
Database-Centric Programming for
Wide-Area Sensor Systems

Shimin Chen1, Phillip B. Gibbons2, and Suman Nath1,2

1 Carnegie Mellon University
{chensm,sknath}@cs.cmu.edu

2 Intel Research Pittsburgh
phillip.b.gibbons@intel.com

Abstract. A wide-area sensor system is a complex, dynamic, resource-rich col-
lection of Internet-connected sensing devices. In this paper, we propose X-Tree
Programming, a novel database-centric programming model for wide-area sen-
sor systems designed to achieve the seemingly conflicting goals of expressive-
ness, ease of programming, and efficient distributed execution. To demonstrate
the effectiveness of X-Tree Programming in achieving these goals, we have in-
corporated the model into IrisNet, a shared infrastructure for wide-area sensing,
and developed several widely different applications, including a distributed in-
frastructure monitor running on 473 machines worldwide.

1 Introduction
A wide-area sensor system [2, 12, 15, 16] is a complex, dynamic, resource-rich collec-
tion of Internet-connected sensing devices. These devices are capable of collecting high
bit-rate data from powerful sensors such as cameras, microphones, infrared detectors,
RFID readers, and vibration sensors, and performing collaborative computation on the
data. A sensor system can be programmed to provide useful sensing services that com-
bine traditional data sources with tens to millions of live sensor feeds. An example of
such a service is a Person Finder, which uses cameras or smart badges to track people
and supports queries for a person’s current location. A desirable approach for develop-
ing such a service is to program the collection of sensors as a whole, rather than writing
software to drive individual devices. This provides a high level abstraction over the
underlying complex system, thus facilitating the development of new sensing services.

Recent studies [6, 11, 14, 18, 19, 32] have shown that declarative programming via
a query language provides an effective abstraction for accessing, filtering, and process-
ing sensor data. While their query interface is valuable, these models are tailored to
resource-constrained, local-area wireless sensor networks [6, 14, 18, 19, 32] or provide
only limited support, if any, for installing user-defined functions on the fly [6, 11, 18,
19, 32]. As a result, the programming models are overly restrictive, inefficient, or cum-
bersome for developing services on resource-rich, wide-area sensor systems. For exam-
ple, consider a wide-area Person Finder service that for update scalability, stores each
person’s location in a database nearby that location, for retrieval only on demand. To
enable efficient search queries, the data can be organized into a location hierarchy with
filters associated with each node of the hierarchy. These filters summarize the list of
people currently within the node’s subtree and are used to limit the scope of a search by
checking the filters. Programming such filters, associating them with (all or parts of) a

logical/semantic hierarchy, installing them on the fly, and using them efficiently within
queries are not all supported by these previous models. Similarly, declarative program-
ming models designed for wide-area, resource-rich distributed monitoring systems [12,
28, 31] do not support all these features.

In this paper, we present a novel database-centric approach to easily program-
ming a large collection of sensing devices. The general idea is to augment the valu-
able declarative interface of traditional database-centric solutions with the ability to
perform more general purpose computations on logical hierarchies. Specifically, ap-
plication developers can write application-specific code, define on-demand (snapshot)
and continuous (long-running) states derived from sensor data, associate the code and
states with nodes in a logical hierarchy, and seamlessly combine the code and states
with a standard database interface. Unlike all the above models (except for our earlier
work [11]) that use a flat relational database model and SQL-like query languages, we
use instead the XML hierarchical database model. Our experience in building wide-
area sensing services shows that it is natural to organize the data hierarchically based
on geographic/political boundaries (at least at higher levels of the hierarchy), because
each sensing device takes readings from a particular physical location and queries tend
to be scoped by such boundaries [13]. A hierarchy also provides a natural way to name
the sensors and to efficiently aggregate sensor readings [11]. Moreover, we envision
that sensing services will need a heterogeneous and evolving set of data types that are
best captured using a more flexible data model, such as XML. This paper shows how to
provide the above features within the XML data model.

We call our programming model X-Tree Programming (or X-Tree in short) because
of its visual analogy to an Xmas tree: The tree represents the logical data hierarchy of
a sensing service, and its ornaments and lights represent derived states and application-
specific codes that are executed in different parts of the hierarchy. Sensor data of a
sensing service is stored in a single XML document which is fragmented and distributed
over a potentially large number of machines. Xpath (a standard query language for
XML) is used to access the document as a single queriable unit. With X-Tree, user-
provided code and derived states can be seamlessly incorporated into Xpath queries.

There are three main contributions of this paper. First, we propose X-Tree Program-
ming, a novel database-centric programming model for wide-area sensor systems. Our
X-Tree solution addresses the challenge of finding a sweet spot among three important,
yet often conflicting, design goals: expressiveness, ease of programming, and efficient
distributed execution. As we will show in Section 2, achieving these three goals in the
same design is difficult. X-Tree’s novelty comes from achieving a practical balance
between these design goals, tailored to wide-area sensor systems. Second, we present
important optimizations within the context of supporting X-Tree that reduce the com-
putation and communication overheads of sensing services. Our caching technique, for
example, provably achieves a total network cost no worse than twice the cost incurred
by an optimal algorithm with perfect knowledge of the future. Third, we have imple-
mented X-Tree within IrisNet [2, 11, 13], a shared infrastructure for wide-area sensing
that we previously developed. We demonstrate the effectiveness of our solution through
both controlled experiments and real-world applications on IrisNet, including a pub-
licly available distributed infrastructure monitor application that runs on 473 machines
worldwide. A rich collection of application tasks were implemented quickly and exe-

Tree Representation:
<Country id="USA">

<Region id="East">
<Site id="CMU">

<Host id="CMU2">

... ...

</Site>
</Region>

</Country>
</PlanetLab>

... ...
... ...

... ...</Host>

<User id="user1" memUsage="20MB"/>

France ChinaUSA

West MiddleEast

MIT HarvardCMU

CMU1 CMU3CMU2

user1 user3user2

PlanetLab

Country

Region

Site

Host

User

<PlanetLab>

Fig. 1. An XML document representing IrisLog’s logical hierarchy

cute efficiently, highlighting the expressibility, ease of programming, and efficient dis-
tributed execution that X-Tree provides.

The rest of the paper is organized as follows. Section 2 examines two application
examples, describes the challenges and overviews our solution. After Section 3 pro-
vides background information, Section 4 illustrates the programming interface, Sec-
tion 5 describes our system support for distributed execution, and Section 6 discusses
optimizations. Our experimental evaluation is in Section 7. Section 8 discusses related
work. Finally, Section 9 concludes the paper.

2 Example Applications, Challenges, and Our Solution
This section describes two representative wide-area sensing services (we use service
and application interchangeably) that we aim to enable. (Additional examples can be
found in [8]). We highlight the desirable properties of an enabling programming model,
challenges in achieving them, and our solution.

2.1 Applications
Person Finder. A person finder application keeps track of the people in a campus-like
environment (e.g., a university campus) and supports queries for the current location
of a person or the current occupants of a room. The application uses sensors like cam-
eras, microphones, smart-badges, etc. along with sophisticated software (e.g., for face
or voice recognition) to detect the current location of a person. For scalability, it is im-
portant that the sensor data is stored near their sources (i.e., stored by location) and is
retrieved only on-demand. One way to implement this application would be to maintain
a distributed database of all the people currently at each location. A query for some
person would then perform a brute force search of the entire database; such a query
would suffer from both a slow response time and high network overhead. A far more
efficient implementation would organize the distributed database as a location hierarchy
(e.g., the root of the hierarchy is the university, and the subsequent levels are campus,
building, floor, and room) and then prune searches by using approximate knowledge of
people’s current locations. Such pruning can be implemented by maintaining a Bloom
filter (a compressed bit vector representation of a set—similar to [23]) at every inter-
mediate node of the hierarchy, representing the people currently within that part of the
location hierarchy.

Infrastructure Monitor. A distributed infrastructure monitor [1] uses software sen-
sors [24] to collect useful statistics (e.g., CPU load, available network bandwidth) on

the infrastructure’s host machines and communication network, and supports queries on
that data. One way to scale such an application to a large number of hosts is to hierar-
chically organize the data. Figure 1 (right) shows part of the hierarchy used by IrisLog,
an infrastructure monitoring service deployed on 473 hosts in PlanetLab [3]. Infrastruc-
ture administrators would like to use such an application to support advanced database
operations like continuous queries and distributed triggers. Moreover, they would like
to dynamically extend the application by incorporating new sensors, new sensor feed
processing, and new aggregation functions, as needs arise.

2.2 Design Goals and Challenges

A programming model suitable for the above applications should have the following
properties. First, it should have sufficient expressive power so that application code can
use arbitrary sensor data and perform a rich set of combinations and computations on
that data. For example, applications may perform complex tasks (e.g., face recognition)
on complex data types (e.g., images), and/or combine application-specific states (e.g.,
Bloom filters) with standard database queries. Second, the model should support effi-
cient distributed execution of application code, executing a piece of computation close
to the source of the relevant data items. This exploits concurrency in the distributed en-
vironment, and saves network bandwidth because intermediate results (e.g., the location
of a person) tend to be much smaller than raw inputs (e.g., images of the person). Fi-
nally, the model should be easy to use, minimizing the effort of application developers.
Ideally, a developer needs to write code only for the core functions of the application.
For example, suppose she wants to periodically collect a histogram of the resource us-
age of different system components, but the infrastructure monitor currently does not
support computing histograms. Then it is desirable that she needs to write only the
histogram computing function, and have it easily incorporated within the monitor.

While achieving any one of the above goals is easy, it is challenging to achieve all
three in a single design. For example, one way to provide sufficient expressive power
is to enable collecting all relevant data items in order to perform centralized process-
ing, and using application code to maintain states (e.g., Bloom filters) outside of the
database. However, this approach not only rules out distributed execution, but it re-
quires developers to integrate outside states into query processing—a difficult task. To
understand the difficulty, consider the Bloom filters in the person finder application. To
employ pruning of unnecessary searches, an application developer would have to write
code to break a search query into three steps: selecting the roots of subtrees within the
hierarchy for which Bloom filters are stored using the database, checking the search
key against the Bloom filters outside of the database, and then recursively searching
any qualified subtrees again using the database. This is an onerous task.

Similarly, consider the goal of efficient distributed execution. Distributed execution
of aggregation functions (mainly with an SQL-style interface) has been studied in the
literature [4, 14, 18]. The approach is to implement an aggregation function as a set
of accessor functions (possibly along with user-defined global states) and to distribute
them. However, it is not clear how to distribute application code for a large variety
of possible application tasks that may access and combine arbitrary data items and
application-specific states. For example, under the existing approaches, it is difficult to
associate user-defined states (e.g. filters) with subsets of sensor readings. One could

argue that application developers should implement all aspects of the distributed exe-
cution of their code. However, this approach requires developers to track the physical
locations of stored sensor data and manage network communications, thus violating the
goal of ease of programming.

2.3 Our Solution
We observe that although there are a large variety of possible application tasks, many
tasks perform similar kinds of computations. For example, a common computation
paradigm is to combine a list of sensor inputs of the same type (e.g., numeric values)
to generate a single result (e.g., a histogram). Other common computation paradigms
include (1) computing multiple aggregates from the same set of data sources, and (2)
performing a group-by query, i.e., grouping data into classes and computing the same
aggregate for each class (e.g., computing the total CPU usage on all the machines in
a shared infrastructure for every user). Therefore, our strategy is to provide a higher
level of automation for common computation paradigms. In this regard, we are similar
to previous approaches [4, 14, 18].

As mentioned in Section 1, X-Tree employs XML to organize data into a logical
hierarchy, and the Xpath query language for querying the (distributed) XML database,
and hence requires techniques suitable for a hierarchical data model, unlike previous
approaches. To enable user-defined computations with XML and Xpath, it provides
two components. First, for common computation paradigms, X-Tree provides a stored
function component with a simple Java programming interface and extends the Xpath
function call syntax for implementing and invoking application code. Our implementa-
tion of X-Tree (denoted the X-Tree system) automatically distributes the execution of
this application code. Second, X-Tree provides a stored query component that allows
application developers to define derived states and to associate Xpath queries and appli-
cation codes with XML elements. In this way, developers can guide the distribution of
their code in the logical hierarchy of an XML document for arbitrary application tasks,
without worrying about the physical locations of sensor data and or any needed network
communication. Note that the physical locations of the sensor data can change over time
(e.g., for the underlying system’s load balancing, caching, etc.). Our implementation of
X-Tree works regardless of these dynamics and hides them from developers.

3 Background: XML Model and Distributed Query Processing
An XML document defines a tree: Each XML element (tag-pair, e.g., <PlanetLab>,
</PlanetLab>) is a tree node, and its nested structure specifies parent-child relation-
ships in the tree. Every XML element has zero or more attributes, which are name-value
pairs. Figure 1 illustrates the XML document representing the logical hierarchy in Iris-
Log. The root node is PlanetLab. It has multiple country elements as child nodes, which
in turn are parents of multiple region elements, and so on. The leaf nodes represent user
instances on every machine.

We can use Xpath path expressions to select XML elements (nodes) and attributes.
In Xpath, “/” denotes a parent-child relationship, “//” an ancestor-descendant rela-
tionship, and “@” denotes an attribute name instead of an XML element name. For
example, /PlanetLab/Country[@id="USA"] selects the USA subtree. An individ-
ual sensor reading, which is usually stored as a leaf attribute, can be selected with

the whole path from root. //User[@id="Bob"]/@memUsage returns Bob’s memory
usage on every machine that he is using, as a list of string values. In order to com-
pute the total memory usage of Bob, we can use the Xpath built-in function “sum”:
sum(//User[@id="Bob"]/@memUsage). However, the handful of built-in functions
hardly satisfy all application needs, and the original centralized execution mode sug-
gested in the Xpath standard is not efficient for wide-area sensor systems.

IrisNet [2, 11, 13] supports distributed execution of Xpath queries, excluding func-
tions. We highlight some of the features of IrisNet that are relevant to this paper; our
description is simplified, omitting various IrisNet optimizations–see [11, 13] for further
details. Sensor data of a service is conceptually organized into a single XML docu-
ment, which is distributed across a number of host machines, with each host holding
some fragment of the overall document. Sensing devices, which may also be hosts of
XML fragments, process/filter sensor inputs to extract the desired data, and send update
queries to hosts that own the data. Each fragment contains specially marked dummy el-
ements, called boundary elements, which indicate that the true element (and typically
its descendant elements) reside on a different host. IrisNet requires an XML element to
have an id attribute unique among its siblings. Therefore, an element can be uniquely
identified by the sequence of id attributes along the path from itself to the document
root. This sequence is registered as a DNS domain entry, for routing queries.

To process an XML query, IrisNet extracts the longest query prefix with id attribute
values specified and constructs an id sequence. Then, it performs a DNS lookup and
sends the query to the host containing the element specified by the prefix; this host
is called the first-stop host. The query is evaluated against the host’s local fragment,
taking into account boundary elements. In particular, if evaluating the query requires
visiting an element x corresponding to a boundary element, then a subquery is formed
and sent to a host storing x. Each host receiving a subquery performs the same local
query evaluation process (including recursively issuing further subqueries), and then
returns the results back to the first-stop host. When all the subquery results have been
incorporated into the host’s answer, this answer is returned.

In the following, we describe X-Tree Programming within the context of IrisNet.
However, we point out that our solution is applicable in any XML-based database-
centric approach that supports in-network query processing.

4 X-Tree Programming
This section describes the two components of X-Tree, stored functions and stored queries,
for efficiently programming wide-area sensing services.

4.1 Stored Functions
The stored function component incorporates application-specific code. Its programming
interface is shown in Figure 2. A stored function can be invoked the same way as a built-
in function in a user query, as shown in Figure 2(a). The colon separated function name
specifies the Java class and the method major name of the application code. The seman-
tics is that the Input XPATH expression selects a list of values from the XML document,
the values (of type String or Node, but not both) are passed to the stored function as in-
puts, and the function output is the result of the invocation. Optional arguments to a

init init init init init

compute compute

init
compute
final

myClass:mySF (Input_XPATH, arg0, arg1, . . .)

compute

final

arg0, arg1: args[]
output from
final

execution of the three methods to relevant hosts

myClass:mySF (Input_XPATH, arg0, arg1)

Input_XPATH: val

implement
App developers

(a) User query interface to invoke a stored function:

myClass {

}

mySF_init

)

(TYPE val, String[] args)

)

(c) Full picture:

The X−Tree system automatically distributes the

(b) Developers implement three methods for the stored function:
class

// if Input_XPATH selects attributes, then is

// convert an XPATH output value into intermediate format.

// merging them into a single intermediate value.
// perform computation on a set of intermediate values

String

String mySF_compute (String[]midVals, String[] args

String mySF_final (String midVal, String[] args

TYPE

// generate the query result from an intermediate value.

String
NodeTYPE// if Input_XPATH selects nodes, then is

Fig. 2. Stored function programming interface

String (histogram_init String val, String[] args)

String histogram_compute (String[] midVals, String[] args)

String (Stringhistogram_final midVal, String[] args)

// merge multiple intermediate histograms given by midVals[] by summing up the counts of corresponding buckets.

// determine bucket B for val, create an intermediate histogram with B’s count set to 1 and all other counts set to 0.

// generate the query result from the final intermediate histogram.

myClass:histogram (Input_XPATH, "bucket boundary 0", "bucket boundary 1", ...)
// A set of numeric values is selected to compute the histogram.

class myClass { // args[] specifies the histogram bucket boundaries.

}

Fig. 3. Implementation of a histogram aggregate

stored function are typically constant parameters, but can be any Xpath expressions
returning a single string value.

As shown in Figure 2(b), application developers implement three Java methods for
a stored function: init, compute, and final, which enable the decomposition of the stored
function computation into a series of calls to the three methods. For each output value of
the Input XPATH expression, the init method is called to generate an intermediate value.
Intermediate values are merged by the compute method until a single intermediate value
is left, which is then converted to the query result by the final method. The args array
contains the values of the arguments in the query. As shown in Figure 2(c), our X-Tree
system automatically performs this decomposition and distributes the execution of the
methods to relevant hosts where the data are located.3

Stored functions support the ability to perform computation on a single list of val-
ues selected by an Xpath query. Examples are numeric aggregation functions, such as
sum, histogram, and variance, and more complex functions, such as stitching a set of
camera images into a panoramic image [8]. Figure 3 illustrates the implementation of
a histogram aggregate. Here, the Input XPATH query selects attributes and thus the init
method uses String as the type of its first parameter. However, because arbitrary data
structures can be encoded as Strings, the interface is able to handle complex inputs,
such as images.

3 For stored functions (e.g. median) that are difficult to decompose, application developers can
instead implement a local method which performs centralized computation.

foo

stored_query foo

stored_query

@bar
<foo>

query ="any xpath within foo’s subtree"

</foo>

<stored_query name="bar"

type ="on−demand/continuous"
mode ="polling/triggered if continuous"

(a) Application developers insert a stored query to node foo

period="xxx ms if continuous" />

add a stored query
to node foo

foo //foo/stored_query[@name="bar"]

(b) Invoke an on−demand stored query.

// Application developers
// can use continuous queries
// to maintain application−
// specific states

(c) The X−Tree system maintains the result of
a continuous query as a computed attribute

Fig. 4. Defining and using stored queries

Compared to previous approaches for decomposing aggregation functions [4, 18],
our approach supports more complex inputs. For example, it allows computing func-
tions not just on values but also on XML nodes (Node as input type), which may con-
tain multiple types of sensor readings collected at the same location (e.g. all kinds of
resource usage statistics for a user instance on a machine). This improves the expres-
siveness of the query language; for example, several common computation paradigms
(e.g., computing multiple aggregates from the same set of data sources, and performing
group-by operations, as described in Section 6) can be specified within a given Node
context of the logical hierarchy.

4.2 Stored Queries
Stored queries allow application developers to associate derived states with XML ele-
ments in a logical hierarchy. Naturally, states derived from a subset of sensor readings
can be associated with the root of the smallest subtree containing all the readings.

These derived states can be either maintained automatically by our system or com-
puted on demand when used in queries. As shown in Figure 4(a), application developers
define a stored query by inserting a stored query sub-node into an XML element. The
stored query has a name unique within the XML element. The query string can be any
Xpath query. In particular, it can be a stored function invocation, and therefore devel-
opers can associate application codes with logical XML elements.

Figure 4(b) shows how to invoke an on-demand stored query. For each foo element,
our system retrieves the stored query string. Then it executes the specified query within
the context of the subtree rooted at the parent XML element (e.g., the foo element).

For a continuous stored query, several additional attributes need to be specified, as
shown in Figure 4(a). The query can be either in the polling mode or in the triggered
mode. When the query is in the polling mode, the X-Tree system runs the query peri-
odically regardless of whether or not there is a data update relevant to the query. When
the query is in the triggered mode, the system recomputes the query result only when
a relevant XML attribute is updated. As shown in Figure 4(c), the result of a continu-
ous query is stored as a computed attribute in the database, whose name is the same as
the stored query name. A computed attribute can be used in exactly the same way as
a standard XML attribute. When adding a stored query, developers can also specify a
duration argument. The X-Tree system automatically removes expired stored queries.

To support continuous stored queries, we implemented a continuous query scheme
similar to those in Tapestry [27], NiagaraCQ [7], and Telegraph CACQ [20]. However,

what is important for developers is that they can seamlessly use application-specific
states in any queries, including stored function invocations and other stored query dec-
larations, thus simplifying application programming.

4.3 Bottom-up Composition of Application Tasks
Combining stored functions and stored queries, our solution supports bottom-up com-
position of application tasks that may combine arbitrary data items and application-
specific states. This is because:

– Application-specific states can be implemented as computed attributes and used in
exactly the same way as standard XML attributes.

– The Input XPATH of a stored function may be an on-demand stored query invoca-
tion; in other words, an on-demand stored query higher in the XML hierarchy may
process results of other on-demand stored queries defined lower in the XML hier-
archy. This gives application developers the power to express arbitrary bottom-up
computations using any data items in an XML document.

X-Tree Programming saves developers considerable effort. Developers need not
worry about unnecessary details, such as the physical locations of XML fragments, net-
work communications, and standard database operations. They can simply write code as
stored functions and invoke stored functions in any user query. They can also associate
derived states with any logical XML elements without worrying about the computation
and/or maintenance of the states.

5 Automatically Distributed Execution of Application Code

Stored functions and stored queries can be dynamically added into applications. Devel-
opers upload their compiled Java code to a well-known location, such as a web direc-
tory. When a stored function invocation (or subquery) is received at a host machine, the
X-Tree system will load the code from the well-known location to the host.

Given a stored function invocation, the X-Tree system automatically distributes the
execution of the init, compute, and final methods to the relevant hosts where the data
are located. The idea is to call the accessor methods along with the evaluation of the
Input XPATH query, which selects the input data.

As shown in Figure 5(a), the stored function invocation is sent to the first-stop host
of the Input XPATH query (hosting the leftmost fragment in the figure). The system
employs the standard query processing facility (in our case, provided by IrisNet) to
evaluate the Input XPATH query against the local XML fragment. As shown in Fig-
ure 5(b), the results of querying the local fragment mainly consist of two parts: i) local
input data items (squares in the figure), and ii) boundary elements (triangles in the fig-
ure) representing remote fragments that may contain additional input data.

Next, the system composes a remote subquery for every boundary element, as
shown in the shaded triangles in Figure 5(b). There are two differences between a re-
mote subquery and the original stored function invocation. First, the function name is
appended with a special suffix to indicate that an intermediate value should be returned.
Second, a subXPATH query is used for the remote fragment. Note that the latter is

i i

c

ii i

c

i i

c

c

f

result

local values

init + compute remote query

(subXPATH2, arg0, ...)
myClass:mySF_midVal

remote query

myClass:mySF_midVal
(subXPATH1, arg0, ...)

compute

final

query

A document
fragment

(b) Evaluating the stored function at the first−stop hostthe stored function to where data is located
(a) The X−Tree system distributes the execution of

i: init c:compute f:final

Results of evaluating
Input_XPATH on the
local XML fragment

selected data item
boundary element

Fig. 5. Automatically distributed execution for myClass:mySF(Input XPATH, arg0, ...)

obtained using the standard distributed query facility. The system then sends the sub-
queries to the remote fragments, which recursively perform the same operations. In the
meantime, the system uses the init and compute methods to obtain a single intermediate
value from the local data items.

Finally, when the intermediate results of all the remote subqueries are received, the
system calls the compute method to merge the local result and all the remote results into
a final intermediate value, and calls the final method to obtain the query result.

In summary, the X-Tree system automatically distributes the execution of stored
functions to where the data are located for good performance. This scheme works re-
gardless of the (dynamic) fragmentation of an XML document among host machines.

In addition to the above mechanism, application developers can use stored queries to
guide the distributed execution of their code. They can define at arbitrary logical XML
nodes stored queries that invoke stored functions. In this way, developers can specify the
association of application-specific code to logical nodes in the XML hierarchy. Upon a
reference of a stored query, the X-Tree system executes the stored function at the host
where the associated logical XML node is located. Moreover, the stored function calls
may in turn require results of other stored queries as input. In this way, developers can
distribute the execution of their code in the logical XML hierarchy to support complex
application tasks.

6 Optimizations
In this section, we first exploit the stored function Node interface to combine the com-
putation of multiple aggregates efficiently and to support group-by. Then we describe a
caching scheme that always achieves a total cost within twice the optimal cost.

6.1 Computing Multiple Aggregates Together and Supporting Group-By
In IrisLog, administrators often want to compute multiple aggregates of the same set of
hosts at the same time. A naive approach would be to issue a separate stored function in-
vocation for every aggregate. However, this approach uses the same set of XML nodes
multiple times, performing many duplicate operations and network communications.
Instead, like the usual mode of operation in any SQL-like language, the X-Tree system
can compute all the aggregates together in a single query through a special stored func-
tion called multi. An example query, for the total CPU usage and maximum memory

if (tolerance time has passed) {
 Y = number of distributed executions
 in the previous T time
 if (Y < K)
 distributed execution (d)
 else centralized execution (c)
}
else cache hit (h)

T<T >T<T

(a) Our algorithm assuming no future knowledge

h h...h

K queries K queries

d...dc d...dc

T

>K queries

(b) Example query patterns and choices of our algorithm

d...dc

time

Fig. 6. Optimization for caching

usage of all users across all hosts, is as follows:
myOpt:multi(//User, "sum", "cpuUsage", "max", "memUsage")

The init, compute, and final methods for multi are wrappers of the corresponding meth-
ods of the respective aggregate functions. A multi’s intermediate value contains the
intermediate values for the respective aggregate functions. Note that multi can be used
directly in any application to compute any set of aggregates.

Using similar techniques, we have also implemented an efficient group-by mecha-
nism, which provides automatic decomposition and distribution for grouping as well as
aggregate computations for each group. Please see [8] for details.

6.2 Caching for Stored Functions
In IrisNet, XML elements selected by an Xpath query are cached at the first-stop host in
hopes that subsequent queries can be answered directly from the cached data. Because
stored queries may invoke the same stored function repeatedly within a short interval,
the potential benefits of caching are large. To exploit these potential benefits, we slightly
modify our previous scheme for executing stored functions. At the first-stop (or any
subsequent) host, the system now has three strategies. The first strategy is the distributed
execution scheme as before. Because IrisNet cannot exploit cached intermediate values,
this strategy does not cache data. The second strategy is to execute the Input XPATH
query, cache all the selected XML elements locally, and execute the stored function
in a centralized manner by invoking all the methods locally. The third strategy is to
utilize existing cached data if it is not stale, and perform centralized execution without
sending subqueries, thus saving network and computation costs. Cached data becomes
stale because of updates. In IrisNet, a user query may specify a tolerance time T to limit
the staleness of cached data. Associated with a piece of cached data is its creation time
and the piece is used to answer the query only if this time is within the last T time units.

Our system has to choose one of the strategies for an incoming query. For simplicity,
we shall focus on improving network cost. Assume for a given stored function invoca-
tion, the centralized strategy costs K times as much as the distributed strategy, and the
cost of a cache hit is 0. Moreover, we assume all queries have the same tolerance time
T. This defines an optimization problem: find an algorithm for choosing the strategy to
evaluate each incoming stored function so that the total cost is minimized.

To solve this optimization problem, we propose the algorithm in Figure 6(a). This
algorithm does not require any future knowledge. It only requires the X-Tree system
to keep per-query statistics so that the Y value can be determined. An example query
pattern and the algorithm choices are shown in Figure 6(b). The algorithm performs
distributed execution for the first K queries, then centralized execution for query K +
1, followed by a period of time T during which all queries are cache hits. Then the

cached data is too stale, so the pattern repeats. An interesting, subtle variant on this
pattern is when > K consecutive queries use distributed execution (as shown in the
rightmost part of the figure). This can arise because Y is calculated over a sliding time
window. However, because the algorithm ensures that any K+1 consecutive distributed
executions occur sparsely in a longer period of time than T, it is indeed better not to
cache during these periods. We prove the following theorem in the full paper [8].

Theorem 1. The algorithm in Figure 6(a) guarantees that the total cost is within twice
the optimal cost.

7 Evaluation
We have incorporated X-Tree Programming into IrisNet, and implemented the two ap-
plications discussed in Section 2. Although the Person Finder application is only a toy
prototype, the Infrastructure Monitor application (IrisLog) has been deployed on 473
hosts in PlanetLab and has been publicly available (and in-use) since September 2003.
The rich and diverse set of application-specific functions and states used by these appli-
cations (and others we studied [8]) supports the expressive power of X-Tree. The ease
of programming using X-Tree is supported by the small amount of code for implement-
ing these applications on our system: 439 lines of code for supporting Bloom filters in
Person Finder and 84 lines of code for communicating with software sensors in IrisLog.

7.1 Controlled Experiments with Person Finder
We perform controlled experiments using the Person Finder application. For simplicity
in understanding our results, we disabled IrisNet’s caching features in all our exper-
iments. We set up an XML hierarchy with 4 campuses in a university, 20 buildings
per campus, 5 floors per building, 20 rooms per floor, and on average 2 people per
room. Every room element contains a name list attribute listing the names of the
people in the room. We distribute the database across a homogeneous cluster of seven
2.66GHz Pentium 4 machines running Redhat Linux 8.0 connected by a 100Mbps lo-
cal area network. The machines are organized into a three-level complete binary tree.
The root machine owns the university element. Each of the two middle machines owns
the campus and building elements for two campuses. Each of the four leaf machines
owns the floor and room elements for a campus. In our experiments, we issue queries
from a 550MHz Pentium III machine on our LAN and measure response times on this
machine. Every result point reported is the average of 100 measurements.

Stored Functions. In order to quantify the improvements in response times arising
from our scheme for distributed execution of stored functions, we compute an aggregate
function using two different approaches. The first approach uses the init/compute/final
programming interface, so that the computation is automatically executed in a dis-
tributed fashion. The second approach extracts all the relevant input values from the
database and performs a centralized execution4.

In order to show performance under various network conditions and application sce-
narios, we vary a number of parameters, including network bandwidth, input value size

4 We actually implemented this approach using the alternative local method in our Java pro-
gramming interface, which is equivalent to an implementation outside of the XML database
system that runs on the root machine.

100 101 102 103 104
0

5

10

15

20

25

R
es

po
ns

e
tim

e
(s

ec
on

d)

Input value size (byte)

centralized
distributed

1

3

10

30

100

300

R
es

po
ns

e
tim

e
(s

ec
on

d)

centralized
distributed

100Kbps 1Mbps 10Mbps 100Mbps
Network bandwidth

0 0.5 1 1.5 2
0

5

10

15

20

25

30

R
es

po
ns

e
tim

e
(s

ec
on

d)

Computation time for every input (ms)

centralized
distributed

(a) Response time varying (b) Response time varying (c) Response time varying
input value size network bandwidth computation time

Fig. 7. Distributed vs. centralized execution

to the stored function, and computation time of the function. The aggregation function
we use models the common behavior of numeric aggregates (such as sum and avg), i.e.
combining multiple input values into a single output value of similar size. For these
experiments, every room element in the database contains a dummy attribute and the
aggregations use this attribute. In order to make the size of input values a meaningful
parameter to change, we choose to compute bit-by-bit binary OR on all the dummy at-
tributes in the database and update every dummy attribute with a string of a given size
before each experiment.

Figure 7(a) reports the response time of the two approaches while varying the length
of every input value from 1 byte to 10,000 bytes. Centralized execution requires all
input values to be transferred, while distributed execution only transfers intermediate
results. As the input value size increases, the communication cost of the centralized
approach increases dramatically, incurring large response time increases beyond 1000B.
In contrast, distributed execution only suffers from minor performance degradations.

Figure 7(b) varies network bandwidth for the 100B points in Figure 7(a) in order
to capture a large range of possible network bandwidth conditions in real use. The true
(nominal) network bandwidth is 100Mbps. To emulate a 10Mbps network, we change
the IrisNet network communication code to send a packet 10 times so that the effective
bandwidth seen by the application is 1/10 of the true bandwidth. Similarly we send a
packet 100 and 1000 times to emulate 1Mbps and 100Kbps networks. Admittedly, this
emulation may not be 100% accurate since the TCP and IP layers still see 100Mbps
bandwidth for protocol packets. Nevertheless, we expect the experimental results to re-
flect similar trends. As shown in Figure 7(b), when network bandwidth decreases, the
performance gap between distributed and centralized execution increases dramatically.
When network bandwidth is 1Mbps or lower, which is quite likely in a wide area net-
work, distributed execution achieves over 2.5X speedups over the centralized approach.

Figure 7(c) studies the performance for computation-intensive aggregation func-
tions. To model such a function, we insert a time-consuming loop into our aggregation
function so that this loop is executed once for every input value in both the distributed
and the centralized approaches. Then we vary the total number of loop iterations so
that the whole loop takes 0, 0.5ms, 1ms, 1.5ms and 2ms, respectively, which models
increasingly computationally intensive aggregation functions. As shown in Figure 7(c),
distributed execution achieves over 1.7X speedups when the computation time is at

University Campus Building Mixed
0

1

2

3

4

5

R
es

po
ns

e
tim

e
(s

ec
)

LCA level

brute force search
prune with stored queries

Fig. 8. Pruning vs. brute force

Site Region Country Global
0

5

10

15

R
es

po
ns

e
Ti

m
e

(s
ec

)

Average
Parallel
Multi

Site Region Country Global
0

50

100

150

200

250

To
ta

l T
ra

ffi
c

(K
B

)

Average
Parallel
Multi

(a) Response time (b) Network traffic

Fig. 9. Calling multiple aggregates

least 0.5ms per input. This is because distributed execution exploits the concurrency
in the distributed database and uses all seven machines, while the centralized approach
performs all the computation on a single machine.

Stored Queries. To study the benefit of stored queries, we compare the performance
of the brute force search approach and a pruning approach enabled by stored queries.
For the latter, we use continuous stored queries to maintain Bloom filters at the building
elements, and user queries check the Bloom filters using Xpath predicates. At a building
element, (sub)queries that do not pass the Bloom filter check are pruned.

We use a 550MHz Pentium III machine for generating background update requests
that model the movements of people. In the model, a person stays in a room for a period
of time, which is uniformly distributed between 1 second and 30 minutes, then moves to
another room. When making a move, the person will go to a room on the same floor, in
the same building, in different buildings of the same campus, and in different campuses,
with probabilities 0.5, 0.3, 0.1, and 0.1, respectively.

Figure 8 shows the performance comparison. We measure response times for queries
that look for a person in the entire university, in a particular campus, or in a particular
building. The mixed workload is composed of 20% university level queries, 30% cam-
pus level queries, and 50% building level queries. Because the scope (university, cam-
pus, or building) of a query is presumed to be an end user’s good guess of the person’s
location, we set up the queries so that a query would succeed in finding a person within
the given scope 80% of the time.

As shown in Figure 8, the Bloom filter approach achieves dramatically better per-
formance than the brute force approach for queries involving campus or university level
elements, demonstrating the importance of stored queries. The building level results are
quite close because pruning is less effective in a smaller scope and additional stored
procedure overhead almost offsets the limited benefit of pruning.

7.2 Real World Experiments with IrisLog
Our workload consists of queries with four different scopes. The global queries ask for
information about all the PlanetLab hosts (total 473 hosts).5 The country queries ask

5 Although IrisLog is deployed on 473 PlanetLab hosts, only 373 of them were up during our
experiments. The query latency reported here includes the timeout period IrisLog experiences
while contacting currently down hosts.

about the hosts (total 290 hosts) within the USA. The region queries randomly pick one
of the three USA regions, and refer to all the hosts (around 95 hosts per region) in that
region. Finally, the site queries ask information about the hosts (around 4 hosts per site)
within a randomly chosen USA site.

PlanetLab is a shared infrastructure; therefore all the experiments we report here
were run together with other experiments sharing the infrastructure. We do not have any
control over the types of machines, network connections, and loads of the hosts. Thus
our experiments experienced all of the behaviors of the real Internet where the only
thing predictable is unpredictability (latency, bandwidth, paths taken). To cope with
this unpredictability, we ran each experiment once every hour of a day, and for each run
we issued the same query 20 times. The response times reported here are the averages
over all these measurements. We also report the aggregate network traffic which is the
total traffic created by the queries, subqueries and the corresponding responses between
all the hosts involved.

Calling Multiple Aggregates Using Multi. Figure 9 shows the performance of com-
puting a simple aggregate (average), computing four different aggregates (average, sum,
max, and min) using four parallel queries, and computing the same four aggregates us-
ing a single Multi query. For parallel queries, all the queries were issued at the same
time, and we report the longest query response time.

From the figure, we see that the average query response time is small consider-
ing the number and the geographic distribution of the PlanetLab hosts. There exists a
distributed tool based on Sophia [29] that can collect information about all PlanetLab
hosts. Sophia takes minutes to query all the PlanetLab nodes [9]. In contrast, IrisLog
executes the same query in less than 10 seconds.

Moreover, both the response time and the network overhead of the Multi operation
are very close to those of a simple aggregation and are dramatically better than the
parallel query approach. The Multi operation avoids the overhead of sending multiple
(sub)queries, as well as the packet header and other common metadata in responses. It
also avoids redundant selection of the same set of elements from the database.

We also studied the benefits on IrisLog of using our efficient group-by scheme. For
a group-by query over all the nodes, our scheme achieves a 25% speedup in response
time and an 81% savings in network bandwidth compared to the naive approach of
extracting all the relevant data and computing group-by results in a centralized way [8].

8 Related Work

Sensor Network Programming. A number of programming models have been pro-
posed for resource-constrained wireless sensor networks, including database-centric,
functional, and economic models. The database-centric programming models (e.g., Tiny-
DB [18, 19], Cougar [6, 32]) provide an SQL-style declarative interface. Like X-Tree,
they require decomposing the target function into init/compute/final operators for effi-
cient distributed execution. However, the resource constraints of the target domain have
forced these models to emphasize simplicity and energy-efficiency. In contrast, X-Tree
is a more heavy-weight approach, targeted at resource-rich Internet-connected sensing
devices, where nodes have IP addresses, reliable communication, plenty of memory, etc.

The resource-rich target environment allows X-Tree, unlike the above systems, to sand-
box query processing inside the Java virtual machine and to transparently propagate and
dynamically load new aggregation operator code for query processing. Moreover, its
XML data model allows posing queries in the context of a logical aggregation hierarchy.
The functional programming models (e.g., programming with abstract regions [22, 30])
support useful primitives that arise in the context of wireless sensor network communi-
cation and deployment models. For example, the abstract region primitive captures the
details of low-level radio communication and addressing. However, the requirements of
wide-area sensing are different—generality is more important than providing efficient
wireless communication primitives. Moreover, it is more natural to address wide-area
sensors through logical hierarchy rather than physical regions. X-Tree aims to achieve
these requirements. Proposals for programming sensor networks with economic mod-
els (e.g., market-based micro-programming’s pricing [21]) are orthogonal to X-Tree.
We believe that X-Tree can be used with such economic models, especially within a
shared infrastructure (e.g., IrisNet [2, 13]) where multiple competing services can run
concurrently.

Distributed Databases. Existing distributed XML query processing techniques [11,
26] support only standard XML queries. In contrast, X-Tree’s query processing com-
ponent supports user-defined operations. X-Tree leverages the accessor function ap-
proach for decomposing numeric aggregation functions [4, 18], and supports a novel
scheme to automatically distribute the execution of stored functions. X-Tree’s stored
query construct has a similar spirit as the proposal for relational database fields to con-
tain a collection of query commands [25]. The original proposal aims to support clean
definitions of objects with unpredictable composition in a centralized environment. Be-
cause the logical XML hierarchy usually corresponds to real-life structures (such as ge-
ographical boundaries), X-Tree is able to support meaningful application-specific states
computed from subsets of sensor readings. Moreover, stored queries can be seamlessly
integrated into queries, and at the same time they can invoke application-specific code.
This enables developers to compose arbitrary bottom-up computations, and to guide the
distribution of application codes without knowing the physical layout of data.

Distributed Hierarchical Monitoring Systems. Astrolabe [28] allows users to use the
SQL language to query dynamically changing attributes of a hierarchically-organized
collection of machines. Moreover, user-defined aggregates can be installed on the fly.
However, unlike X-Tree, it targets applications where the total aggregate information
maintained by a single node is relatively small (≈ 1 KB), and the aggregates must be
written as SQL programs. Hi-Fi [12] translates a large number of raw data streams into
useful aggregate information through a number of processing stages, defined in terms
of SQL queries running on different levels of an explicitly-defined machine hierarchy.
These processing stages can be installed on the fly. Both these systems target applica-
tions where aggregate data is continuously pushed toward the end users. Along with
such push-queries, X-Tree targets pull-queries where relevant data is transferred over
the network only when a query is posed. SDIMS [31] achieves a similar goal as Astro-
labe by using a custom query language over aggregation trees built on top of a DHT.
Moreover, it provides very flexible push vs. pull mechanisms. User-defined functions
are more limited than with X-Tree, e.g., there does not appear to be an efficient means
to perform bottom-up composition of distinct user-defined tasks. Finally, X-Tree dif-

fers from all three systems by using the XML data model and supporting a standard
XML query language; thus it supports using a logical hierarchy that can be embedded
on an arbitrary topology and a query language that incorporates the semantics of that
hierarchy.

Parallel Programming. A number of programming models have been proposed to
automatically parallelize computation within restricted target domains. For example,
an associative function can be computed over all prefixes on an n element array in
O(log(n)) time on n/ log(n) processors using parallel prefix computations [5, 17]. In
the context of LANs, the MapReduce model [10], like X-Tree, requires programmers
to decompose the high level task into smaller functions. The MapReduce implemen-
tation then efficiently and robustly parallelizes the execution of those functions into
thousands of machines in a single cluster. X-Tree can be considered as a simplification
and distillation of some of these models based on our requirements. In particular, X-
Tree provides efficient in-network aggregation (through the compute function, which
MapReduce lacks), supports a standard query processing language, provides location
transparency, and is targeted toward wide-area networks.

9 Conclusion

In this paper, we present X-Tree Programming, a novel database-centric approach to eas-
ily programming a large collection of Internet-connected sensing devices. Our solution
augments the valuable declarative interface of traditional database-centric approaches
with the ability to seamlessly incorporate user-provided code for accessing, filtering,
and processing sensor data, all within the context of the hierachical XML database
model. We demonstrate the effectiveness of our solution through both controlled ex-
periments and real-world applications, including an infrastructure monitor application
on a 473 machine worldwide deployment. Using X-Tree Programming, a rich collec-
tion of application-specific tasks were implemented quickly and execute efficiently, si-
multaneously achieving the goals of expressibility, ease of programming, and efficient
distributed execution. We believe that X-Tree Programming will enable and stimulate a
large number of wide-area sensing services.

References

1. IrisLog: A Structured, Distributed Syslog. http://www.intel-iris.net/irislog.
2. IrisNet (Internet-scale Resource-Intensive Sensor Network Service). http://www.intel-

iris.net/.
3. PlanetLab. http://www.planet-lab.org/.
4. F. Bancilhon, T. Briggs, S. Khoshafian, and P. Valduriez. FAD, a powerful and simple

database language. In Proc. VLDB 1987.
5. G. E. Blelloch. Scans as primitive parallel operations. ACM Transaction on Computers,

C-38(11), 1989.
6. P. Bonnet, J. E. Gehrke, and P. Seshadri. Towards sensor database systems. In Proc. IEEE

Mobile Data Management, 2001.
7. J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous query system

for Internet databases. In Proc. SIGMOD 2000.

8. S. Chen, P. B. Gibbons, and S. Nath. Database-centric programming for wide-area sensor
systems. Technical Report IRP-TR-05-02, Intel Research Pittsburgh, April 2005.

9. B. Chun. PlanetLab researcher and administrator, http://berkeley.intel-research.net/bnc/. Per-
sonal communication, November, 2003.

10. J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In
Proc. OSDI 2004.

11. A. Deshpande, S. K. Nath, P. B. Gibbons, and S. Seshan. Cache-and-query for wide area
sensor databases. In Proc. SIGMOD 2003.

12. M. J. Franklin, S. R. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi, E. Wu, O. Cooper,
A. Edakkunni, and W. Hong. Design considerations for high fan-in systems: The HiFi ap-
proach. In Proc. CIDR’05.

13. P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. Irisnet: An architecture for a world-
wide sensor web. IEEE Pervasive Computing, 2(4), 2003.

14. J. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond average: Toward sophisticated
sensing with queries. In Proc. IPSN 2003.

15. P. R. Kumar. Information processing, architecture, and abstractions in sensor networks. In-
vited talk, SenSys 2004.

16. J. Kurose. Collaborative adaptive sensing of the atmosphere. Invited talk, SenSys 2004.
17. R. E. Ladner and M. J. Fischer. Parallel prefix computation. J. of the ACM, 27(4), 1980.
18. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A tiny aggregation service

for ad-hoc sensor networks. In Proc. OSDI 2002.
19. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an acquisitional

query processor for sensor networks. In Proc. SIGMOD 2003.
20. S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously adaptive continuous

queries over streams. In Proc. SIGMOD 2002.
21. G. Mainland, L. Kang, S. Lahaie, D. C. Parkes, and M. Welsh. Using virtual markets to

program global behavior in sensor networks. In Proc. ACM SIGOPS European Workshop,
2004.

22. R. Newton and M. Welsh. Region streams: Functional macroprogramming for sensor net-
works. In Proc. ACM Workshop on Data Management for Sensor Networks, 2004.

23. S. Rhea and J. Kubiatowicz. Probabilistic location and routing. In Proc. INFOCOM 2002.
24. T. Roscoe, L. Peterson, S. Karlin, and M. Wawrzoniak. A simple common sensor interface

for PlanetLab. PlanetLab Design Notes PDN-03-010, 2003.
25. M. Stonebraker, J. Anton, and E. N. Hanson. Extending a database system with procedures.

ACM Transactions on Database Systems, 12(3), 1987.
26. D. Suciu. Distributed query evaluation on semistructured data. ACM Transactions on

Database Systems, 27(1), 2002.
27. D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki. Continuous queries over append-only

databases. In Proc. SIGMOD 1992.
28. R. van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A robust and scalable technology

for distributed system monitoring, management, and data mining. ACM Transactions on
Computer Systems, 21(2), 2003.

29. M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An information plane for networked
systems. In Proc. Hotnets-II, 2003.

30. M. Welsh and G. Mainland. Programming sensor networks using abstract regions. In
Proc. NSDI 2004.

31. P. Yalagandula and M. Dahlin. A scalable distributed information management system. In
Proc. Sigcomm’04.

32. Y. Yao and J. Gehrke. Query processing in sensor networks. In Proc. CIDR 2003.

