
Niu S, Chen S. TransGPerf: Exploiting transfer learning for modeling distributed graph computation performance. JOUR-

NAL OF COMPUTER SCIENCE AND TECHNOLOGY 36(4): 778–791 July 2021. DOI 10.1007/s11390-021-1356-2

TransGPerf: Exploiting Transfer Learning for Modeling Distributed
Graph Computation Performance

Songjie Niu, Student Member, CCF, and Shimin Chen∗, Senior Member, IEEE

State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
Beijing 100190, China

University of Chinese Academy of Sciences, Beijing 100049, China

E-mail: {niusongjie, chensm}@ict.ac.cn

Received February 2, 2021; accepted July 10, 2021.

Abstract It is challenging to model the performance of distributed graph computation. Explicit formulation cannot easily

capture the diversified factors and complex interactions in the system. Statistical learning methods require a large number

of training samples to generate an accurate prediction model. However, it is time-consuming to run the required graph

computation tests to obtain the training samples. In this paper, we propose TransGPerf, a transfer learning based solution

that can exploit prior knowledge from a source scenario and utilize a manageable amount of training data for modeling

the performance of a target graph computation scenario. Experimental results show that our proposed method is capable

of generating accurate models for a wide range of graph computation tasks on PowerGraph and GraphX. It outperforms

transfer learning methods proposed for other applications in the literature.

Keywords performance modeling, distributed graph computation, deep learning, transfer learning

1 Introduction

The graph data model has been widely used to an-

alyze a wide range of real-world datasets, including the

web graph, social networks, and semantic webs. Dis-

tributed In-memory Graph Processing (DIGP) has be-

come a promising solution to graph data analysis due

to its performance advantage and the rapid increase in

memory capacity. A growing number of DIGP plat-

forms have been proposed in recent years [1–4]. Model-

ing performance for DIGP can help execution time pre-

diction, resource planning, performance analysis, and

computation optimization.

However, to our knowledge, previous work has not

investigated performance modeling for DIGP. Several

recent studies have focused on performance evaluation

and benchmarking for graph computation [5, 6]. Ngai et

al. [7] proposed a performance analysis system for graph

processing to facilitate the monitoring and measure-

ment of the computation stages as specified by users.

There have been a number of studies on configuration

tuning and performance prediction for general-purpose

big data computation platforms. Starfish [8] profiles and

tunes the performance of MapReduce jobs. Ernest [9]

employs non-negative least squares to model Spark per-

formance. However, it assumes that the job and the

dataset are fixed, and predicts the job’s performance

while varying the number of machines. This method

cannot be directly applied to build a single DIGP model

to support various data graphs and graph algorithms.

It is challenging to model the performance of DIGP.

Explicit formulation often requires strong, simplifying

assumptions. It is difficult to accurately capture the

diversified factors (e.g., input graph size and charac-

teristics, graph algorithm properties, system parame-

ters, and machine configurations) and the complex in-

teractions (e.g., non-linear behaviors in computation

and communication because of concurrency and CPU

cache effects) in the system. Statistical learning meth-

ods, such as machine learning and deep learning, re-

Regular Paper

Special Section on AI4DB and DB4AI
∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2021

http://dx.doi.org/10.1007/s11390-021-1356-2

Songjie Niu et al.: Modeling Graph Computation Performance 779

quire a large number of samples to train an accurate

model. The more the factors in the design space, the

more complex the model, and the more the samples re-

quired. However, it is time- and resource-consuming to

run the required graph computation tests to obtain a

large number of training samples.

We would like to reduce the sample size for building

a good DIGP performance model. We investigate trans-

fer learning as a promising solution. Transfer learn-

ing aims to exploit knowledge from a source domain

to build an accurate model for a target domain us-

ing a limited number of samples [10, 11]. Suppose we

already have a good model for a source DIGP scenario

(e.g., a combination of a graph algorithm and a graph

platform). Then the basic idea of transfer learning is

to combine this existing model with a limited num-

ber of training samples collected for a target DIGP

scenario to generate a model for the target scenario.

Most existing transfer learning methods are domain in-

variance methods. In their applications, e.g., image

classification [12–15], the source and the target domain

often have the same or similar classification classes, and

the methods focus on the commonality between the do-

mains. In contrast, different DIGP domains (e.g., graph

algorithms or platforms) often have different character-

istics. Accurate performance prediction in DIGP re-

quires capturing domain discrepancy.

In this paper, we propose TransGPerf, a transfer

learning solution for modeling distributed graph com-

putation performance. TransGPerf combines the base

model and a manageable amount of training data to

model a given target DIGP scenario. The workflow of

TransGPerf is illustrated in Fig.1. The main compo-

nents are as follows.

Workload

Generation

Performance

Prediction

Model Training

Basic Modeling

Graph Algorithm

Feature Extractor

Platform Machine

Transfer Modeling

Target

Source

fS fS

fT/fS ⇁Df

Df

Fig.1. TransGPerf workflow.

• Basic Modeling. For a source DIGP scenario, we

collect a large number of samples by considering combi-

nations of factors that impact DIGP performance (e.g.,

graph datasets, graph algorithms, DIGP platforms, and

machine hardware). Then, we build an MLP (multi-

layer perceptrons) model based on the training samples.

• Transfer Modeling. We propose a novel neural

network based transfer learning model for DIGP. In-

spired by ResNet [16], the transfer network structure

adds residual layers after the source MLP model to

capture the discrepancy of the predictive function of

the target scenario compared with the source scenario.

• Feature Extractor. We propose a set of representa-

tive features that capture the graph, algorithm, DIGP

platform, and machine characteristics. Some features

are obtained directly by examining configurations or by

invoking various tools. Others are derived with compu-

tation or approximated with black-box models.

Outline. Section 2 provides the background of our

study. Section 3 presents the principles and the net-

work structures of TransGPerf. Section 4 describes the

feature selection. Section 5 shows the evaluation re-

sults. Section 6 discusses the significance of our study.

Finally, Section 7 concludes this paper.

2 Background

In this section, we provide the background on DIGP

and transfer learning.

2.1 Distributed In-Memory Graph Processing
(DIGP)

In DIGP, there are typically a master and a number

of worker machines connected through a data center

network [1, 2] as depicted in Fig.2. The input graph is

partitioned across workers. Graph computation con-

sists of a series of supersteps. In every superstep, a

worker performs computation on every vertex in its as-

signed graph partition and sends vertex-to-vertex mes-

sages. The computation follows the Bulk Synchronous

Parallel (BSP) model or Asynchronous model. Fig.2

illustrates the BSP model.

Master

Worker

Worker

Worker

Data Center

Network

Worker

Superstep n

Superstep n⇁

Superstep n⇁

Compute/GAS

Message

Fig.2. DIGP overview.

There are two main computation paradigms in

DIGP: Pregel [1] and GAS [2]. In Pregel, graph com-

putation is expressed as a compute function on every

780 J. Comput. Sci. & Technol., July 2021, Vol.36, No.4

vertex. In GAS, compute is replaced with three func-

tions, i.e., gather, apply, and scatter, to reduce com-

munication cost for high-degree vertices in power-law

graphs.

Distributed graph computation scenarios are full

of diversity. First, graph datasets range widely in

their sizes in terms of the numbers of vertices and

edges, and intrinsic properties, such as degree distri-

butions and structure characteristics. Second, graph

algorithms vary significantly in their computation loads

and communication patterns. For example, PageRank

essentially conducts random walks, while SSSP (single-

source shortest path) performs BFS traversals on the

graphs. The number of vertex-to-vertex messages stays

roughly the same across supersteps in PageRank, while

the number of messages changes drastically in SSSP.

Third, the computation models and execution mech-

anisms can be quite different in different DIGP plat-

forms. For example, Pregel-like systems and GAS-

like systems differ in design and implementation strate-

gies. Spark GraphX takes advantage of the Spark RDD

framework for graph computation. Finally, machine

configurations (e.g., CPU frequency and network band-

width) have significant impact on the computation and

communication timings of DIGP. The number of cross-

partition edges is also affected by the number of workers

in the system.

2.2 Problems of Traditional Modeling

Methods for DIGP

There are generally two types of modeling methods:

white-box and black-box. A white-box [17–19] model

has explicit arithmetic formulations. It usually makes

strong simplifying assumptions (e.g., linear combina-

tions, independent activities). However, it is difficult

to capture many diversified influential factors and their

complex interactions in DIGP using white-box models.

For example, the vertex computation and communica-

tion costs in DIGP cannot be captured simply with ave-

rage values because there are a wide varieties of vertex

degrees, computation logics, and communication pat-

terns. The cost of different supersteps in a graph al-

gorithm (e.g., SSSP) can vary significantly. To make

matters worse, DIGP is a highly dynamic and parallel

process with many concurrent and correlated activities.

A black-box [20–22] model is typically based on statis-

tical machine learning methods. Given a task, a black-

box method collects training samples and trains the

prediction model. The number of training samples is

correlated to the complexity of the model, which is de-

termined by the design space of the target system. The

more the influential factors in the target system, the

more the training samples required to obtain an accu-

rate model. As discussed in Subsection 2.1, there are

many factors that impact the performance of DIGP. As

a result, we need to collect a large number of samples

for a black-box model. Note that every sample is a

DIGP run. It is time- and resource-consuming to per-

form many sample runs. Moreover, machine learning

methods assume that the training and the test data are

drawn from the same feature distribution. When the

distribution changes, the model needs to be rebuilt from

scratch using newly-collected training samples. There-

fore, we cannot reuse a model in different DIGP sce-

narios (e.g., different DIGP platforms).

2.3 Transfer Learning

Transfer learning [10] aims to support tasks on a tar-

get domain of interest when there are sufficient training

data from a related but different source domain, but

only a limited amount of training data in the target

domain.

More precisely, a domain D = {X , P (xxx)} consists

of an m-dimensional feature space X and a marginal

probability distribution P (xxx), where xxx = {x1, ..., xm} ∈
X [10]. A task T = {Y, f(·)} consists of a label space Y
and a predictive function f(·) [10]. f(·) is not observed

but can be learned from feature vector and label pairs

{xxxi, yi}, where xxxi ∈ X , yi ∈ Y , and i is the index of

the training samples. Then, f(·) is used to predict the

label f(xxx) of a new sample xxx. From a probabilistic view-

point, f(·) can be written as the conditional probability

distribution P (y|xxx). As illustrated in Fig.3(a), trans-

fer learning aims to learn a predictive function for the

target domain DT by exploiting the knowledge from a

related source domain DS .

In this paper, we find that for the base modeling of

DIGP source domains, deep learning models perform

better than traditional machine learning models on ave-

rage (Section 5). Hence, previous work on transfer

learning for traditional machine learning models (e.g.,

random forest [23]) is not applicable. We focus on deep

transfer learning methods, where the base model is a

deep neural network.

An example deep transfer learning case is as follows.

In an image classification task, each image is embed-

ded into a pixel vector xxx. X is the feature space of

all image pixel vectors. Y is the set of all class labels.

Songjie Niu et al.: Modeling Graph Computation Performance 781

Knowledge
Predictive

Function Original Space:

RKHS:

Fig.3. Deep transfer learning. (a) Concept. (b) Existing domain invariance methods. (c) Our proposal for DIGP. Existing domain
invariance methods 1○ map source and target samples into a common subspace, 2○ minimize domain distance, and 3○ compute a single
shared predictive function. Our proposed method 4○ captures domain discrepancy.

Suppose there are a large number of labeled images in

a source repository (e.g., ImageNet). The images in a

target repository have different sizes and exposure from

the source images. The target images are unlabeled or

only a small number of target images have labels. The

goal is to classify images in the target repository. Here,

XS = XT , YS = YT , but P (xxxS) 6= P (xxxT).

Fig.3(b) illustrates the idea of most existing trans-

fer learning methods. We call these methods domain in-

variance methods because they mainly exploit the com-

monality between the source and the target domain.

Feature vectors of image samples in XS and XT are

mapped to a common space H, e.g., RKHS (Reproduc-

ing Kernel Hilbert Space), by φ : X → H. Then, the

methods minimize certain distance metrics between the

source and target domains, e.g., MMD [24], by making

the marginal distributions of the two domains as similar

as possible. The usual solution is to convert the prob-

lem of finding the non-linear transformation φ explicitly

as a kernel learning problem. Finally, the methods as-

sume that the source and the target domain share the

same classifier. They cope with the limited target train-

ing samples by exploiting both the source samples and

the target samples to learn a single shared classifier.

In domain invariance methods, the simplest deep

transfer learning method, fine-tuning, copies lower lay-

ers of a pre-trained network and adapts them to new

tasks. DDC [12] is a deep network that applies a

single linear kernel to one layer to minimize MMD.

DAN [13] minimizes MMD with multiple kernels (RBF

kernel) applied to multiple layers. Unlike these meth-

ods that match the marginal distributions across do-

mains, JAN [14] aligns joint distributions of multi-

ple domain-specific layers across domains based on a

Joint Maximum Mean Discrepancy (JMMD) criterion.

CORAL [25] aligns the second-order statistics of the

source and target distributions. Dcoral [15] minimizes

the difference between source and target correlations

with the CORAL loss. Several methods [26] adopt the

adversarial domain classifier to learn the common com-

ponents.

RTN [27] combines MMD with considerations of do-

main discrepancy. The images in the source domain

are labeled. The images in the target domain are all

unlabeled. The source and target domains have the

same image classes (e.g., computer monitors, chairs,

and other objects in office settings). RTN aims to clas-

sify the unlabled target images using knowledge from

the labeled source images. As shown in Fig.4, RTN

first employs the domain invariance transfer learning

method. It feeds both the source and the target sam-

ples into a network to minimize MMD between the two

domains. For the target domain, a loss function is ap-

plied to minimize the entropy so that for every target

image, one class has a much higher probability than

the other classes. In contrast, for the source domain,

RTN adds two fully-connected (fc) layers to reflect the

discrepancy between the two domains.

DIGP is significantly different from applications in

previous transfer learning work. In DIGP, domain dis-

AlexNet,

ResNet

…

MMD

 Target Domain

Entropy Minimization

Source Domain

Classification Loss

1

2

3

2’

3’

Adapting to DIGP

 Target Domain

 Regression Loss

 Source Domain

 Regression Loss

fS/fT ⇁Df

yT

fT

Df

yS

xT

xS

fcb fcc

fcc fc fcfcb

Fig.4. Adapting RTN to DIGP performance prediction.

782 J. Comput. Sci. & Technol., July 2021, Vol.36, No.4

crepancy plays a significant role, which makes domain

invariance methods less effective. Moreover, the setting

of a limited number of labeled target samples is diffe-

rent from that of RTN. As a result, previous methods

applied to DIGP lead to a poor accuracy (cf. Section 5).

We need a new method for DIGP modeling.

3 TransGPerf Design

Each DIGP computation is described by a feature

vector representing the input graph, the algorithm, the

DIGP platform and hardware configurations (cf. Sec-

tion 4). We pay a one-time cost for collecting sufficient

nS source samples to learn a good predictive function

fS(x) for the source DIGP domain. We would like to

exploit transfer learning to reduce the number of sam-

ples for DIGP target domains.

Problem 1 (Modeling DIGP Performance with

Transfer Learning). There are a large number

of labeled data in a source DIGP domain DS =

{(xxxS1 , yS1), ..., (xxxSnS
, ySnS

)} but only a limited num-

ber of labeled data in a target DIGP domain DT =

{(xxxT1 , yT1), ..., (xxxTnT
, yTnT

)}, where 0 < nT � nS . X is

the feature space of DIGP configurations. Y is the space

of run times. XS = XT , YS = YT , but P (xxxS) 6= P (xxxT),

P (yS |xxxS) 6= P (yT |xxxT). The goal is to learn a predictive

function fT (xxxT) for the target DIGP domain.

In this section, we first analyze the limitation of pre-

vious transfer learning methods in Subsection 3.1. We

then present the TransGPerf idea and learning network

design in Subsection 3.2 and Subsection 3.3, respec-

tively.

3.1 Limitation of Existing Transfer Learning
Methods

Domain Invariance Methods. As discussed in Sub-

section 2.1, DIGP scenarios have a wide range of diver-

sity. However, previous domain invariance methods are

all based on the assumption that the source and target

samples can be converted to have essentially similar dis-

tributions in a common space. Moreover, problem 1 is a

regression problem, while applications in previous work

are mostly classification tasks. It is relatively easier to

share the same predictive function for distinct classes.

RTN. As discussed in Subsection 2.3, RTN combines

a domain invariance method with a domain discrepancy

design. Specifically, the common network in Fig.4 is fT .

The two extra fc layers are ∆f . Then fS = fT + ∆f .

The loss function in RTN consists of three components,

as marked 1○– 3○ in Fig.4. We apply RTN to DIGP

by modifiying loss component 2○ and 3○. However,

the resulting accuracy is poor (cf. Section 5). This is

because that fT (i.e., the common network) is trained

using both the source and target samples, but there are

much more source samples than target samples. There-

fore, fT is biased toward the source domain rather than

the target DIGP domain.

3.2 Our Solution: TranGPerf

Inspired by residual learning in ResNet [16], we cap-

ture the domain discrepancy by adding a residual ∆f(·)
to fS(x) to model fT (x):

fT (x) = ∆f(·) + fS(x). (1)

More precisely, ResNet [16] introduces a technique called

skip connection, which directly connects the input of a

neural network to the output while skipping the mid-

dle layers of the network. That is, H(x′) = F(x′) + x′,

where x′ is the input, residual F(·) represents the mid-

dle layers, and H(·) is the output. It is shown that the

residual mapping F(x′) can be better learned compared

with directly learning H(x′). In our case, we consider

fS(x) as input x′ for predicting the performance of the

target DIGP. ∆f(·) is residual F(·). Output fT (x) is

H(·) in ResNet.

To reduce losing the information of target data fea-

tures, we concatenate fS(x) and x as the input to ∆f(·).
The full model is shown below, and also illustrated in

Fig.5(a):

fT (x) = ∆f(fS(x), x) + fS(x), (2)

where fS(·) is the source model trained in basic mod-

eling. During the training for the target domain, the

weights of fS(·) can be frozen or fine-tuned. For the

latter, the source data can also be processed to better

exploit the source knowledge.

Compared with RTN, fS(·) is the common network

in our model. ∆f(·) captures the domain discrepancy.

Note that this part is trained using only the target sam-

ples. Therefore, unlike RTN, the resulting network can

better model the target DIGP domain.

Learning Loss. The loss function consists of two

components:

min
fT

L = min
∆f

LR + λmin
fS

LF .

Parameter λ balances the regression loss LR for perfor-

mance prediction accuracy and the feature loss LF for

learning domain-invariant feature representations.

Songjie Niu et al.: Modeling Graph Computation Performance 783

 conv

+ concat

fT/fS ⇁Df

↼fS↪ xT↽

yTfS
xT

xT

fS

Df

conv concat

Shared

xT yT

xS yS

fcT fcT fcT fcT
fcT fcT

fcS fcS fcS fcS

fS LF LR

Df

(b)(a)

Fig.5. (a) TransGPerf design and (b) network structure.

• LR: Regression Loss. Because the run time

of graph computation spans a wide range from sub-

seconds to several hours, absolute errors may overly

emphasize large run times. Therefore, we choose Mean

Absolute Percentage Error (MAPE) in the formulation.

LR includes the regression loss for both the target and

the source data:

LR =
1

nT

nT∑
i=1

∣∣∣∣fT (xTi)− yTi

yTi

∣∣∣∣+

1

nS

nS∑
i=1

∣∣∣∣fS(xSi
)− ySi

ySi

∣∣∣∣ .
• LF : Feature Loss. Feature loss measures the dis-

tance between the distributions of the source and the

target domains. We consider two types of feature loss

functions: 1) no feature loss, and 2) single layer MMD

with a linear kernel (following DDC [12]). The imple-

mentation can select the feature loss function that gives

the best accuracy. Interestingly, we find (1) is the choice

in a significant fraction of cases, which again shows

the DIGP domain discrepancy. We plan to experiment

with more feature loss functions, such as single layer

MMD with an RBF kernel, two-layer MMD, JMMD,

and CORAL, in the future work.

3.3 Network Structure

The network design is illustrated in Fig.5(b). We

choose the MLP model as the base model when there

are sufficient training data. There are three fully

connected hidden layers in MLP, each with 128 neu-

rons. After each fully-connected layer, we add a batch

normalization and a relu activation function. The in-

put to MLP is a 64-dimensional vector of features for

DIGP.

We construct the network of the transfer learning

model based on Fig.5(a). The input xT of the network

is a feature representation of the target domain sample,

which is a vector of 64 dimensions. fS(·) is the MLP

model with the output layer removed. The output of

MLP is a single predicted run time. In comparison,

the intermediate input to the output layer contains 128

high-level learned features. By removing the output

layer, fS(·) retains such rich features.

The residual function ∆f(·) is implemented as two

fully-connected layers with 64 neurons, as shown in

Fig.5(b). Skip connections follow the design in Fig.5(a).

In (1), “+” is performed by element-wise addition.

The output of fS(·) forwarded by the skip connec-

tion is added to the output of the stacked layers in

∆f(·). However, the output dimensions of fS(·) and

∆f(·) are 128 and 64, respectively. To enable element-

wise addition, we introduce a one-dimensional convo-

lutional layer of (num channels = 1, kernel size = 2,

stride = 2) after the output vector of fS(·). This com-

bines the 128-dimensional vector with a 64-dimensional

vector. Convolutional layers are widely used in two-

dimensional image processing. In this case, we apply

it to the one-dimensional vector in order to re-combine

and connect the discrete input features so that each

neuron of the output vector contains mixed informa-

tion of the original features. Consequently, the result-

ing vector can be added to the output of ∆f(·) in the

element-wise fashion.

In (2), “,” is performed by concatenation. Hence,

the vector (fS(xT),xT) is the concatenation of the 64-

dimensional vector from the convolutional layer and

the 64-dimensional input vector. Then the vector

(fS(xT),xT) has 128 dimensions.

Finally, we add a fully-connected output layer for

regression between the output of + and the predicted

label yT , which is different from classification softmax

layer.

In addition, TransGPerf allows an optional plugin to

compute domain distribution distances for supporting

various feature loss functions.

4 DIGP Feature Selection

We overview feature selection for DIGP perfor-

mance prediction in Subsection 4.1. Then, we describe

784 J. Comput. Sci. & Technol., July 2021, Vol.36, No.4

how to obtain important complex features in Subsec-

tion 4.2.

4.1 Features Impacting DIGP Performance

The run time of a graph computation task is com-

posed of computation, communication, and schedul-

ing costs. First, the computation cost consists of

per-vertex computation and computation for manag-

ing messages (e.g., sorting, enqueuing, copying mes-

sages). This cost is affected by the input graph size

(e.g., the number of (#) vertices and edges) and char-

acteristics (e.g., degree distribution), graph algorithms

(operations performed on a vertex), platform configura-

tions, and hardware (CPU and memory speeds, #work-

ers, #machines). Second, the communication cost

consists of cross-machine communication and intra-

process communication on a machine. It is determined

by the amount of message data transferred and the

network/intra-process communication bandwidth. The

former is related to the graph size, the graph partitions,

degree distribution, the message sizes and patterns of

the graph algorithms, and the platform implementation

strategies and configurations. Finally, the scheduling

overhead captures the cost of waiting for global barri-

ers and other scheduling related events.

1) Feature Overview. Based on our understand-

ing of DIGP, we select 62 features in the following

four categories (two influential features, i.e., #mes-

sages and graph diameter are duplicated to obtain a

64-dimensional vector for the TransGPerf network):

• input graph: e.g., #vertices, #edges, degree dis-

tribution, and diameter;

• graph algorithm: e.g., vertex/edge/message sizes,

#messages, and #supersteps;

• DIGP platform: e.g., vertex/edge/message meta-

data sizes, and configuration parameters;

• hardware: e.g., #machines, #workers, CPU fre-

quency, and network bandwidth.

2) Feature Extraction. We obtain the selected fea-

tures using the following methods.

• Simple Extraction. A number of features are ob-

tained directly by examining program, hardware and

DIGP configurations or by invoking various tools. The

SNAP package [28] computes simple graph features. R-

MAT [29] parameters, which are computed by a Net-

Mine package provided by R-MAT authors, show the

most similar R-MAT graph to a given input graph. For

the graph degree distribution, we count the number of

vertices using buckets of exponentially growing widths.

• Derived Formulas. We derive formulas to compute

a number of graph features. We consider the out-degree

exponent as a power-law parameter [30] (see details in

Appendix A.1). We use the least squares method to cal-

culate it. We find that the SNAP package [28] reports

overflow errors when solving Kronecker [31] parameters

for large graphs. Therefore, we estimate the Kronecker

parameters (ak, bk, ck, dk) based on R-MAT parameters

(ar, br, cr, dr). We can prove that ak

ar
= bk

br
= ck

cr
= dk

dr

∼=
2×γ

1
log|V | , where γ = |E|

|V | , and |V | and |E| are the num-

ber of vertices and edges in the graph respectively (see

the proof in Appendix A.2).

• Estimated Through Measurements and/or Models.

A couple of features cannot be directly obtained. We

explain how to estimate them in Subsection 4.2.

4.2 Complex Feature Acquisition

We estimate two features, i.e., vertex computa-

tion cost and #vertex messages, through measurement

and/or models. For the former, the computation on a

vertex is determined by the graph analysis logic. Its

cost is affected by not only the graph algorithm, but

also the DIGP platform, the hardware, and the in-

degree and out-degree of the vertex. For the latter,

#vertex messages is strongly correlated to the graph

algorithm. Different algorithms may have different mes-

sage patterns.

Fig.6 illustrates the acquisition of the two com-

plex features. We generate a benchmark graph set by

TrillionG [32], including 500 synthetic R-MAT graphs,

by varying the number of vertices from 50 to 5 000

vertices. There are 10 times as many edges as ver-

tices. We employ five R-MAT parameter settings, i.e.,

br = cr = 0.25, dr = s × ar, ar + br + cr + dr = 1,

where s = 1, · · · , 5. The larger the value s, the more

skew the degree distribution in the generated graphs.

As shown in Fig.6, we perform a DIGP run on a sin-

gle machine with every benchmark graph for a given

algorithm. Data collected are used to estimate the two

features. A DIGP run with a benchmark graph takes

0.2 s–6.2 s. The cost of running these benchmark tests

is reasonably low.

For vertex computation cost, we measure the run

time of performing a given algorithm on a DIGP plat-

form on a single machine for all the benchmark graphs.

We compute the average run time as the vertex com-

putation cost.

For #vertex messages, we compute the value for a

subset of algorithms and build a black-box model to

Songjie Niu et al.: Modeling Graph Computation Performance 785

Graph Generator

(e.g., TrillionG)

Graph Algorithms

(e.g., CDLP, WCC)

Run Statistics

(e.g., Run Time,

#Msgs)

Graph Statistics

(e.g., #Vertices,

#Edges,

Degree Dist.)

Run Time

#
M
sg

Vertex

Compute Cost

#Msgs

Simple

Models

Fig.6. Complex feature acquisition.

estimate the value for the rest algorithms. In PageR-

ank, the number of messages in each superstep is the

number of graph edges. Hence, #vertex messages =

#supersteps × #edges. In LCC (local clustering co-

efficient), the number of vertex messages is the sum of

the square of each vertex’s degree
∑

v degree
2. In SSSP

and BFS, we estimate #vertex messages as #edges.

However, for algorithms, such as CDLP (community

detection using label propagation) and WCC (weakly

connected components), #vertex messages cannot be

calculated or estimated directly. For each algorithm, we

run the algorithm on the benchmark graphs and mea-

sure #vertex messages on a single machine. We use

these benchmark runs as training samples and build

several simple traditional machine learning and neu-

ral network models per algorithm by Weka 1○. We use

relevant graph statistics (e.g., #vertices, #edges, de-

gree distribution and approximate full diameter) as the

model input. Among all models, SMO (sequential min-

imal optimization) performs the best. The MAPE er-

rors of SMO for CDLP and WCC are 12.4% and 3.3%

respectively.

5 Evaluation

We would like to answer the following questions in

the evaluation.

• How does TransGPerf perform for various DIGP

transfer learning tasks, including transferring to diffe-

rent DIGP platforms and different graph algorithms?

• How does TransGPerf compare with existing deep

transfer learning methods?

• How does transfer learning compare with direct

machine learning for DIGP?

5.1 Model Implementation

5.1.1 Basic Modeling

We implement four deep learning models using Py-

torch: MLP (Multi-Layer Perceptron), CNN (Convolu-

tional Neural Networks), RNN (Recurrent Neural Net-

work), and LSTM (Long Short-Term Memory). We

also train five traditional machine learning models using

Weka: Linear Regression, K-Nearest Neighbors, Deci-

sion Tree, Bagging, and Random Forest. We train the

models using the data collected on GraphLite.

Deep learning models perform better than tradi-

tional machine learning models on average. Among all

deep learning models, MLP performs the best. The

MAPE errors are between 7.7% and 9.0% for different

graph algorithms.

In DIGP, the features do not have spatial local-

ity, and do not represent time series. Therefore, so-

phisticated deep learning models, i.e., CNN, RNN, and

LSTM, are not very effective. They are less accurate

than the plain MLP.

5.1.2 Transfer Modeling

We implement eight deep transfer learning methods:

1) fine-tuning (FT), 2) DDC-l (DDC [12] with linear ker-

nel MMD), 3) DDC-r (DDC with RBF kernel MMD), 4)

DAN [13], 5) JAN [14], 6) Dcoral [15], 7) RTN [27], and 8)

our solution TransGPerf (TGP). For the existing meth-

ods 1–7, we replace their pretrained models, such as

AlexNet for image classification tasks, with our basic

MLP model. We implement the methods as follows.

• For 1), FT inherits most parameters from the ba-

sic MLP model, i.e., the network parameters before the

output layer.

1○https://sourceforge.net/projects/weka/files/weka-3-8/3.8.3/, July 2021.

786 J. Comput. Sci. & Technol., July 2021, Vol.36, No.4

• For 2) and 3), DDC minimizes the domain dis-

tance measure with MMD after the third hidden layer

in the basic MLP model. DDC-l is DDC using MMD

with the linear kernel and DDC-r is DDC using MMD

with the RBF kernel.

• For 4), DAN minimizes the domain distance mea-

sure using MMD with the RBF kernel after the second

and the third hidden layers. Here, the MMD loss is

computed as the sum of the domain distances after the

two layers.

• For 5), JAN minimizes the same domain distance

measure like DAN, but adopts the joint distributions of

the two layers as the distance criterion.

• For 6), Dcoral is nearly the same as DDC except

that it uses the CORAL distance as the domain dis-

tance measure.

• For 7), RTN is adapted to DIGP as described in

Subsection 3.1.

• For 8), our implementation of TransGPerf follows

the description in Subsection 3.3.

5.2 Experimental Setup

5.2.1 Sample Collection

We collect DIGP samples by varying the following

four aspects.

• Input Graphs. We use 10 real-world undirected

graphs from ASU 1○, LAW [33] and SNAP 2○, as listed in

Table 1. The number of vertices ranges from 103 12 to

65.6 million. The number of edges ranges from 333 983

to 1.8 billion.

Table 1. Input Graphs and Time Ranges of Running DIGP
Tasks on Graphs

Graph |V | |E| min max

Catalog1 10.3 k 334.0 k 0.1 s 3.0 min

Enron2 36.7 k 183.8 k 0.1 s 1.1 min

Amazon2 334.9 k 925.9 k 0.1 s 3.9 min

Dblp2 317.1 k 1.0 M 0.1 s 4.4 min

Youtube2 1.1 M 3.0 M 0.2 s 1.0 h

Roadnet2 2.0 M 2.8 M 0.6 s 21.9 min

Livejournal2 4.0 M 34.7 M 1.0 s 54.4 min

Orkut2 3.1 M 117.2 M 1.0 s 1.3 h

Hollywood3 2.2 M 114.5 M 0.7 s 57.8 min

Friendster2 65.6 M 1.8 G 13.2 s 3.1 h

Note: 1: ASU; 2: SNAP; 3: LAW.

• Graph Algorithms. We consider six representa-

tive graph analysis algorithms, which are supported

by the LDBC Graphalytics benchmark [6]: PageR-

ank (PR), Single Source Shortest Paths (SSSP),

Breadth First Search (BFS), Weakly Connected Com-

ponents (WCC), Community Detection using Label

Propagation (CDLP), and Local Clustering Coefficient

(LCC). These algorithms cover a wide range of compu-

tation and communication patterns.

• DIGP Platforms. We consider three represen-

tative DIGP platforms: PowerGraph (PG) [2], Spark

GraphX (GX) [3], and GraphLite (GL) [4]. PowerGraph

is a popular DIGP platform supporting the GAS pro-

gramming paradigm. GraphX is a DIGP implemen-

tation on top of Spark. GraphLite is an open source

C/C++ DIGP platform. It supports Pregel-like com-

putation natively. It implements the gather and apply

optimizations to mimic the GAS behaviors. Configu-

ration parameters can be used to control the fraction

of vertices optimized with the gather and apply opti-

mizations. We use PowerGraph v2.2 and GraphX in

Graphalytics 3○ v1.0.0-0.2, YARN and HDFS in hadoop

v3.2.0, and GraphLite in the Github directory 4○.

• Hardware. We run the experiments in a cluster

of 12 machines. Each machine is equipped with two

Intelr Xeonr E5-2650 v3 CPU @ 2.30 GHz (10 cores,

2 threads/core) and 128 GB DRAM. The machine runs

stock Ubuntu 16.04 with Linux Kernel version 4.4.0-

112-generic. The g++ version is 5.4.0 and Java version

is 1.8. The machines are connected through 10 Gbps

Ethernet.

We use graph computation on GraphLite as the

source DIGP platform domain. We collect a large num-

ber (76 433) of samples on GraphLite. For the other

DIGP platforms, we obtain fewer samples. We collect

4 163 and 1 892 samples for PowerGraph and GraphX,

respectively. We get fewer samples on GraphX than

on PowerGraph because compared with PowerGraph,

it often takes longer time to run a GraphX task on the

same graph, and GraphX runs out of memory for a

large portion of computation tasks on large graphs.

5.2.2 Modeling Methodology

As described in Section 4, we extract 62 features

and duplicate two influential features (i.e., #messages

and the graph diameter) to compose a 64-dimensional

vector as the input to the learning networks. As the fea-

1○http://socialcomputing.asu.edu, July 2021.
2○http://snap.stanford.edu/data, July 2021.
3○https://www.graphalytics.org/, July 2021.
4○https://github.com/schencoding/GraphLite, July 2021.

Songjie Niu et al.: Modeling Graph Computation Performance 787

ture values have very different ranges, we apply feature-

scaling using z-score normalization.

For a DIGP transfer learning task, we randomly

choose part of the samples from the target domain as

the training set, and the rest as the test set. By default,

we use 80% training data and 20% test data for all the

transfer learning methods. For TransGPerf, we per-

form an additional set of experiments with 40% train-

ing data and 60% test data to understand TransGPerf’s

capability in handling smaller training sets. We use

TGP80/TGP to denote experiments with 80% train-

ing data, and TGP40 to denote experiments with 40%

training data. We use MAPE as the metric to evaluate

the models.

MAPE =
1

n

n∑
i=1

|predictedi − reali
reali

|.

Smaller MAPE values mean lower prediction errors,

and a better model accuracy.

5.3 Evaluation Results

5.3.1 Transfer to Different DIGP Platforms

Fig.7 compares TransGPerf with previous deep

transfer learning methods for transferring to diffe-

rent DIGP platforms. The source DIGP platform is

GraphLite. The target DIGP platforms are Power-

Graph and GraphX, respectively. The sample data con-

tains mixed computation runs for all algorithms.

60

50

40

30

20

10

0

TGP80

TGP40

DDC-r

DAN

RTN

DDC-l

Dcoral

JAN

FT

M
A

P
E
 (

%
)

40

35

30

25

20

15

10

5

0

M
A

P
E
 (

%
)

TGP80

TGP40

RTN

DDC-l

DAN

DDC-r

Dcoral

JAN

FT

(a)

(b)

Fig.7. Transfer to different DIGP platforms. (a) PowerGraph.
(b) GraphX.

In Fig.7, we see that 1) TGP80 and TGP40 per-

form the best among all methods. TPG80 achieves a

MAPE of 9.2% and 7.1% for PowerGraph and GraphX,

respectively. 2) Using 40% training data, TGP40 is only

slightly worse than TGP80. 3) Compared with previous

methods, TGP performs significantly better. TPG80

reduces MAPE by 7.3%–42.4% and 3.88%–25.69% for

PowerGraph and GraphX, respectively.

Previous deep transfer learning methods perform

differently on different computation scenarios. The

domain invariance methods perform poorly because

they cannot capture the domain discrepancy in DIGP.

Whether inheriting parameters from the basic MLP

(fine-tuning) or minimizing the domain distance (DDC,

DAN, JAN, Dcoral), mainly focuses on the similarity

between the source and target domains. However, it

is not enough to transfer distributed graph computa-

tion scenarios. In DIGP, domain discrepancy plays a

significant role, which makes domain invariance meth-

ods less effective. For RTN, fT (i.e., the common net-

work) is trained using both the source and the target

samples. Since there are much more source samples

than target samples, fT is biased toward GraphLite

rather than PowerGraph and GraphX. In comparison,

our proposed TransGPerf models fT (x) by combining

fS(x) and residual ∆f(·). fS(x) takes advantage of

prior knowledge of the source domain, while ∆f(·) cap-

tures the domain discrepancy and is trained using the

target data. In this way, TGP gives a better model for

the target.

Interestingly, we see higher MAPE values for Pow-

erGraph. This is because DIGP for large graphs often

runs out of memory on GraphX. Therefore, the sam-

ples collected for GraphX cover smaller graph diversity

than those for PowerGraph.

5.3.2 Transfer to Different Graph Algorithms

Fig.8 compares TGP with previous deep transfer

learning methods for transferring to different graph al-

gorithms. The DIGP platform is GraphLite. For each

of the six algorithms, we use the rest of the five algo-

rithms to build the source MLP model. Then we use

the source model to build a transfer learning model for

the given algorithm.

In Fig.8, we see similar trends as in Fig.7. TGP80

and TPG40 perform the best among all methods.

TGP80 achieves a MAPE of 6.4%–16.9% for transfer-

ring to one of the algorithms. Compared with previous

methods, TGP80 reduces MAPE up to 36.4%. Finally,

using smaller sample datasets, TGP40 actually achieves

an accuracy similar to TGP80.

788 J. Comput. Sci. & Technol., July 2021, Vol.36, No.4

TGP80

TGP40

Dcoral

DDC-r

RTN

DDC-l

DAN

FT

JAN

TGP80

TGP40

DAN

RTN

DDC-l

FT

JAN

Dcoral

DDC-r

M
A

P
E
 (

%
)

M
A

P
E
 (

%
)

50

40

30

20

10

0

50

40

30

20

10

0

TGP80

TGP40

DDC-r

Dcoral

DAN

RTN

JAN

DDC-l

FT

TGP40

TGP80

Dcoral

DDC-r

DDC-l

DAN

RTN

JAN

FT

M
A

P
E
 (

%
)

M
A

P
E
 (

%
)

30

25

20

15

10

5

0

20

15

10

5

0

TGP80

TGP40

RTN

DAN

DDC-r

Dcoral

DDC-l

FT

JAN

TGP40

RTN

TGP80

DDC-l

Dcoral

DDC-r

JAN

FT

DAN

M
A

P
E
 (

%
)

M
A

P
E
 (

%
)

40

35

30

25

20

15

10

5

0

30

25

20

15

10

5

0

(b)(a)

(c) (d)

(e) (f)

Fig.8. Transfer to different graph algorithms. (a) PR. (b) SSSP. (c) BFS. (d) WCC. (e) CDLP. (f) LCC.

5.3.3 Predicted with Basic Models

To illustrate the difference between the source and

the target, we use the basic models trained with the

source to predict the target. Table 2 and Table 3 show

the MAPE of MLP trained with Source (MLP-Src) and

TGP models for target DIGP platforms and graph algo-

rithms respectively. MLP-Src is the source MLP models

in experiments of transfer to different DIGP platforms

and graph algorithms. The difference between MAPE

of MLP-Src and TGP can reflect the transfer difficulty

and the large gap from the source to the target.

Table 2. MAPE (%) of MLP Trained with Source and TGP
Models for Target DIGP Platforms

Model PG GX

MLP-Src 1 013.4 142.4

TGP 9.2 7.1

Table 3. MAPE (%) of MLP Trained with Source and TGP
Models for Target Graph Algorithms

Model PR SSSP BFS WCC CDLP LCC

MLP-Src 59.5 325.0 824.6 67.8 40.0 1 051.1

TGP 8.2 7.9 8.8 7.7 6.4 17.9

5.3.4 Transfer to Different Graph Datasets

We transfer graphs with low average degrees

(avg.dgr.) to other graphs with high degrees. Firstly,

we transfer graph samples on GraphLite of Amazon

(avg.dgr. 2.76) to Catalog (avg.dgr. 32.39) and Friend-

ster (avg.dgr. 27.53) in Table 1. TGP achieves the

test MAPE of 10.93% and 39.67% respectively for Cat-

alog and Friendster. Though the average degrees of

graphs Catalog and Friendster are both approximate to

30, the transferring effects from the same graph Ama-

zon are different. Then we transfer graph samples on

GraphLite of Youtube (avg.dgr. 2.63) to Friendster in

Table 1 and TGP achieves the test MAPE of 21.82%.

The transfer accuracy of target Friendster has improved

a lot from Amazon to Youtube as the source. Though

the average degrees of graphs Amazon and Youtube

are similar, the graph scale and time ranges of tasks on

Youtube are closer to those of Friendster than to those

of Amazon.

The results indicate that, besides average degree,

other graph characteristics (e.g., graph scale, degree

distribution, time ranges of tasks on the graph) can

also have influence on the transferring effects of graph

Songjie Niu et al.: Modeling Graph Computation Performance 789

datasets. The more similar the two domains are, the

better the transferring effects will be. Previous good

results of transferring graph platforms and algorithms

by TGP mean that 1) the source properties are well

learned, and 2) the discrepancy between domains can

be well characterized by the small residual network.

Therefore, the source can be well transferred to the

target. However, for transferring graph datasets, our

experiments show it depends on the similarity. For ex-

ample, if the graph scales or time ranges of tasks on the

graphs differ a lot, the transferring effects of different

graphs are not so good. This is probably because the

discrepancy between domains cannot be characterized

by the small residual network. Hence the boundary

between transfer learning and machine learning is the

domain similarity. If the source and the target domains

differ a lot, we had better choose traditional machine

learning, or collect more similar samples with the target

for the source domain.

5.3.5 Comparison with Ernest

Ernest [9] builds a traditional regression model (i.e.,

non-negative least squares) to predict Spark perfor-

mance. As GraphX tasks can be considered as Spark

applications, we are interested in comparing TGP and

Ernest for GraphX. For a given graph algorithm (BFS

and WCC), we run the sample configurations computed

by Ernest for all the 10 real-world graphs. Then, we use

the Ernest package to build a performance model. The

resulting MAPE for predicting DIGP performance is

654.3% for BFS and 1 120.7% for WCC. The accuracy of

Ernest is much worse than that of TGP (and the other

transfer learning methods) as shown in Fig.7. This is

because Ernest assumes that both the job (the graph

algorithm) and the input dataset (the input graph) are

fixed. It cannot handle the case where multiple input

graphs may be used in the computation, while our pro-

posed TGP supports this case effectively.

6 Discussion

Computation performance has been a significant

concern in distributed graph analysis. Complex graph

computation tasks often take hours or even days to

run on graphs with billions of vertices and edges. A

good performance model can be very helpful in two as-

pects. First, it can help users estimate the run time of

a graph computation task and understand the tradeoff

between hardware cost and computation time for re-

source scheduling and capacity planning purposes. Sec-

ond, it can help algorithm developers understand in-

trinsic features and underlying patterns of graph com-

putation in order to better optimize their designs. In

general, modeling performance for DIGP can help exe-

cution time prediction, resource planning, performance

analysis, and computation optimization.

7 Conclusions

Performance modeling for graph computation is a

challenging yet new field to explore. We proposed a

novel deep transfer learning method, TransGPerf, that

exploits knowledge from a source DIGP domain to build

the model for a target DIGP domain with limited tar-

get samples. It reduces the cost of running a large num-

ber of target DIGP tasks. Experimental results showed

that TransGPerf effectively supports a wide range of

DIGP transfer learning tasks. Performance modeling

in other types of distributed systems often encoun-

ters similar challenges as in DIGP. It is also time- and

resource-consuming to collect a large number of train-

ing samples. We believe that our proposed method may

be applicable beyond DIGP.

Acknowledgement(s) We would like to thank

Deepayan Chakrabarti for the graph statistics package

NetMine and Himchan Park for discussions about graph

characteristics, which help a lot for our graph feature

extraction.

References

[1] Malewicz G, Austern M H, Bik A J C, Dehnert J C, Horn

I, Leiser N, Czajkowski G. Pregel: A system for large-scale

graph processing. In Proc. the 2010 ACM SIGMOD Inter-

national Conference on Management of Data, June 2010,

pp.135-146. DOI: 10.1145/1807167.1807184.

[2] Gonzalez J E, Low Y, Gu H, Bickson D, Guestrin C. Pow-

erGraph: Distributed graph-parallel computation on natu-

ral graphs. In Proc. the 10th USENIX Symposium on Ope-

rating Systems Design and Implementation, October 2012,

pp.17-30.

[3] Xin R S, Gonzalez J E, Franklin M J, Stoica I. GraphX:

A resilient distributed graph system on Spark. In Proc. the

1st International Workshop on Graph Data Management

Experiences and Systems, June 2013, Article No. 2. DOI:

10.1145/2484425.2484427.

[4] Niu S, Chen S. Optimizing CPU cache performance

for Pregel-like graph computation. In Proc. the 31st

IEEE International Conference on Data Engineering

Workshops, April 2015, pp.149-154. DOI: 10.1109/ICDE-

W.2015.7129568.

[5] Han M, Daudjee K, Ammar K, Özsu M T, Wang X, Jin T.

An experimental comparison of Pregel-like graph process-

ing systems. Proc. VLDB Endow., 2014, 7(12): 1047-1058.

DOI: 10.14778/2732977.2732980.

https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/2484425.2484427
https://doi.org/10.11\discretionary {-}{}{}0\discretionary {-}{}{}9/I\discretionary {-}{}{}C\discretionary {-}{}{}D\discretionary {-}{}{}E\discretionary {-}{}{}W.2015.7129568
https://doi.org/10.11\discretionary {-}{}{}0\discretionary {-}{}{}9/I\discretionary {-}{}{}C\discretionary {-}{}{}D\discretionary {-}{}{}E\discretionary {-}{}{}W.2015.7129568
https://doi.org/10.14778/2732977.2732980

790 J. Comput. Sci. & Technol., July 2021, Vol.36, No.4

[6] Iosup A, Hegeman T, Ngai W L et al. LDBC graphalytics:

A benchmark for large-scale graph analysis on parallel and

distributed platforms. Proc. VLDB Endow., 2016, 9(13):

1317-1328. DOI: 10.14778/3007263.3007270.

[7] Ngai W L, Hegeman T, Heldens S, Iosup A. Granula: To-

ward fine-grained performance analysis of largescale graph

processing platforms. In Proc. the 5th International Work-

shop on Graph Data-management Experiences & Systems,

May 2017, Article No. 8. DOI: 10.1145/3078447.3078455.

[8] Herodotou H, Lim H, Luo G, Borisov N, Dong L, Cetin F B,

Babu S. Starfish: A self-tuning system for big data analy-

tics. In Proc. the 5th Biennial Conference on Innovative

Data Systems Research, January 2011, pp.261-272.

[9] Venkataraman S, Yang Z, Franklin M J, Recht B, Stoica

I. Ernest: Efficient performance prediction for large-scale

advanced analytics. In Proc. the 13th USENIX Symposium

on Networked Systems Design and Implementation, March

2016, pp.363-378.

[10] Pan S J, Yang Q. A survey on transfer learning. IEEE

Trans. Knowledge and Data Engineering, 2010, 22(10):

1345-1359. DOI: 10.1109/TKDE.2009.191.

[11] Weiss K R, Khoshgoftaar T M, Wang D. A survey of trans-

fer learning. J. Big Data, 2016, 3: Article No. 9. DOI:

10.1186/s40537-016-0043-6.

[12] Tzeng E, Hoffman J, Zhang N, Saenko K, Darrell T.

Deep domain confusion: Maximizing for domain invari-

ance. arXiv:1412.3474, 2014. https://arxiv.org/pdf/141-

2.3474.pdf, May 2021.

[13] Long M, Cao Y, Wang J, Jordan M I. Learning transferable

features with deep adaptation networks. In Proc. the 32nd

International Conference on Machine Learning, July 2015,

pp.97-105.

[14] Long M, Zhu H, Wang J, Jordan M I. Deep transfer learn-

ing with joint adaptation networks. In Proc. the 34th Inter-

national Conference on Machine Learning, August 2017,

pp.2208-2217.

[15] Sun B, Saenko K. Deep CORAL: Correlation alignment

for deep domain adaptation. In Proc. the 2016 European

Conference on Computer Vision Workshops, October 2016,

pp.443-450. DOI: 10.1007/978-3-319-49409-8 35.

[16] He K, Zhang X, Ren S, Sun J. Deep residual learning

for image recognition. In Proc. the 2016 IEEE Conference

on Computer Vision and Pattern Recognition, June 2016,

pp.770-778. DOI: 10.1109/CVPR.2016.90.

[17] Barker K J, Pakin S, Kerbyson D J. A performance model

of the Krak hydrodynamics application. In Proc. the 2006

International Conference on Parallel Processing, August

2006, pp.245-254. DOI: 10.1109/ICPP.2006.11.

[18] Kerbyson D J, Alme H J, Hoisie A, Petrini F, Wasser-

man H J, Gittings M L. Predictive performance and scala-

bility modeling of a large-scale application. In Proc. the

2001 ACM/IEEE Conference on Supercomputing, Novem-

ber 2001, Article No. 37. DOI: 10.1145/582034.582071.

[19] Sundaram-Stukel D, Vernon M K. Predictive analysis of

a wavefront application using logGP. In Proc. the 1999

ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, May 1999, pp.141-150. DOI:

10.1145/301104.301117.

[20] Bhattacharyya A, Hoefler T. PEMOGEN: Automatic adap-

tive performance modeling during program runtime. In

Proc. the 23rd International Conference on Parallel Archi-

tectures and Compilation, August 2014, pp.393-404. DOI:

10.1145/2628071.2628100.

[21] Bhattacharyya A, Kwasniewski G, Hoefler T. Using com-

piler techniques to improve automatic performance model-

ing. In Proc. the 2015 International Conference on Parallel

Architectures and Compilation, October 2015, pp.468-479.

DOI: 10.1109/PACT.2015.39.

[22] Calotoiu A, Beckingsale D, Earl C W, Hoefler T, Karlin I,

Schulz M, Wolf F. Fast multi-parameter performance mod-

eling. In Proc. the 2016 IEEE International Conference

on Cluster Computing, September 2016, pp.172-181. DOI:

10.1109/CLUSTER.2016.57.

[23] Sun J, Sun G, Zhan S, Zhang J, Chen Y. Automated perfor-

mance modeling of HPC applications using machine learn-

ing. IEEE Trans. Computers, 2020, 69(5): 749-763. DOI:

10.1109/TC.2020.2964767.

[24] Pan S J, Tsang I W, Kwok J T, Yang Q. Domain adapta-

tion via transfer component analysis. IEEE Trans. Neural

Networks, 2011, 22(2): 199-210. DOI: 10.1109/TNN.201-

0.2091281.

[25] Sun B, Feng J, Saenko K. Return of frustratingly easy do-

main adaptation. In Proc. the 30th AAAI Conference on

Artificial Intelligence, February 2016, pp.2058-2065.

[26] Tzeng E, Hoffman J, Darrell T, Saenko K. Simultaneous

deep transfer across domains and tasks. In Proc. the 2015

IEEE International Conference on Computer Vision, De-

cember 2015, pp.4068-4076. DOI: 10.1109/ICCV.2015.463.

[27] Long M, Zhu H, Wang J, Jordan M I. Unsupervised do-

main adaptation with residual transfer networks. In Proc.

the 30th Annual Conference on Neural Information Pro-

cessing Systems, December 2016, pp.136-144.

[28] Leskovec J, Sosič R. SNAP: A general-purpose network ana-

lysis and graph-mining library. ACM Trans. Intell. Syst.

Technol., 2016, 8(1): Article No. 1. DOI: 10.1145/2898361.

[29] Chakrabarti D, Zhan Y, Faloutsos C. R-MAT: A recursive

model for graph mining. In Proc. the 4th SIAM Interna-

tional Conference on Data Mining, April 2004, pp.442-446.

DOI: 10.1137/1.9781611972740.43.

[30] Faloutsos M, Faloutsos P, Faloutsos C. On power-law re-

lationships of the Internet topology. In Proc. the 1999

ACM SIGCOMM Conference on Applications, Technolo-

gies, Architectures, and Protocols for Computer Commu-

nication, August 30–September 3, 1999, pp.251-262. DOI:

10.1145/316188.316229.

[31] Leskovec J, Chakrabarti D, Kleinberg J M, Faloutsos C.

Realistic, mathematically tractable graph generation and

evolution, using Kronecker multiplication. In Proc. the 9th

European Conference on Principles and Practice of Know-

ledge Discovery in Databases, October 2005, pp.133-145.

DOI: 10.1007/11564126 17.

[32] Park H, Kim M. TrillionG: A trillion-scale synthetic graph

generator using a recursive vector model. In Proc. the 2017

ACM International Conference on Management of Data,

May 2017, pp.913-928. DOI: 10.1145/3035918.3064014.

[33] Boldi P, Vigna S. The webgraph framework I: Compres-

sion techniques. In Proc. the 13th International Confe-

rence on World Wide Web, May 2004, pp.595-602. DOI:

10.1145/988672.988752.

https://doi.org/10.14778/3007263.3007270
https://doi.org/10.1145/3078447.3078455
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1007/978-3-319-49409-8_35
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICPP.2006.11
https://doi.org/10.1145/582034.582071
https://doi.org/10.1145/301104.301117
https://doi.org/10.1145/2628071.2628100
https://doi.org/10.1109/PACT.2015.39
https://doi.org/10.1109/CLUSTER.2016.57
https://doi.org/10.1109/TC.2020.2964767
https://doi.org/10.11\discretionary {-}{}{}0\discretionary {-}{}{}9/T\discretionary {-}{}{}N\discretionary {-}{}{}N.2\discretionary {-}{}{}0\discretionary {-}{}{}1\discretionary {-}{}{}0.2091281
https://doi.org/10.11\discretionary {-}{}{}0\discretionary {-}{}{}9/T\discretionary {-}{}{}N\discretionary {-}{}{}N.2\discretionary {-}{}{}0\discretionary {-}{}{}1\discretionary {-}{}{}0.2091281
https://doi.org/10.1109/ICCV.2015.463
https://doi.org/10.1145/2898361
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1145/316188.316229
https://doi.org/10.1007/11564126_17
https://doi.org/10.1145/3035918.3064014
https://doi.org/10.1145/988672.988752

Songjie Niu et al.: Modeling Graph Computation Performance 791

Songjie Niu received her B.E.

degree from Beijing Institute of Techno-

logy, Beijing, in 2014. She is a Ph.D.

candidate at Institute of Computing

Technology, Chinese Academy of Sci-

ences, Beijing. Her research interests

include graph computation, database

systems, and big data processing. She

is a student member of CCF.

Shimin Chen received his Ph.D. de-

gree in computer science from Carnegie

Mellon University, Pittsburgh, in 2005.

He is a full professor at Institute

of Computing Technology, Chinese

Academy of Sciences, Beijing. His

research interests include data mana-

gement systems, big data processing,

and computer architecture. He is a senior member of IEEE.

Appendix

A.1 PowerLaw Equivalence

Four kinds of power-laws are introduced in [30]. We

focus on rank exponent and out-degree exponent. We

have proved these two kinds of power-laws are equiva-

lent to some extent. The out-degree exponent power-

law is defined as: the frequency fd of an out-degree d

is proportional to the out-degree to the power of a con-

stant O, i.e., fd ∝ dO. The rank exponent power-law

is defined as: the out-degree dv of a node v is propor-

tional to the rank of the node rv to the power of a

constant R, i.e., dv ∝ rRv , which can also be written as

d
1
R
v ∝ rv. Assuming rv = cvd

1
R
v , if we derive rv with

respect to dv, we can get r′v = cv
R d

1
R−1
v . Notice this for-

mula has a similar format to the out-degree exponent

power-law. It is not difficult to understand that fd is

the rate of change of rv relative to dv. Therefore we

can get 1
R − 1 ≈ O.

A.2 Kronecker Calculation

We estimate the Kronecker parameters of large

graphs by means of R-MAT parameters as below. For

a graph, suppose the number of vertices and edges are

denoted as |V | and |E| respectively, the four parameters

of R-MAT are (ar, br, cr, dr), and the four parameters

of Kronecker are (ak, bk, ck, dk).

The probability that R-MAT produces an edge is

Pr(e) = |E|ar |ar|br
|br|cr

|cr|dr
|dr|,

where |ar|+ |br|+ |cr|+ |dr| = log|V | and ar + br + cr +

dr = 1.

The probability that Kronecker produces an edge is

Pk(e) = ak
|ak|bk

|bk|ck
|ck|dk

|dk|,

where |ak| = |ar|, |bk| = |br|, |ck| = |cr|, and |dk| = |dr|.
For an edge, there will be Pr(e) = Pk(e), then

we can get (ak

ar
)|ar|(bk

br
)|br|(ck

cr
)|cr|(dk

dr
)|dr| = |E|. As-

sume ak

ar
= bk

br
= ck

cr
= dk

dr
= λ, then there will be

λlog|V | = |E|. Suppose |E| = γ|V |, then we can get

λ = 2×γ
1

log|V | , namely ak

ar
= bk

br
= ck

cr
= dk

dr
= 2×γ

1
log|V | .

	1 Introduction
	2 Background
	2.1 Distributed In-Memory Graph Processing (DIGP)
	2.2 Problems of Traditional Modeling Methods for DIGP
	2.3 Transfer Learning

	3 TransGPerf Design
	3.1 Limitation of Existing Transfer Learning Methods
	3.2 Our Solution: TranGPerf
	3.3 Network Structure

	4 DIGP Feature Selection
	4.1 Features Impacting DIGP Performance
	4.2 Complex Feature Acquisition

	5 Evaluation
	5.1 Model Implementation
	5.1.1 Basic Modeling
	5.1.2 Transfer Modeling

	5.2 Experimental Setup
	5.2.1 Sample Collection
	5.2.2 Modeling Methodology

	5.3 Evaluation Results
	5.3.1 Transfer to Different DIGP Platforms
	5.3.2 Transfer to Different Graph Algorithms
	5.3.3 Predicted with Basic Models
	5.3.4 Transfer to Different Graph Datasets
	5.3.5 Comparison with Ernest

	6 Discussion
	7 Conclusions

