron, M., Pavlo, A.: Write-behind logging. Proc.
VLDB Endow. 10(4), 337–348 (2016)

7. Bernstein, P.A., Goodman, N.: Concurrency control in distributed
database systems. ACM Comput. Surv. 13(2), 185–221 (1981)

8. Blagodurov, S., Zhuravlev, S., Dashti, M., Fedorova, A.: A case
for numa-aware contention management on multicore systems. In:
2011 USENIX Annual Technical Conference. 15-17 June, Port-
land, OR, USA, (2011)

9. Böttcher, J., Leis, V., Neumann, T., Kemper, A.: Scalable garbage
collection for in-memory MVCC systems. Proc. VLDB Endow.
13(2), 128–141 (2019)

10. Cao, T., Salles, M.A.V., Sowell, B., Yue, Y., Demers, A.J., Gehrke,
J.,White,W.M.: Fast checkpoint recovery algorithms for frequently
consistent applications. In: Proceedings of the ACM SIGMOD
International Conference onManagement of Data, SIGMOD2011,
pp. 265–276, Athens, Greece, 12-16 June, (2011)

11. Chen, S., Gibbons, P.B., Nath, S.: Rethinking database algorithms
for phase change memory. In: CIDR 2011, Fifth Biennial Confer-
ence on Innovative Data Systems Research. pp. 21–31, Asilomar,
CA, USA, 9-12 January, Online Proceedings, (2011)

12. Chen, S., Jin, Q.: Persistent b+-trees in non-volatile main memory.
Proc. VLDB Endow. 8(7), 786–797 (2015)

13. Coburn, J., Caulfield, A.M., Akel, A., Grupp, L.M., Gupta, R.K.,
Jhala, R., Swanson, S.: Nv-heaps: making persistent objects fast
and safe with next-generation, non-volatile memories. In: Proceed-
ings of the 16th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS
2011, Newport Beach, pp. 105–118, CA, USA, 5-11March, (2011)

14. Condit, J., Nightingale, E.B., Frost, C., Ipek, E., Lee, B.C., Burger,
D., Coetzee, D.: Better I/O through byte-addressable, persistent
memory. In: Proceedings of the 22nd ACM Symposium on Oper-
ating Systems Principles 2009, SOSP 2009, Big Sky, pp. 133–146,
Montana, USA, 11-14 October, (2009)

15. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.:
Benchmarking cloud serving systems with YCSB. In: Proceedings
of the 1st ACM Symposium on Cloud Computing, SoCC 2010,
Indianapolis, pp. 143–154, Indiana, USA, 10-11 June, (2010)

16. DeWitt, D.J., Katz, R.H., Olken, F., Shapiro, L.D., Stonebraker,
M., Wood, D.A.: Implementation techniques for main memory
database systems. In: SIGMOD’84, Proceedings of Annual Meet-
ing. pp. 1–8, Boston, Massachusetts, USA, 18-21 June, (1984)

17. Diaconu, C., Freedman, C., Ismert, E., Larson, P., Mittal, P.,
Stonecipher, R., Verma, N., Zwilling, M.: Hekaton: SQL server’s
memory-optimized OLTP engine. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIG-

MOD 2013, pp. 1243–1254 New York, NY, USA, 22-27 June,
(2013)

18. Eswaran, K.P., Gray, J., Lorie, R.A., Traiger, I.L.: The notions of
consistency and predicate locks in a database system. Commun.
ACM 19(11), 624–633 (1976)

19. Fang, R., Hsiao, H., He, B., Mohan, C., Wang, Y.: High perfor-
mance database logging using storage class memory. In: Proceed-
ings of the 27th International Conference on Data Engineering,
ICDE 2011, pp. 1221–1231, 11-16 April, Hannover, Germany,
(2011)

20. Gao, S., Xu, J., Härder, T., He, B., Choi, B., Hu, H.: Pcmlogging:
Optimizing transaction logging and recovery performance with
PCM. IEEE Trans. Knowl. Data Eng. 27(12), 3332–3346 (2015)

21. Graham, D.H.: Intel optane technology products - what’s available
and what’s coming soon. https://software.intel.com/en-us/articles/
3d-xpointtechnology-products (2019)

22. Hasanzadeh-Mofrad,M.,Melhem,R.G.,Ahmad,M.Y.,Hammoud,
M.: Graphite: A numa-awareHPC system for graph analytics based
on a new MPI * X parallelism model. Proc. VLDB Endow. 13(6),
783–797 (2020)

23. Haubenschild, M., Sauer, C., Neumann, T., Leis, V.: Rethinking
logging, checkpoints, and recovery for high-performance storage
engines. In: Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, online confer-
ence, pp. 877–892 [Portland, OR, USA], 14-19 June, (2020)

24. Huang, J., Schwan, K., Qureshi, M.K.: Nvram-aware logging in
transaction systems. Proc. VLDB Endow. 8(4), 389–400 (2014)

25. Kim, J., Cho, H., Kim, K., Yu, J., Kang, S., Jung, H.: Long-
lived transactions made less harmful. In: Proceedings of the 2020
International Conference on Management of Data, SIGMODCon-
ference 2020, online conference, pp. 495–510 [Portland, OR,
USA], 14-19 June, (2020)

26. Kim, W., Kim, J., Baek, W., Nam, B., Won, Y.: NVWAL: exploit-
ing NVRAM in write-ahead logging. In: Proceedings of the
Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS
2016, pp. 385–398, Atlanta, GA, USA, 2-6 April, (2016)

27. Kimura, H.: FOEDUS: OLTP engine for a thousand cores and
NVRAM. In: Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data, Melbourne, pp.
691–706 Victoria, Australia, 31 May - 4 June, (2015)

28. Kung, H.T., Robinson, J.T.: On optimisticmethods for concurrency
control. ACM Trans. Database Syst. 6(2), 213–226 (1981)

29. Lee, J., Kim, K., Cha, S.K.: Differential logging: A commutative
and associative logging scheme for highly parallel main memory
databases. In: Proceedings of the 17th International Conference on
Data Engineering, pp. 173–182, 2-6 April, Heidelberg, Germany,
(2001)

30. Lehman, T.J., Carey, M.J.: A recovery algorithm for A high-
performance memory-resident database system. In: Proceedings of
the Association for Computing Machinery Special Interest Group
on Management of Data 1987 Annual Conference, pp. 104–117,
San Francisco, CA, USA, 27-29 May, (1987)

31. Leis, V., Boncz, P.A., Kemper, A., Neumann, T.: Morsel-driven
parallelism: a numa-aware query evaluation framework for the
many-core age. In: International Conference on Management of
Data, SIGMOD 2014, pp. 743–754, Snowbird, UT, USA, 22-27
June, ACM (2014)

32. Lepers, B., Quéma, V., Fedorova, A.: Thread and memory place-
ment on NUMA systems: Asymmetry matters. In: 2015 USENIX
Annual Technical Conference, USENIX ATC ’15, pp. 277–289,
8-10 July, Santa Clara, CA, USA, (2015)

33. Lim, H., Kaminsky, M., Andersen, D.G.: Cicada: Dependably fast
multi-core in-memory transactions. In: Proceedings of the 2017
ACM International Conference onManagement of Data, SIGMOD
Conference, pp. 21–352017, Chicago, IL, USA, 14-19May, (2017)

123

https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
http://www.tpc.org/tpcc/
https://software.intel.com/en-us/articles/3d-xpointtechnology-products
https://software.intel.com/en-us/articles/3d-xpointtechnology-products

148 G. Liu et al.

34. Liu, J., Chen, S., Wang, L.: Lb+-trees: Optimizing persistent index
performance on 3dxpoint memory. Proc. VLDB Endow. 13(7),
1078–1090 (2020)

35. Liu, M., Zhang, M., Chen, K., Qian, X., Wu, Y., Zheng, W., Ren,
J.: Dudetm: Building durable transactions with decoupling for per-
sistent memory pp. 329–343 (2017)

36. Maas, L.M., Kissinger, T., Habich, D., Lehner, W.: BUZZARD:
a numa-aware in-memory indexing system. In: Proceedings of the
ACMSIGMOD International Conference onManagement of Data,
SIGMOD 2013, pp. 1285–1286, New York, NY, USA, 22-27 June,
ACM (2013)

37. Memarzia, P., Ray, S., Bhavsar,V.C.: The art of efficient in-memory
query processing on NUMA systems: a systematic approach. In:
36th IEEE International Conference on Data Engineering, ICDE
2020, pp. 781–792, Dallas, TX, USA, 20-24 April, IEEE (2020)

38. Neumann, T., Mühlbauer, T., Kemper, A.: Fast serializable multi-
version concurrency control for main-memory database systems.
In: Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, pp. 677–689, Melbourne, Victoria,
Australia, 31 May - 4 June, (2015)

39. Oukid, I., Lasperas, J., Nica, A., Willhalm, T., Lehner, W.: Fptree:
A hybrid SCM-DRAM persistent and concurrent b-tree for storage
class memory. In: Proceedings of the 2016 International Confer-
ence on Management of Data, SIGMOD Conference 2016, pp.
371–386, San Francisco, CA, USA, 26 June - 01 July, (2016)

40. Oukid, I., Lehner, W., Kissinger, T., Willhalm, T., Bumbulis, P.:
Instant recovery for main memory databases. In: Seventh Biennial
Conference on Innovative Data Systems Research, CIDR 2015,
Asilomar, CA, USA, 4-7 January, Online Proceedings (2015)

41. Pelley, S., Wenisch, T.F., Gold, B.T., Bridge, B.: Storage man-
agement in the NVRAM era. Proc. VLDB Endow. 7(2), 121–132
(2013)

42. Psaroudakis, I., Scheuer, T., May, N., Sellami, A., Ailamaki, A.:
Scaling up concurrent main-memory column-store scans: Towards
adaptive numa-aware data and task placement. Proc.VLDBEndow.
8(12), 1442–1453 (2015)

43. Psaroudakis, I., Scheuer, T., May, N., Sellami, A., Ailamaki, A.:
Adaptive numa-aware data placement and task scheduling for ana-
lytical workloads in main-memory column-stores. Proc. VLDB
Endow. 10(2), 37–48 (2016)

44. Raoux, S., Burr, G.W., Breitwisch, M.J., Rettner, C.T., Chen, Y.,
Shelby, R.M., Salinga, M., Krebs, D., Chen, S., Lung, H., Lam,
C.H.: Phase-change random access memory: A scalable technol-
ogy. IBM J. Res. Dev. 52(4–5), 465–480 (2008)

45. Ren, K., Diamond, T., Abadi, D.J., Thomson, A.: Low-overhead
asynchronous checkpointing in main-memory database systems.
In: Proceedings of the 2016 International Conference on Manage-
ment of Data, SIGMOD Conference 2016, pp. 1539–1551, San
Francisco, CA, USA, 26 June - 01 July, (2016)

46. van Renen, A., Leis, V., Kemper, A., Neumann, T., Hashida, T., Oe,
K., Doi, Y., Harada, L., Sato, M.: Managing non-volatile memory
in database systems. In: Proceedings of the 2018 International Con-
ference on Management of Data, SIGMOD Conference 2018, pp.
1541–1555, Houston, TX, USA, 10-15 June, (2018)

47. Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S.,
Hachem, N., Helland, P.: The end of an architectural era (it’s time
for a complete rewrite). In: Proceedings of the 33rd International
Conference on Very Large Data Bases, University of Vienna, pp.
1150–1160, Austria, 23-27 September, (2007)

48. Tu, S., Zheng, W., Kohler, E., Liskov, B., Madden, S.: Speedy
transactions in multicore in-memory databases. In: ACM SIGOPS
24th Symposium on Operating Systems Principles, SOSP ’13, pp.
18–32, Farmington, PA, USA, 3-6 November, (2013)

49. Volos, H., Tack, A.J., Swift, M.M.: Mnemosyne: lightweight
persistent memory. In: Proceedings of the 16th International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2011, pp. 91–104, Newport Beach,
CA, USA, 5-11 March, (2011)

50. Wang, T., Johnson, R.: Scalable logging through emerging non-
volatile memory. Proc. VLDB Endow. 7(10), 865–876 (2014)

51. Wang, T., Kimura, H.: Mostly-optimistic concurrency control for
highly contended dynamic workloads on a thousand cores. Proc.
VLDB Endow. 10(2), 49–60 (2016)

52. Wang, Y., Jiang, D., Xiong, J.: Numa-aware thread migration for
high performance nvmmfile systems. In: 36th SymposiumonMass
Storage Systems and Technologies, MSST 2020, Santa Clara, CA,
USA, 29-30 October, (2020)

53. Xia, F., Jiang, D., Xiong, J., Sun, N.: Hikv: A hybrid index key-
value store for DRAM-NVMmemory systems. In: 2017 USENIX
Annual Technical Conference, USENIX ATC 2017, pp. 349–362,
Santa Clara, CA, USA, 12-14 July, (2017)

54. Yang, J., Wei, Q., Chen, C., Wang, C., Yong, K.L., He, B.: Nv-tree:
Reducing consistency cost for nvm-based single level systems. In:
Proceedings of the 13th USENIX Conference on File and Storage
Technologies, FAST 2015, pp. 167–181, Santa Clara, CA, USA,
16-19 February, (2015)

55. Yang, J.J., Williams, R.S.: Memristive devices in computing sys-
tem: Promises and challenges. ACM J. Emerg. Technol. Comput.
Syst. 9(2), 11:1-11:20 (2013)

56. Yu, X., Bezerra, G., Pavlo, A., Devadas, S., Stonebraker, M.: Star-
ing into the abyss: An evaluation of concurrency control with one
thousand cores. Proc. VLDB Endow. 8(3), 209–220 (2014)

57. Yu, X., Pavlo, A., Sánchez, D., Devadas, S.: Tictoc: Time travel-
ing optimistic concurrency control. In: Proceedings of the 2016
International Conference on Management of Data, SIGMODCon-
ference 2016, pp. 1629–1642, San Francisco, CA, USA, 26 June -
01 July, (2016)

58. Zhang, H., Andersen, D.G., Pavlo, A., Kaminsky, M., Ma, L.,
Shen, R.: Reducing the storage overhead of main-memory OLTP
databases with hybrid indexes. In: Proceedings of the 2016 Interna-
tional Conference on Management of Data, SIGMOD Conference
2016, pp. 1567–1581, San Francisco, CA, USA, 26 June - 01 July,
(2016)

59. Zheng, W., Tu, S., Kohler, E., Liskov, B.: Fast databases with fast
durability and recovery through multicore parallelism. In: 11th
USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI ’14, pp. 465–477, Broomfield, CO, USA, 6-8
October, (2014)

60. Zhou, X., Arulraj, J., Pavlo, A., Cohen, D.: Spitfire: A three-tier
buffer manager for volatile and non-volatile memory. In: SIGMOD
’21: International Conference on Management of Data, Virtual
Event, pp. 2195–2207, China, 20–25 June (2021)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Zen+: a robust NUMA-aware OLTP engine optimized for non-volatile main memory
	Abstract
	1 Introduction
	2 Background and motivation
	2.1 NVM characteristics
	2.2 OLTP in main memory databases
	2.3 Existing OLTP engine designs for NVM
	2.4 Design challenges

	3 Zen design
	3.1 Design overview
	3.2 Metadata-enhanced tuple cache
	3.3 Log-free persistent transactions
	3.3.1 Normal processing
	3.3.2 Flexible support for wide varieties of concurrency control methods
	3.3.3 Crash recovery without logs
	3.3.4 Optimization for accessing multiple tables

	3.4 Lightweight NVM space management

	4 Zen+: Improving robustness of Zen
	4.1 Support for long-running transactions
	4.1.1 Challenges
	4.1.2 Our solution: MVCC-based adaptive execution

	4.2 Support for NUMA architectures
	4.2.1 Background
	4.2.2 Our design: NUMA-aware soft partition

	5 Evaluation
	5.1 Experimental setup
	5.2 Transaction performance
	5.2.1 YCSB performance
	5.2.2 TPCC performance

	5.3 Recovery performance
	5.4 Wide applicability to concurrency control methods
	5.5 Support for long-running transactions
	5.6 Support for NUMA architecture

	6 Discussion
	7 Conclusion
	Acknowledgements
	References

