
PR-Join: A Non-Blocking Join Achieving
Higher Early Result Rate with Statistical Guarantees

Shimin Chen
Intel Labs Pittsburgh

shimin.chen@intel.com

Phillip B. Gibbons
Intel Labs Pittsburgh

phillip.b.gibbons@intel.com

Suman Nath
Microsoft Research

sumann@microsoft.com

ABSTRACT

Online aggregation is a promising solution to achieving fast early
responses for interactive ad-hoc queries that compute aggregates on
a large amount of data. Essential to the success of online aggrega-
tion is a good non-blocking join algorithm that enables both (i) high
early result rates with statistical guarantees and (ii) fast end-to-end
query times. We analyze existing non-blocking join algorithms and
find that they all provide sub-optimal early result rates, and those
with fast end-to-end times achieve them only by further sacrificing
their early result rates.
We propose a new non-blocking join algorithm, Partitioned ex-

panding Ripple Join (PR-Join), which achieves considerably higher
early result rates than previous non-blocking joins, while also de-
livering fast end-to-end query times. PR-Join performs separate,
ripple-like join operations on individual hash partitions, where the
width of a ripple expands multiplicatively over time. This con-
trasts with the non-partitioned, fixed-width ripples of Block Ripple
Join. Assuming, as in previous non-blocking join studies, that the
input relations are in random order, PR-Join ensures representative
early results that are amenable to statistical guarantees. We show
both analytically and with real-machine experiments that PR-Join
achieves over an order of magnitude higher early result rates than
previous non-blocking joins. We also discuss the benefits of using
a flash-based SSD for temporary storage, showing that PR-Join can
then achieve close to optimal end-to-end performance. Finally, we
consider the joining of finite data streams that arrive over time, and
find that PR-Join achieves similar or higher result rates than RPJ,
the state-of-the-art algorithm specialized for that domain.

Categories and Subject Descriptors

H.2.4 [DATABASEMANAGEMENT]: Systems—Query process-

ing; H.2.7 [DATABASE MANAGEMENT]: Database Adminis-
tration—Data warehouse and repository

General Terms

Algorithms, Design, Performance, Theory

Keywords

PR-Join, Online Aggregation, Non-Blocking Join, Fast Early Re-
sult, Statistical Guarantee, Data Warehouse, Finite Data Stream

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$5.00.

1. INTRODUCTION
Data warehousing and business intelligence (DWBI) is a fast

growing multi-billion dollar market [7]. It is an increasingly high
priority technology for enterprises because of the heightened need
to make better, fact-based business decisions. DWBI queries are
categorized into report generation and ad-hoc, interactive queries.
Ad-hoc queries are important for detecting new trends and for de-
signing new report generation queries for the new trends. While
report generation queries are executed in a batch without user inter-
action, ad-hoc queries have two key differences: (i) fast response
times are important for effective user interaction, and (ii) queries
are composed on-the-fly, limiting the use of many pre-processing
techniques (e.g., materialized views). Unfortunately, because the
amount of digital information generated and managed by enter-
prises is increasing exponentially [13], achieving fast response times
for ad-hoc, interactive queries is increasingly challenging.

Online aggregation [10, 11, 12, 14, 15] is a promising solution
to this response time challenge for an important class of ad-hoc
queries—computing aggregates (e.g., COUNT, SUM, and AVERAGE)
on the output of select-project-join-groupby (SPJG) queries. In on-
line aggregation, a DWBI system provides fast early estimates of
the aggregates, together with accuracy metrics such as statistical
confidence bounds, based on early representative results of the un-
derlying SPJG query. For example, the system may display “av-
erage is 123.4 ± 5.6 with 95% confidence”. The estimates and
bounds are periodically updated as additional SPJG results are gen-
erated. A user can analyze the estimates and make early decisions
about the query: (i) the query is not exactly what the user wants;
(ii) early results of the query already satisfy the needs of the user;
(iii) current estimates are not accurate enough; or (iv) the complete
results of the query should be computed. In the first two cases, the
user may stop the ongoing query early, while in the last case, the
query is run to completion. Compared to traditional query process-
ing, where users see only a progress bar during query execution,
online aggregation not only facilitates user interactions but (to the
extent that users stop their queries early) also saves time, comput-
ing resources, and energy. Thus, DWBI systems may support larger
numbers of interactive users without increasing hardware resources
or energy costs.

In this paper, we study non-blocking joins, which is essential to
online aggregation. There are three requirements for a good non-
blocking join algorithm that supports online aggregation:

1. Fast Early Results. Error bound formulae typically contain a
1√
N

factor [10, 12], where N is the number of results that con-

tribute to the estimate. This means that (i) the more results the join
generates, the more accurate the estimate is (assuming the results
are representative—see the next requirement), and (ii) to shrink the
error bound at rate r, the join algorithm must generate join results
at rate r2. Moreover, orthogonal to the join algorithm design, sev-
eral factors of the SPJG aggregate may have adverse impact on

DBO

SMS
Hash Ripple

GRACE

HighLow

L
o

w
H

ig
h

R
es

u
lt

 R
at

e
R

ep
re

se
n

ta
ti

v
e

E
ar

ly

Total I/O Cost

Ripple

Ideal

PR−Join
Targets

Figure 1: PR-Join targets ResultRate higher than Ripple Join.

the accuracy convergence of estimates: high variance in the aggre-
gated attributes, high selectivity of the selection criteria, high join
selectivity, high group counts, and data skews across groups [15].
Therefore, providing a high early result rate is an important design
goal of non-blocking join algorithms.

2. Representative Early Results. Following previous works [10,
14, 15, 20], we assume that the input relations to the join algorithm
are in random order. Given this, the join algorithm must provide
statistical guarantee: the generated early results must form a statis-
tical sample of the complete set of results so that meaningful esti-
mates and confidence bounds for the aggregates can be computed.

3. Good End-to-End Performance. As emphasized in [15], the
time to complete the entire non-blocking join is important. Users
may decide to obtain the complete results. Moreover, the conver-
gence to accurate estimates may be slow because of the adverse
factors discussed above. Therefore, the end-to-end performance of
a non-blocking join algorithm should be comparable to that of the
fastest blocking join.
In this paper, we focus on improvements with respect to the first

requirement. Our goal is to design an algorithm that is capable of
achieving result rates higher than previous algorithms while satis-
fying the second and the third requirements.

1.1 Existing Algorithms Cover Only Part of
the Design Space

Figure 1 shows the design space of join algorithms. The X-axis
is the end-to-end I/O cost, while the Y-axis is the result rate for gen-
erating representative early join results. We will define these terms
formally in Section 2. As discussed above, an ideal solution would
achieve both high representative early result rate and low total I/O
costs. We depict the design points of existing join algorithms in the
figure based on our analysis in Section 3.
Blocking join algorithms are used extensively in database sys-

tems. They are either hash-based or sort-based [8]. Hash-based al-
gorithms are often variants of the GRACE hash join [4, 16], while
sort-based algorithms are variants of the sort-merge join. We use
GRACE hash join as a representative blocking join algorithm. As
shown in Figure 1, it is optimized for low end-to-end I/O costs.
However, GRACE join does not generate early join results when
reading the input relations during the I/O partition phase (thus it is
called a blocking algorithm).
Ripple Join is the first non-blocking join algorithm proposed for

online aggregation [10]. When inputs can fit into memory, ripple
join performs Symmetric Hash Join. It builds an in-memory hash
table on every input relation. An incoming input record is inserted
into the hash table of its relation, and is probed in the hash table of
the other relation for matches. When inputs are larger than mem-
ory, they are spilled to temporary storage, and Block Ripple Join
is employed, which involves scanning all spilled data for joining
a block of new input records. As shown in Figure 1, Ripple Join
incurs high I/O costs when inputs are larger than memory.

 0

2

4

6

8

10

 0 500 1000 1500 2000

n
u

m
 j

o
in

 r
e

s
u

lt
s

 (
x

1
e

7
)

time (seconds)

GRACE
Ripple

PR-Join

Figure 2: PR-Join versus Ripple Join and GRACE hash join,

when joining two 10GB relations using an SSD for temporary

storage. PR-Join provides significantly higher early result rate

and good end-to-end performance.

Several non-blocking join algorithms, Hash Ripple Join [20],
Sort-Merge-Shrink Join (SMS-Join) [15], and DBO [14], aim to
avoid the high end-to-end I/O costs of Ripple Join while still pro-
ducing representative early results. These algorithms avoid read-
ing spilled data from temporary storage until all the inputs are pro-
cessed. At this moment, they have essentially finished the partition
phase of blocking join algorithms. Therefore, the join phase of
the blocking algorithms can be applied to generate the remaining
join results with minimal I/O costs. Unfortunately, because early
results are generated without joining any spilled data, these algo-
rithms sacrifice their early result rates, as depicted in Figure 1.

In summary, our analysis reveals that existing algorithms cover
only part of the design space. In particular, the light-blue shaded
region is completely empty. This paper targets design points in this
empty region that are close to the ideal design point.

1.2 Our Solution: PR-Join
The behavior of a join algorithm can be visualized as covering

the rectangular Cartesian product space, where the two input re-
lations are pictured as two sides of the rectangle [10]. Then, the
number of generated join results is roughly proportional to the cov-
ered area by the join algorithm. We observe that in a ripple-style
join, as the width of a ripple step increases, the I/O cost of the
ripple step increases linearly, while the newly covered area by the
ripple step increases quadratically. Therefore, wider ripples lead to
higher result rate. However, previous (Block) Ripple Join obtains
only sub-optimal performance because (i) the width of a ripple in
the (Block) Ripple Join is upper bounded by the available memory
size, resulting in sub-optimal early result rate, and (ii) constant rip-
ple width incurs quadratic number of total I/Os, resulting in poor
end-to-end performance.

We propose a new non-blocking join algorithm, Partitioned ex-

panding Ripple Join (PR-Join). PR-Join breaks the “memory size
barrier” by employing hash partitioning, and performing ripples on
individual hash partitions. In this way, it can increase the ripple
width greatly to achieve much higher result rate than prior algo-
rithms. Moreover, PR-Join expands ripple width multiplicatively
over time, thus achieving good end-to-end performance. We prove
that PR-Join is capable of producing representative early results.
We show both analytically and with real-machine experiments that
PR-Join achieves higher early result rates and lower I/O costs than
Ripple Join. We study configurations using only hard drives, as
well as configurations using an SSD for temporary storage. An
example of our findings is shown in Figure 2, which depicts cu-
mulative join results as a function of time. Here, PR-Join returns
results in the first 250 seconds at over an order of magnitude higher
rate than Ripple Join, while nearly matching the end-to-end perfor-
mance of GRACE. (Details are in Section 6.) Moreover, by varying

a parameter in PR-Join, we can obtain a set of algorithms with dif-

ferent result rates and I/O costs that all lie in the blue shaded region
in the design space as shown in Figure 1.
Finally, several previous join algorithms (XJoin [26], HashMerge

Join [21], and RPJ [24]) aim to produce fast and early join re-
sults for joining finite data streams while disregarding statistical
guarantees. RPJ has been shown to be the best among these algo-
rithms [24]. Intuitively, statistical guarantees have negative impact
on result rate. We extend PR-Join to this data streams setting and
find in our experiments that PR-Join achieves comparable or higher
result rates than RPJ while providing statistical guarantees.

1.3 Contributions
The paper makes the following main contributions. First, we

formally define the result rate metric (Section 2) and compare ex-
isting join algorithms analytically, e.g., proving that Ripple Join
has a higher early result rate than Hash Ripple Join, SMS-Join,
and two-way DBO (Section 3). Second, we propose and analyze
a non-blocking join algorithm, Partitioned expanding Ripple Join

(PR-Join), that achieves higher representative early result rates and
lower I/O costs than Ripple Join (Section 4). Third, we describe a
set of optimization techniques for implementing PR-Join, such as
exploiting SSDs as temporary storage (Section 5). Fourth, we per-
form extensive real machine experimental evaluations (Section 6).
Our experimental results show that PR-Join achieves over an or-
der of magnitude higher early result rate than Ripple Join. With
SSDs as temporary storage, PR-Join further achieves close to op-
timal end-to-end performance, nearly obtaining the ideal case in
the design space. Finally, we evaluate PR-Join in the simulation
framework as used in RPJ for joining finite data streams. We find
that PR-Join achieves comparable or higher result rate than RPJ
while providing statistical guarantees (Section 6).

2. DEFINITIONS AND TERMS
Our study considers equality joins of two finite relations, each

of which is considerably larger than the available main memory.
Moreover, as is typically true in realistic cases, the input relations
are not so overwhelmingly large that they cannot be partitioned into
memory-sized partitions in one pass (e.g., at most 1 PB relation for
systems with 32GB main memory).

Cartesian Product Space. The behavior of a join algorithm can
be illustrated in the Cartesian product space, where the two input
relations are depicted as two sides of the rectangular space. A point
in the space represents a pair of input tuples. Therefore, the space
covers all the possible combinations of input tuple pairs. Of course,
only a portion of the points are matching tuple pairs according to
the join. The task of a join algorithm is to cover the entire Cartesian
product space in order to find out all the matching tuple pairs.

Statistical Guarantee. Following previous works [10, 14, 15, 20],
we assume that the input relations to the join algorithm are in ran-
dom order. Under this condition, we say that a join algorithm pro-
vides statistical guarantee for online aggregation if early results
generated by the join algorithm can be used to compute meaning-
ful estimates and confidence bounds for aggregates (e.g., COUNT,
SUM, AVERAGE, and STD_DEV). (Note that the random order as-
sumption is used solely for statistical guarantees purposes, and in
practice can be approximated, e.g., either because the physical lay-
out is not correlated with the join aggregate or by reading segments
of each relation in a random order [10].)
There are two ways to design join algorithms to provide statis-

tical guarantee in the literature. The first way was proposed in the
Ripple Join work [10]. Every algorithmic step in the join algorithm

covers a (growing) rectangular sub-space in the Cartesian product
space. Estimates of aggregates with confidence bounds can be com-
puted if the inputs on the two sides of the rectangle are randomly
selected from the two input relations [10]. Since we assume that the
input relations are in random order, this condition is easily satisfied
by simply scanning the two relations. SMS-Join proposed the sec-
ond method for achieving the statistical guarantee [15]. Instead of
growing a single rectangle, SMS-Join covers multiple independent
rectangles in the Cartesian product space. For individual rectan-
gles, the Ripple Join formulae are applied to compute estimates
with confidence bounds. Then these independent estimates can be
combined into a single estimate [15].

Performance Metrics. We define two performance metrics for the
two performance requirements discussed in Section 1: (i) fast early
results, and (ii) good end-to-end performance. In our analytical
models, we focus on I/O performance but ignore in-memory CPU
performance because I/O is often the performance bottleneck when
input data are much larger than main memory.

To model end-to-end performance, we compute the total I/O time
for performing a join algorithm from beginning to end:

TotalIO
def
= total I/O time from start to finish

Result rate of an algorithmic step can be computed as the num-
ber of new results generated in the step divided by the I/O cost of
the step.1 The number of join results generated is proportional to
the covered area in the Cartesian product space (num results =
covered area ∗ selectivity), where selectivity is the number of
join results per unit area in the Cartesian product space. Note that
join algorithms may re-arrange the order to process input records
through hash partitioning or sorting. After such re-arranging, some
regions in the Cartesian product space have more join results than
average, while other regions become empty. To account for this
effect, we introduce a density factor:

density =
number of results in a region

selectivity ∗ area of the region

density = 1 for rectangles with two sides representing random
input records. Let us consider hash partitioning. Suppose input
relations A and B are hash partitioned into n partitions. Let Ai

and Bi be the corresponding partitions. Suppose the hash func-
tion is random. Then Ai is a random subset of A records, and
densityAi×B = 1. Bi contains all matches for Ai, while Bj(j 6=
i) does not have any matching records. Since Ai ×Bi has

1
n
of the

area ofAi×B, we have densityAi×Bi = n, while densityAi×Bj =
0(j 6= i). We define result rate of an algorithmic step as follows:

ResultRate = selectivity·

P

i newly covered areai ∗ densityi

IO time of the step

Since selectivity is a constant given the query and inputs, we often
omit selectivity in our analysis.

We are more interested in early ResultRate. We call an al-
gorithmic step early if input data have not yet been fully read.
ResultRateearly is the ResultRate in an early algorithmic step.

Terms Used in the Analysis. Table 1 lists the terms used in ana-
lyzing join algorithms. The two input relations are represented as
A and B. Without loss of generality, we assume that relation A is
the smaller one if they are not the same size.

To simplify our analytical models, we do not model selections
or projections. Note that these operations can be included into the
models by reducing the intermediate data sizes with certain factors.

1
It would be more end-user relevant if we could use statistical confidence

bounds in our analysis. However, confidence bounds are typically complex
non-linear functions on the number of generated results. Because more
results lead to better bounds, we use result rate in our analysis.

Table 1: Terms used in analyzing join algorithms.
A, B Two input relations to the join algorithm

|A|, |B| Relation size in pages. Assume |A| ≤ |B|.
M Memory size in pages that are allocated to the join

F fudge factor for hash table in memory, e.g., 1.2

n Number of hash partitions

Ai, Bi the i-th partition of A(B)

Am, Bm in-memory portion of A(B)

Asp, Bsp portion of A(B) that are spilled to temporary storage

Am
i , Bm

i in-memory portion of Ai(Bi)

A
sp
i , B

sp
i portion of Ai(Bi) that are spilled to temporary storage

a, b a =
|A|M

(|A|+|B|)F , b =
|B|M

(|A|+|B|)F
Tri amortized time to read a page from input relations

Twt amortized time to write a page to temporary storage

Trt amortized time to read a page from temporary storage

Moreover, we assume that there are no data skews when deriving
the analytical models. That is, |Ai| = |A|/n and |Bi| = |B|/n.
We will discuss data skew handling in Section 5.1.
For non-blocking joins, the two input relations are often read

together to generate early join results. a (b) is the maximum in-
memory portion Am (Bm) before any data are spilled to temporary
storage. Suppose the speeds to read the two relations are propor-
tional to their sizes and hash tables are built on in-memory data,

then we can compute a = |A|M
(|A|+|B|)F and b = |B|M

(|A|+|B|)F , so that

a + b = M/F .
We use three time terms, namely Tri, Twt, and Trt, to account

for the fact that (i) the storage device containing the input relations
and the storage device for the temporary intermediate data may
have different I/O performance; and (ii) read size for input stor-
age, write size for temporary storage, and read size for temporary
storage may be different, resulting in different per-page latencies.
Note that we assume the output of the join is consumed by the ag-
gregate computations in memory without I/Os. Therefore, we do
not model the I/O cost of the join output.

3. COST ANALYSIS OF EXISTING JOIN

ALGORITHMS
In this section, we analyze the early result rate and total I/O costs

of representative blocking and non-blocking join algorithms.

3.1 Blocking Joins
Blocking joins are extensively used in commercial database sys-

tems. Hash joins are often preferred if there are no indices on the
join attribute and the input relations are not ordered according to
the join attribute. We analyze GRACE hash join [16] because it
defines the basic building blocks of all the hash join algorithms.
GRACE hash join consists of two phases:

(1) Partition Phase:

Hash Partition A into n partitions so that
|A|
n

≤ M
F
;

Hash Partition B into n partitions using the same hash function;
(2) Join Phase:

For each pair of Ai and Bi do
Read Ai into memory and build hash table;
Scan Bi while probing Ai’s hash table for matches;
/* Representative result reporting point */

Figure 3 illustrates the join behavior of the two phases in Cartesian
product space.
The partition phase takes (|A|+ |B|)(Tri + Twt) time, but does

not generate any join results. Therefore, the Cartesian product
space is still empty in Figure 3(a). The join phase takes (|A| +
|B|)Trt time, while covering the entire |A||B| area. As shown in
Figure 3(b), the join phase processes the tuples one partition after

A

B

nA

2A

1A
1B 2B nB

(a) Partition phase (b) Join phase

Figure 3: GRACE hash join in Cartesian product space.

another. Because of hash partitioning, join results are only found
in the shaded areas, which have density = n as discussed in Sec-
tion 2. A loop iteration that joins Ai and Bi effectively covers
an entire stripe of space, Ai × B. (Because density=0 outside the
shaded areas, the choice of Ai × B as the covered area is equiva-
lent to other choices such as A×Bi.) Therefore, the I/O cost of an
iteration is

|A|+|B|
n

Trt, and the newly covered areas multiplied by

their densities is
|A||B|

n
.

In summary, the performance metrics of GRACE hash joins can
be computed as follows:

TotalIO = (|A| + |B|)(Tri + Twt + Trt)

ResultRateearly
partition = 0

ResultRatejoin = |A||B|
|A|+|B| ·

1
Trt

(1)

Note that GRACE hash join is blocking because it generates join
results only after reading all input data.

3.2 Non-Blocking Joins
In this paper, we consider non-blocking joins on finite input data

that can eventually compute all matches. The existing non-blocking
join algorithms can be categorized into two classes. The first class
aims to generate early representative results for online aggregation.
The algorithms are designed to provide statistical guarantee. This
class includes Ripple Join [10], Hash Ripple Join [20], Sort-Merge-
Shrink Join (SMS-Join) [15], DBO [14] and Turbo DBO [6]. The
second class aims to generate fast early results, while ignoring
the statistical properties of the results, including XJoin [26], Hash
Merge Join [21], RPJ [24], and Early Hash Join [18]. Most of these
algorithms target finite data stream processing. Since the second
class does not provide statistical guarantee, we mainly focus on an-
alyzing the join algorithms in the first class. However, we find in
our experimental study in Section 6 that our proposed solution gen-
erates comparable or faster results than join algorithms designed for
finite data streams.

3.2.1 Ripple Join

Ripple Join [10] consists of two phases: (i) Symmetric Hash Join
when input data fit in memory; and (ii) Block Ripple Join when
input data need to be spilled to temporary storage.

(1) Symmetric Hash Join when |Am| + |Bm| ≤ M
F
:

For each incoming tuple t from A (B) do
Insert t into Am(Bm)’s hash table;
Use t to probe Bm(Am)’s hash table for matches;
/* Early representative result reporting point */

(2) Block Ripple Join when input data are spilled:

While (inputs 6= ∅) do
Spill Am and Bm to Asp and Bsp; (†)
Am = ∅; Bm = ∅;
While (|Am| + |Bm| < M

F
) do (‡)

Accumulate new incoming tuples in memory and
build hash tables for new Am and Bm;

Scan Asp while probing Bm’s hash table;
Scan Bsp while probing Am’s hash table;
Scan Am in memory while probing Bm’s hash table;
/* Early representative result reporting point */

a

b bnew:kbspilled:

anew:

kaspilled:

(a) Symmetric hash join when (b) Block ripple join after
input data fit in memory data are spilled to storage

Figure 4: Ripple Join in Cartesian product space.

kaspilled:

anew:

(k 1)bspilled: bnew:mem: b

Figure 5: Hash Ripple

Join when data are spilled.

(a) Run generation (b) Merge and shrink

Figure 6: SMS-Join in Cartesian

product space.

Figure 4 illustrates the behavior of Ripple Join in the Cartesian
product space. Representative results (with statistical guarantee)
can be reported only at the end of each ripple after completing a
rectangular subspace, as marked by the reporting point comment.
In Symmetric Hash Join, the I/O cost is (a+b)Tri, and the covered
area is ab, where a (b) is defined in Table 1 to be the maximum
|Am| (|Bm|) when memory is filled. In Block Ripple Join, a block
of new input data are joined among themselves and with all the
spilled data in every iteration. We choose (at step ‡) the largest
possible block size, M

F
, in order to maximize the early result rate.

Therefore, the number of iterations is
|A|+|B|

block size
−1 = (|A|+|B|)F

M
−

1. In an iteration, step † spills a + b = M
F

data to temporary
storage, taking (a + b)Twt time. In the k-th iteration, after step †,
|Asp|+ |Bsp| = k(a + b), as shown in Figure 4(b). Accumulating
new incoming tuples take (a + b)Tri time. Scanning Asp and Bsp

take k(a + b)Trt time. Therefore, the I/O cost of the k-th iteration
in the second stage is (a + b)(Tri + Twt + kTrt). As shown in
Figure 4(b), the covered area by the k-th iteration is the blue area,
which is equal to (2k + 1)ab.
The result rates of Symmetric Hash Join and the k-th iteration of

Block Ripple Join can be computed as follows. (ab
a+b

= |A||B|M
(|A|+|B|)2F

)

ResultRateearly
symhash = ab

(a+b)Tri
= |A||B|M

(|A|+|B|)2F
· 1

Tri

ResultRateearly
blkrpl.kth = (2k+1)ab

(a+b)(Tri+Twt+kTrt)

= |A||B|M
(|A|+|B|)2F

· 2k+1
Tri+Twt+kTrt

(2)

Note that if we choose a block size that is a factor of s smaller than
a + b, then ResultRateearly

blkrpl.kth would be roughly a factor of s
smaller. Therefore, our choice maximizes the early result rate.

Let l = (|A|+|B|)F
M

. There are l − 1 iterations. The end-to-end
performance of Ripple Join is computed as follows:

TotalIO = (a + b)Tri +
Pl−1

k=1(a + b)(Tri + Twt + kTrt)

= (a + b)[lTri + (l − 1)Twt + l(l−1)
2

Trt]

≃ (|A| + |B|)(Tri + Twt) + (|A|+|B|)2F
2M

Trt, if l ≫ 1

(3)

Compared to the performance of GRACE hash join in Equation 1,
Ripple Join produces early results but incurs much worse end-to-
end performance, performing a quadratic number of I/Os for read-
ing from the temporary storage.

3.2.2 Hash Ripple Join

Hash Ripple Join [20] reduces the end-to-end I/O cost of Ripple
Join by avoiding Block Ripple Join when data are spilled. The
algorithm consists of three phases. The first phase of Hash Ripple
Join is the same as Ripple Join. In the second phase, Hash Ripple
Join avoids reading data from temporary storage. As illustrated in
Figure 5, it only extends the covered area in one dimension, while
spilling input data to temporary storage. In Figure 5, the algorithm
is processing (a + b) new input data after k(a + b) data have been
read. The I/O cost of processing (a + b) new input data is (a +
b)(Tri + Twt). The covered area is the blue area, which is equal
to ab. Note that the newly spilled data of B are not used in the
second phase. The third phase of Hash Ripple Join is similar to

the join phase in GRACE hash join except that Bm is not used.
Therefore, the I/O cost is (|A| + |B| − b)Trt and the covered area
is |A|(|B| − b).

(1) Symmetric hash join when |Am| + |Bm| ≤ M
F

(2) When input data overflow the memory:

Write Am to Asp with partitioning, keep Bm in memory;
For each incoming tuple t do

If (t is from A)
Then probe Bm’s hash table for matches;

Write t to Asp with partitioning;
/* Early representative result reporting point */

Else write t to Bsp with partitioning;
(3) When all input data are read:

Join each pair of spilled partitions as in GRACE hash join;

The performance metrics of Hash Ripple Join are computed as
follows.

TotalIO = (|A| + |B|)Tri + (|A| + |B| − b)(Twt + Trt)
≃ (|A| + |B|)(Tri + Twt + Trt), if b ≪ |B|

(4)

ResultRateearly
symhash = |A||B|M

(|A|+|B|)2F
· 1

Tri

ResultRateearly
hashrpl = ab

(a+b)(Tri+Twt)

= |A||B|M
(|A|+|B|)2F

· 1
Tri+Twt

ResultRatejoin ≃ |A||B|
|A|+|B| ·

1
Trt

, if b ≪ |B|

(5)

Comparing Equations 4 and 3, we see that Hash Ripple Join does
not have the quadratic term. In fact, it does not incur more I/O over-
head than GRACE hash join. However, comparing Equations 5
and 2, we see that the second phase of Hash Ripple Join has lower
early result rate than Block Ripple Join because this phase covers
only a small (blue) fraction of the possible area (i.e., the entire dot-
ted region) in order to avoid I/O overhead.

3.2.3 Sort-Merge-Shrink Join (SMS-Join)

SMS-Join [15] is based on standard sort merge join. It consists
of the following two phases:

(1) Sort Phase: generate sorted runs

While (input data 6= ∅) do
Read |Am| = aF (|Bm| = bF) data from A (B);

Sort and merge Am and Bm to find matches;2

Spill Am and Bm as new runs;
/* Early representative result reporting point */

(2) Merge-Shrink Phase

Merge sorted runs, shrink estimates from every run;

The join behavior is shown in Figure 6. In the Sort Phase, the join
results from each run consists of an independent sample (without
replacement) of the complete join results. Therefore, the estimates
from every run can be combined into a single estimate [15]. A run
generation costs (aF + bF)(Tri + Twt) I/O time, while covering

2
While the original SMS used symmetric hash join to find matches, for our

purposes, using merging slightly improves the performance metrics.

Table 2: Comparing early result rates. (c = |A||B|M
(|A|+|B|)2FT

)

F = 1.2, Tri = Twt = Trt = T

Symmetric Hash c (Note: must fit in memory)

Hash Ripple 0.5c

SMS 0.6c

Two-Way DBO 1.2c

Block Ripple 2k+1
k+2

c : c, 1.25c, 1.40c, 1.50c, 1.57c, . . .

PR-Join (γ = 1) c, 1.7c, 3.2c, 6.2c, 12.2c, . . .

aF · bF area. Note that the factor F is because hash tables are not
needed. In the Merge-Shrink Phase, records from all sorted runs
are merged. As shown in Figure 6(b), the blue area represents the
area covered by records already used in the merge, while the yellow
areas are the area covered by sorted runs with records not used in
the merge yet. As the merge proceeds, the blue area grows while all
the yellow areas shrink until the blue area covers the entire Carte-
sian product space. At any moment, independent estimates can be
computed from the blue and all the yellow areas, which are then
combined into a single estimate. The Merge-Shrink phase takes

(|A| + |B|)Trt I/O time, while covering |A||B| − (|A|+|B|)abF
a+b

new area. The performance metrics can be computed as follows:

TotalIO = (|A| + |B|)(Tri + Twt + Trt) (6)

ResultRateearly
sms.sort = abF2

(a+b)F (Tri+Twt)

= |A||B|M
(|A|+|B|)2F

· F
Tri+Twt

ResultRatesms.merge =
|A||B|− |A||B|M

(|A|+|B|)

(|A|+|B|)Trt

≃ |A||B|
|A|+|B| ·

1
Trt

, if |A| + |B| ≫ M

(7)

Like Hash Ripple Join, SMS-Join does not perform additional I/Os
for reading temporary storage. However, the covered area in the
Sort Phase is limited.

3.2.4 Two-Way DBO

DBO [14] and Turbo DBO [6] mainly focus on multi-way joins,
which is beyond the scope of this paper. In this paper, we focus on
two-way joins. Turbo DBO is not applicable to two-way joins be-
cause its central idea “partial match” exists only when joining three
or more relations. Two-way DBO can be regarded as an improved
SMS algorithm. We focus on its sort phase (a.k.a. scan phase) to
compute the early result rate for two-way DBO:

Two-Way DBO Sort Phase: generate sorted runs

Read |Am| = aF data from A;
While (input data 6= ∅) do

Read |Bm| = bF data from B and find matches with |Am|;
Spill Am as a new run Ai;
Read |Am| = aF data from A and find matches with |Bm|;
Spill Bm as a new run Bi;
i + +;

Compared to SMS-Join, Two-Way DBO alternates the spilling
and reading between A and B. In this way, it not only computes the
join results between Ai and Bi, but also computes the join results
between Bi and Ai+1, effectively doubling the early result rate of
SMS-Join:

ResultRateearly
dbo.sort = 2 · ResultRateearly

sms.sort (8)

3.2.5 Comparing Non-Blocking Joins

Table 2 compares the early result rates of the non-blocking join
algorithms. We see that Hash Ripple, SMS, and two-way DBO
obtain significantly lower early result rate than Block Ripple Join.
We seek both a higher result rate and a lower total I/O cost than
Block Ripple Join.

4. PR-JOIN DESIGN AND ANALYSIS
We propose Partitioned expanding Ripple Join (PR-Join) in this

section. We discuss our design decisions in Section 4.1, then de-
scribe the algorithm in Section 4.2. In Section 4.3, we analyze the
statistical properties of PR-Join. Finally, in Section 4.4, we develop
analytical performance models of PR-Join and compare PR-Join
with previous join algorithms analytically.

4.1 Design Decisions

How to Achieve Higher Result Rate? In the analysis of Block
Ripple Join in Section 3.2, we observe that early result rate in-
creases as the block size (i.e. ripple width). However, block size is
limited by the memory size M . Can we do better?

Let us perform a thought experiment that magically removes
this limitation. As shown in Figure 7(b), suppose the join algo-
rithm has finished joining X and Y , which are now on tempo-
rary storage. In the current step, the algorithm obtains input Xnew

and Ynew, where |Xnew| + |Ynew| is larger than memory. Sup-
pose the algorithm spills all Xnew and Ynew to temporary storage,
then reads X , Xnew, Y , and Ynew from temporary storage while
joining them for covering the entire colored area. The step takes
(|Xnew|+ |Ynew|)(Tri + Twt + Trt) + (|X|+ |Y |)Trt I/O time,
covering (|Xnew| · |Y |+ |X| · |Ynew|+ |Xnew| · |Ynew|) new area.
Therefore, its result rate is as follows:

ResultRateearly
magic = |Xnew|·|Y |+|X|·|Ynew|+|Xnew|·|Ynew|

(|Xnew|+|Ynew|)(Tri+Twt+Trt)+(|X|+|Y |)Trt

We introduce two parameters, µ and ν, given our assumption that
the read speeds of the input relations are proportional to their sizes.
Let

|X| = µb, |Y | = µa, |Xnew| = ν|X|, |Ynew| = ν|Y |.

Then, we have the following:

ResultRateearly
magic = ab

a+b
· µ(ν2+2ν)

ν(Tri+Twt+Trt)+Trt

= |A||B|M
(|A|+|B|)2F

· µ(ν2+2ν)
ν(Tri+Twt+Trt)+Trt

(9)

Note that this equation is an extension to the Block Ripple result
rate. If we set µ = k and ν = 1

µ
, and we do not read Xnew

and Ynew from temporary storage, we can obtain the Block Ripple
result rate in Equation 2.

Given the same condition as in Table 2, ResultRateearly
magic is

µ(ν2+2ν)
3ν+1

c. Note that µ is defined as the starting data size of the

ripple (relative to memory size). Therefore, ResultRateearly
magic in-

creases with a factor of ν2+2ν
3ν+1

c as the data size grows. In Block

Ripple Join, the choice of ν = 1
µ
offsets this growth. To achieve

high result rate, we choose a constant ν — the width of a ripple
expands multiplicatively over time, as shown in Figure 7(c).

How to Make the Magical Algorithm Practical? We face two
problems. First, how to realize the join of X , Xnew, Y , and Ynew

given limited memory size? Second, the I/O cost of a magic ripple
step increases as the new data size (if ν is fixed). However, to main-
tain statistical guarantee, the algorithm can only compute the esti-
mate of the desired aggregate when a magic ripple step completes.
Therefore, the interval between two reporting points is longer, in-
curring slower responses to front-end users. The second problem is
how to reduce the execution time of a magic ripple step.

We solve both problems by exploiting hash partitioning: per-
forming hash partitioning for all spilled data, and more importantly,
executing the magic algorithm for a partition if the partition satis-
fies a join invocation condition (e.g., ν ≥ threshold).

Figure 7(d) illustrates the basic idea. Conceptually, we view the
inputs as re-arranged according to the n hash partitions. Join results

a

b X Xnew

Y

Ynew

(a) Block ripple (b) Generalizing a ripple

a

b 1B nB

nA

1A

empty

empty

(c) Width expands multiplicatively (d) Employing hash partitioning

Figure 7: PR-Join design decisions.

can only appear in the shaded regions. As input data come, all the
partitions grow at similar speed. We perform expanding ripples on
individual partitions. The first problem is solved because joining a
partition requires only 1

n
of memory space. The second problem

is addressed because estimates can be updated after completing the
magic ripple in individual partitions. Therefore, the report interval
between two estimates can be reduced roughly by a factor of n.
We call this algorithm Partitioned expanding Ripple Join (PR-

Join). Note that this algorithm contrasts with the non-partitioned,
fixed-width ripples of Block Ripple Join. Although hash partition-
ing was extensively used in previous join algorithms, to our knowl-
edge, our proposal is the first to exploit hash partitioning for faster
representative early results.

4.2 PR-Join Algorithm
PR-Join algorithm consists of the following three phases.

(1) Symmetric Hash Join when |Am| + |Bm| ≤ M
F

(2) When input data overflow the memory:

Remove Am’s and Bm’s in-memory hash tables for more space;
for i = 1 to n do

oldAi = |Am
i |; oldBi = |Bm

i |; newAi = newBi = 0;
While (input data 6= ∅) do

Read record t;
i = HashPartition(t);
If (t is from A)
Then newAi++; Append t to Am

i ;
Spill oldest page of Am

i to Asp
i if no space;

Else newBi++; Append t to Bm
i ;

Spill oldest page of Bm
i to Bsp

i if no space;
If (JoinInvokeCond(oldAi, oldBi, newAi, newBi)==True)
Then Join(i);

oldAi+= newAi; oldBi+= newBi;
newAi = newBi = 0;

(3) When input data are all read:

for i = 1 to n do Join(i);

Subroutine: Join(i):
While (free space < |Asp

i |F + |Am
i |(F − 1)) do

Choose j 6= i and spill one page of partition j;
Read Asp

i into memory and build in-memory hash table for Ai;
Scan Bm

i and Bsp
i while probing the hash table for matches

and avoiding matches between previously joined records;
/* Early representative result reporting point */

PR-Join performs symmetric hash join when input data fit in
memory. When input data are larger than memory, the second

phase of the algorithm hash partitions the input data. If a parti-
tion satisfies the join invocation condition, then the Join subroutine
is invoked for generating join results among all the present records
in the partition. We discuss the join invocation condition in Sec-
tion 4.4. In the third phase when all input data are read, the Join

subroutine is invoked for generating all remaining join results.
The algorithm maintains old and new record counts for every

partition for two purposes. First, they are used to evaluate the join
invocation condition. Second, the Join subroutine ensures to gen-
erate join results exactly once by comparing record IDs against the
counts to distinguish old records from new records.

4.3 Statistical Guarantee
We focus on sub-space Ai × Bi as shown in Figure 7(d). Given

that the functionHashPartition() randomly maps records to par-
titions, the input records inAi are randomly chosen from the records
in A. Since the records in A are in random order, the records in Ai

are also in random order. Similarly, the input records in Bi are
in random order. Moreover, every invocation of Join(i) covers a
(growing) rectangle in Ai × Bi. Therefore, Ripple Join formulae
can be applied to Ai × Bi for computing the estimates and confi-
dence bounds for aggregates on the join results of Ai 1 Bi.

The join results in Ai×Bi (i = 1, ..., n) are an independent sub-
set of the complete set of the join results of A 1 B. SMS-Join [15]
formulae can be applied to combine the estimates from individual
partitions into a single estimate. Therefore, PR-Join provides sta-
tistical guarantee for online aggregation.

4.4 Cost Analysis

Analyzing a Join Step. In the second phase, reading input data
is performed in the main code, while reading temporary storage is
performed only in the Join(i) subroutine. However, spilling data
to temporary storage may happen in both the main code and the
Join(i) code. For simplicity of analysis, we define a conceptual
join step for Join(i) to include reading new input data of Ai and
Bi, spilling them to temporary storage, and reading data in Ai and
Bi from temporary storage for Join(i) processing.

We can use the same notation as in Figure 7(b), while imagining
the entire rectangle represents Ai × Bi. Note that on average a+b

n
new data are still in memory. Therefore, the I/O cost of the join step
is (|Xnew| + |Ynew|)(Tri + Twt) + (|Xnew| + |Ynew| + |X| +
|Y | − a+b

n
)Trt. The covered new area is (|Xnew| · |Y | + |X| ·

|Ynew| + |Xnew| · |Ynew)|. Note that the density of the area is n
because of hash partitioning, as discussed in Section 2. Therefore,
we have the following:

ResultRateearly
pr =

n(|Xnew|·|Y |+|X|·|Ynew|+|Xnew|·|Ynew|)
(|Xnew|+|Ynew|)(Tri+Twt)+(|Xnew|+|Ynew|+|X|+|Y |− a+b

n
)Trt

The size of the partition is a+b
n

at the end of Symmetric Hash Join.

Let |X| = µ b
n
, |Y | = µ a

n
, |Xnew| = ν|X|, and |Ynew| = ν|Y |.

ResultRateearly
pr = |A||B|M

(|A|+|B|)2F
· µ(ν2+2ν)

ν(Tri+Twt+Trt)+(1− 1
µ

)Trt

(10)
This is the same equation as Equation 9 except for the 1

µ
term rep-

resenting the savings of keeping portions of partition i in memory.

Join Invocation Condition. We set ν to be a constant parameter
γ. We would like to use the following join invocation condition:
new data size
old data size

≥ γ. It can be rewritten as current data size
old data size

≥ 1+γ,
where current data include both old and new data.

However, since every partition grows at similar speed, this join
invocation condition is likely to become true for all partitions at al-
most the same time. The algorithm would alternate between two
states: (i) input reading and spilling without generating any join

results; and (ii) invoking Join subroutine for all partitions. This
would result in a long time between two reporting points. To avoid
this behavior, we stagger the invocations of the first Join for differ-
ent partitions so that all the join invocations of different partitions
are distributed evenly.
Moreover, we introduce a stop constraint: when the algorithm

almost completes reading the input data, we need to be cautious
about invoking Join subroutine because phase three may be too
close and the current invocation could be wasteful.
The join invocation condition for j-th join step for partition i

(i = 0, 1, ...) is as follows:
8

<

:

Return true: current data size
old data size

≥ (1 + γ)1+
i
n , j = 1

Return true: current data size
old data size

≥ 1 + γ, j > 1

Return false:
(|A|+|B|)/n

current data size
< 1 + γ (stop constraint)

(11)
The first Join is invoked for partition i when current data size is
a+b

n
(1 + γ)1+

i
n . Subsequent Join is invoked when the data size

increases by a factor (1 + γ). Therefore, Join is invoked for parti-

tion i when current data size is a+b
n

(1 + γ)j+ i
n (j ≥ 1).

We consider all the Join invocations for all n partitions. The
first Join invocation occurs (for partition 0) when current data size
is (a + b)(1 + γ). After that, there is a Join invocation whenever

current data size grows (1 + γ)
1
n times. Thus join invocations are

indeed distributed evenly.

Result Rate Given the Join Invocation Condition. We compute
µ and ν for the j-th join invocation of partition i:

(

When j = 1: µ = 1, ν = (1 + γ)1+
i
n − 1

When j > 1: µ = (1 + γ)j−1+ i
n , ν = γ

(12)

Note that Equation 10 increases as µ or ν increases. Since µ ≥
(1 + γ)j−1 and ν ≥ γ, we can compute the lower bound of the
result rate. For example, if γ = 1, then the lower bound of result
rate is 2j−1 3

4−21−j c given the same condition as in Table 2. By
assigning j to be 1, 2, ..., we obtain c, 1.7c, 3.2c, 6.2c, 12.2c, ...,
increasing exponentially. The maximum j is determined by input
data size. For example, if the input data size is 32 times memory
size, then jmax = 5 and 12.2c result rate can be achieved. Clearly,
PR-Join achieves much higher early result rates, compared to those
of Block Ripple Join in Table 2.

Total I/O Time. Note that input data are read once and at most
spilled to temporary storage once. This part of the I/O cost is (|A|+
|B|)(Tri+Twt). On the other hand, data on temporary storage may
be read multiple times in the Join invocations. We compute total
number of I/O reads from temporary storage for partition i:

ReadTempi ≤
l

X

j=1

a + b

n
(1 + γ)j+ i

n + (|Ai| + |Bi|)

where l is the maximum number of join steps for partition i in phase

two. Denote q = 1 + γ, p = a+b
n

(1 + γ)
i
n , and z = |Ai| + |Bi|.

Then the stop constraint requires pql+1 ≤ z. Therefore, we have

ReadTempi ≤ p
l

X

j=1

qj+z < p
ql+1

q − 1
+z ≤ (

1

q − 1
+1)z = (1+

1

γ
)z

The total I/O cost can be computed as follows:

TotalIO ≤ (|A| + |B|)(Tri + Twt + (1 + 1
γ
)Trt) (13)

We see that PR-Join achieves much better total I/O cost than Ripple
Join: Compared to GRACE join, PR-Join incurs only an additional
1
γ
Trt cost per input page.

Impact of Different γ. As shown in Equation 13, larger γ leads
to smaller total I/O costs. On the other hand, since current data

size grows (1 + γ)
1
n between two join invocations, larger γ leads

to sparser join invocations. Consider the case where two PR-Join

with different γ’s have both processed the same amount of input
data. The partitions of the PR-Join with the larger γ must be joined
longer time ago. Therefore, it must have generated fewer join re-
sults. Note that it may take the two joins different time to reach this
point. Nevertheless, depending on the actual system configuration,
larger γ tends to give lower result rate.

5. PR-JOIN OPTIMIZATIONS
In this section, we describe optimization techniques in PR-Join

implementations. We not only discuss PR-Join implementation in
DWBI systems (including the use of SSDs for temporary storage),
but also describe how to adapt PR-Join for joining data streams.

5.1 PR-Join Optimizations in DWBI Systems
We implemented PR-Join to model the online aggregation in a

DWBI environment. We describe several issues in the following.

Handling Data Skews. Data skews can result in skewed hash parti-
tion sizes, which leads to large variance of result rate and execution
times for joining an individual partition. We avoid this problem by
performing a skew remapping step in the PR-Join algorithm. The
skew remapping step is performed at the point where the memory is
half full during the Symmetric Hash Join phase. Since input records
are in random order, the join keys in memory at this point form a
representative sample of the entire set of input join keys. We build
a histogram on the join keys to re-assign them evenly to hash parti-
tions. At this moment, input data are all in memory, and half of the
memory is still available. Therefore, we can re-partition the input
in memory without incurring additional I/Os. After that, PR-Join
uses the remapped hash function for partitioning input data.

Fine-Grain Memory Management. Given a temporary storage
I/O size S, partition i is allocated at least 2S memory for Am

i

and Bm
i . Naively, one may organize this memory into two S-sized

buffers for Am
i and Bm

i , respectively. When a buffer is filled, it is
spilled to the corresponding partition on temporary storage. How-
ever, it may happen that both buffers of a partition are just spilled.
Therefore, in the worst case, the amount of memory-resident data
per partition is close to 0. What we want is to keep as much data
in memory as possible to reduce the number of I/O reads from the
temporary storage for the join invocations. We achieve this goal
by using fine-grain 4KB page sized memory management for every
partition. Am

i and Bm
i share all the 4KB buffers that consist of the

2S space in memory. Whenever 2S space is full, the larger of Am
i

and Bm
i must have at least S data. Therefore, S data is spilled from

the larger of Am
i and Bm

i . In this way, in the worst case, there are
at least S memory-resident data per partition.

More Flexible Join Invocation Conditions. The behavior of PR-
Join can be modified with different join invocation conditions. The
join invocation condition with constant parameter γ is just one ex-
ample. For example, we can design another condition to incorpo-
rate front-end user feedbacks. Users may want to see the estimates
after certain percentage of inputs have been processed, while not
caring about estimate updates before this point. Then we can use
the join invocation condition to stop the join invocations until the
point is reached.

I/O Parallelism. Our algorithm analysis in this paper assumes se-
quential I/Os. However, our implementations of all the join algo-
rithms are capable of exploiting the I/O parallelism across multiple
I/O devices and within a single device. For example, the input stor-
age and the temporary storage may be separate devices. In such
situations, our implementations exploit the parallelism by issuing
asynchronous read/write I/O requests (e.g., through libaio).

5.2 Exploiting SSDs as Temporary Storage
Recent works have studied flash-based devices, such as Solid

State Drives (SSDs), in various aspects of data management [1, 2,
3, 9, 17, 19, 22, 23, 25]. However, since SSDs are more expensive
than HDDs in terms of $/GB, we expect that the majority of the data
in a large DWBI system will still be stored in HDDs (at least in the
near future), while SSDs can be employed judiciously for improv-
ing the performance of critical operations and data structures [2].
For example, SSDs are an attractive option for storing intermediate
results during join processing.
Using an SSD for temporary storage has two main advantages

over a hard drive. First, (current and future generations of) SSDs
have higher I/O bandwidth than hard drives because SSD band-
width is not limited by mechanical operations. Note that compared
to the I/Os in GRACE join, the extra I/Os in non-blocking joins are
all I/O reads from temporary storage. Faster temporary storage pro-
vides two benefits: (i) it reduces the absolute time of the extra I/O
reads; (ii) it better overlaps the I/O reads from temporary storage
with the reading from the (possibly slower) input storage.
Second, peak performance on SSDs can be achieved with much

smaller sized I/Os. For example, one can achieve the peak perfor-
mance of an Intel X25E SSD using 1MB sized reads, as well as us-
ing over eight concurrent 64KB sized reads (I/O parallelism). The
I/O size determines the buffer size per partition in memory. Given a
fixed memory size, 1

k
of I/O size means k times maximum number

of partitions, and thus k times maximum input data size can be han-
dled with peak I/O performance. Moreover, the individual partition
size reduces by a factor of 1

k
. The join invocation time for an in-

dividual partition reduces accordingly, leading to shorter intervals
between join result generation and faster user response times.

5.3 PR-Join on Finite Data Streams
Like PR-Join, existing progressive join algorithms for finite data

streams (e.g., RPJ [24], XJoin [26], Hash-Merge Join [21]) assume
limited memory and hence migrate additional tuples to disk. The
join execution switches between three stages. The mm-stage is ac-
tive as long as the data transmission is not suspended and it joins tu-
ples that are currently in-memory from both streams. The md-stage
and the dd-stage are active when data transmission is suspended or
completed. In the md-stage, in-memory tuples from one stream are
joined with in-disk tuples from the other stream. Similarly, in the
dd-stage, in-disk tuples from both streams are joined together.
Different progressive join algorithms differ in their flushing strate-

gies and the order in which they invoke different join stages. These
two design decisions are optimized with the general goal of produc-
ing early join results at a high rate. For example, RPJ dynamically
chooses join stages and join buckets that maximize the output rate.
It also flushes data from memory to disk intelligently—it prefers
keeping tuples that are likely to join with future tuples in memory
so that the default mm-stage can output at a high rate.
Unlike non-blocking joins designed for online aggregation, pro-

gressive joins do not provide statistical guarantee. For example,
RPJ may choose to keep one particular bucket of tuples in memory
(as that bucket is highly likely to join with future tuples) and flush
others to disk; then the output of the default mm-stage will be sta-
tistically biased towards tuples falling into that particular bucket.
Therefore, the generated results are not statistically representative
of the entire join results.
Intuitively, statistical guarantees tend to have negative impacts

on result rate because they require certain join behaviors. Inter-
estingly, PR-Join, in addition to providing statistical guarantees,
can achieve better early result rate than RPJ, the state-of-the-art
progressive join algorithm. This is due to the following two rea-

sons. First, PR-Join combines all mm-, md- and dd-stages for a
bucket together in a single join invocation, incurring less overall
I/O cost. For example, let mi (di) denote the in-memory (in-disk)
part of bucket i. Let (mi, di) denote the join operation of mi of
the first stream and di of the second stream. (di, mi) and (di, di)
are defined similarly. Then, an instance of RPJ may decide to in-
voke different join stages in this order: . . . , (m1, d1), (d1, m1),
(d5, d5), . . . , (d1, d1), . . . , which results in reading d1 of both
streams twice for a single join operation on bucket 1. The last dd-
stage in the above example needs to re-read d1 of both streams
from disk because they are evicted from memory to make space for
(d5, d5) due to limited memory. In contrast, PR-Join always joins
the entire bucket together as (m1∪d1, m1∪d1), reading d1 of each
stream only once for joining bucket 1. Second, PR-Join uses hash
partitioning and ensures that individual partitions fit into memory,
which allows using efficient hash join on the partitions. In contrast,
RPJ’s buckets can be larger than the available memory and there-
fore they are joined using more expensive Progressive Sort Merge
Join [5] during the dd-stage.

We have extended PR-Join for finite data streams. In such envi-
ronments, input data may be stalled for a long time due to network
congestion. Therefore, we modify the join invocation condition as
defined in Section 4.4: We perform joins not only when the join
invocation condition is true, but also when the system detects that
the input is stalled (based on a timeout value).

6. EXPERIMENTAL EVALUATIONS
We evaluate PR-Join in two environments. We perform real ma-

chine experiments to model DWBI environments in Section 6.1.
Then in Section 6.2, we study PR-Join on finite data streams using
the simulation framework obtained from the authors of RPJ [24],
the state-of-the-art algorithm specialized for this purpose.

6.1 PR-Join in DWBI Environments:
Real Machine Experiments

Machine Configuration. We perform all real machine experi-
ments on a Dell Precision 690 workstation, which contains a quad-
core Intel Xeon 5345 CPU (2.33GHz, 8MB L2 cache, 1333MHz
FSB), 4GB DRAM, and four SATA drives. One drive stores sys-
tem files and programs. We use the other three in our experiments:
two 200GB 7200rpm Seagate Barracuda disks (77MB/s read/write
bandwidth per disk) and one Intel 32GB X25-E SSD (250MB/s
read and 170MB/s write bandwidth). The workstation runs Ubuntu
8.04.1 (Hardy) with Linux 2.6.24 kernel. All code is compiled with
g++ 4.2.4 compiler with “-O2” optimization.

Join Implementations. We implemented GRACE, Ripple Join,
and PR-Join as described in Section 3 and Section 4. As analyzed
in Section 3, GRACE achieves low total I/O cost, while Ripple Join
achieves the best representative early result rate among existing
non-blocking joins. These two extreme cases mark the boundary
of the empty region in the design space, which is PR-Join’s target.

As discussed in Section 5.2, we believe that most data in DWBI
systems will still be stored on hard drives (at least in the near fu-
ture). Therefore, input relations are stored on one Barracuda disk
in our experiments. On the other hand, we perform experiments us-
ing two types of temporary storage: the other Barracuda disk or the
SSD. The join outputs are consumed in memory, modeling online
aggregation. To avoid the caching effects of the operating system,
our join implementations open raw devices with O_DIRECT flag.
libaio asynchronous I/Os are used unless otherwise noted.

In our default configuration, we allocate 500MB memory space
for the join operation. The two input relations are stored sequen-

 0

2

4

6

8

10

 0 1000 3000 5000 7000

n
u

m
 j

o
in

 r
e

s
u

lt
s

 (
x

1
e

7
)

time (seconds)

GRACE
Ripple

PRJoin

 0

0.5

1.0

1.5

 0 200 400 600 800 1000

n
u

m
 j

o
in

 r
e

s
u

lt
s

 (
x

1
e

7
)

time (seconds)

GRACE
Ripple

PRJoin

 0

 50000

 100000

 150000

 200000

 250000

 0 1000 3000 5000 7000

re
s

u
lt

 r
a

te

time (seconds)

Ripple
PRJoin

 0

 50

 100

 150

 200

 250

 300

 0 1000 3000 5000 7000

re
p

o
rt

 i
n

te
rv

a
l

(s
e

c
o

n
d

s
)

time (seconds)

Ripple
PRJoin

(a) Number of results over time (b) Zoom-in of (a) (c) Result rate over time (d) Report interval over time

Figure 9: Disk as temporary storage. (10GB joins 10GB, γ = 1)

 0

2

4

6

8

10

 0 2000 4000 6000 8000

n
u

m
 j

o
in

 r
e

s
u

lt
s

 (
x

1
e

7
)

time (seconds)

GRACE
c-GRACE

Ripple
c-Ripple
PRJoin

c-PRJoin

Figure 8: Verifying analytical models with experimental re-

sults. (10GB joins 10GB, temp disk, γ = 1)

tially on the input disk. Therefore, the join implementations per-
form 1MB sized I/O reads for the inputs. GRACE hash join use
1MB sized buffers for partitions, performing 1MB sized read and
write I/Os to the temporary storage. Ripple Join performs sequen-
tial 1MB sized I/O reads and writes to the temporary storage (after
data are spilled). Note that large I/O size achieves higher I/O band-
width for both hard disks and SSDs. Therefore, our implementa-
tions maximize the performance of GRACE and Ripple Join.
PR-Join allocates 2S memory space for each pair of Am

i and
Bm

i , where S is the extent size for temporary storage. S is 1MB
with disk as temporary storage, while S can be 4KB to 1MB when
SSD is used as temporary storage. When the space is filled, S
data from the larger of Am

i and Bm
i will be spilled to temporary

storage. We maintain 1MB sized spill buffer to accumulate spills
from all partitions. When the spill buffer is full, we perform 1MB
sized writes to the temporary storage. The temporary storage is
read with S sized I/Os.
In most experiments, we join two 10GB input relations. A record

is 100 bytes, consisting of a randomly generated 4-byte join key and
a payload attribute. Every record in relation A matches one record
in relation B. The record orders in the two relations are random. In
addition, we also perform sensitivity analysis by varying the input
relation size and the join key distribution.

Verifying Analytical Models. Figure 8 compares the computed
performance using our analytical models (with “c-” prefix) and the
experimental results. Since our model assumes synchronous I/Os,
we replace libaio with pread/pwrite system calls for perform-
ing synchronous I/Os in this set of experiments. (All other exper-
iments use the default libaio implementations.) In the compu-
tation, we use the following disk parameters measured by micro-
benchmarks: (i) sequential 1MB read latency is 13.687ms; (ii) se-
quential 1MB write latency is 13.757ms; (iii) random 1MB read
latency is 25.515ms. Fudge factor for the input is 1.29 in our im-
plementation. As shown in Figure 8, we see that our analytical
models match the real machine results very well. The predicted
end-to-end time of Ripple Join is slightly smaller because our an-
alytical model ignores CPU cost, which shows up slightly after a
large number of Block Ripple iterations.

Disk as Temporary Storage. Figure 9 compares the performance
of PR-Join with GRACE and Ripple Join when disk is used as tem-
porary storage. Figure 9(a) and (b) show the cumulative join results
over time, while Figure 9(c) and (d) compare result rates and report
intervals of the algorithms, respectively. We see that GRACE does
not generate any results until I/O partitioning phase completes. Af-
ter that, it joins pairs of partitions and quickly generates join results,
achieving low end-to-end time. Ripple and PR-Join report join re-
sults only at the reporting points, where statistical computations are
meaningful. Ripple join suffers from poor end-to-end time. The in-
creasing step sizes of Ripple curve is because the higher and higher
cost of performing a Block Ripple iteration.

PR-Join achieves better end-to-end performance and better result
rate than Ripple Join. The flat part of PR-Join is when it hits the
stop constraint of the join invocation condition. The end-to-end
time of PR-Join is 6.2x faster than Ripple Join, which is only 44%
slower than GRACE. Moreover, as shown in Figure 9(c) we see
that PR-Join achieves orders of magnitude higher result rate than
Ripple Join. Furthermore, as shown in Figure 9(d), we see that PR-
Join achieves orders of magnitude lower report intervals through
partitioning, thus providing a smoother result generation curve for
better front-end user experience.

SSD as Temporary Storage. Figure 10 compares the performance
of PR-Join with GRACE and Ripple Join when SSD is used as
temporary storage. As shown in Figure 10(a), comparing PR-Join
and Ripple Join, we reach similar conclusions as in the case of disk
as temporary storage: PR-Join achieves faster representative early
results and shorter end-to-end time than Ripple Join. Compared
to GRACE, the end-to-end performance of PR-Join is now very
close to GRACE, because the SSD can process I/Os faster than the
input disk, thus more effectively overlapping the I/Os of temporary
storage with the input I/Os.

We vary the temporary storage extent size in Figure 10(a) and
(b). We see that both 64KB and 1MB extent sizes achieve similar
performance, while 4KB extent size performs significantly worse.
This is because even with 32 parallel requests, 4KB reads can ob-
tain only 60% of the SSD’s peak read bandwidth. Figure 10(c)
compares 64KB and 1MB extent size in terms of report intervals.
We see that 64KB extent size achieves significantly shorter report
intervals. As discussed in Section 5.2, smaller extent size results
in larger number of partitions, thus processing time is shorter for
joining individual partitions.

In Figure 10(d), we remove the stop constraint from the join
invocation condition in PR-Join. The result is almost an ideal

PR-Join curve: achieving smooth, fast representative early results,
while obtaining close to optimal end-to-end performance. This is
because SSD successfully overlaps the extra reads to temporary
storage with input reading.

Given the above results, we use 64KB extent size and remove the
stop constraint in PR-Join in the rest of the SSD experiments.

 0

2

4

6

8

10

 0 500 1000 1500 2000

n
u

m
 j

o
in

 r
e

s
u

lt
s

 (
x

1
e

7
)

time (seconds)

GRACE
Ripple

PRJoin-1M
PRJoin-64K
PRJoin-4K

 0

0.5

1.0

1.5

 0 100 200 300 400 500

n
u

m
 j

o
in

 r
e

s
u

lt
s

 (
x

1
e

7
)

time (seconds)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400

re
p

o
rt

 i
n

te
rv

a
l

(s
e

c
o

n
d

s
)

time (seconds)

PRJoin-1M
PRJoin-64K

 0

2

4

6

8

10

 0 500 1000 1500 2000

n
u

m
 j

o
in

 r
e

s
u

lt
s

 (
x

1
e

7
)

time (seconds)

GRACE
Ripple

PR-64K-nolimit

(a) Number of results over time (b) Zoom-in of (a) (c) Report interval comparison (d) Removing the stop constraint

Figure 10: SSD as temporary storage. (10GB joins 10GB, γ = 1)

 0

2

4

6

8

10

 0 100 200 300 400 500

n
u

m
 j

o
in

 r
e

s
u

lt
s

 (
x

1
e

7
)

time (seconds)

GRACE
PR-0.5

PR-1
PR-2

Figure 11: Varying γ.

 0

10

20

30

40

 0 100 200 300 400 500

n
u

m
 j

o
in

 r
e

s
u

lt
s

 (
x

1
e

7
)

time (seconds)

GRACE
PR-noremap

PR-Join

Figure 12: Skewed join keys.

 0

5

10

15

20

 0 1000 2000 3000 4000

n
u

m
 j

o
in

 r
e

s
u

lt
s

 (
x

1
e

7
)

time (seconds)

GRACE
Ripple

PR-64K-nolimit

Figure 13: 10G joins 20G.

 0.001

 0.01

 0.1

 1

 0 200 400 600 800 1000

re
la

ti
v

e
 h

a
lf

 c
o

n
fi

d
e

n
c

e
 i

n
te

rv
a

l

time (seconds)

Ripple
PR-64K-nolimit

Figure 14: Confidence interval.

Varying γ. Figure 11 varies γ for the PR-Join curve in Figure 10(d).
By default, we use γ = 1 in the other experiments. Here, we com-
pare γ = 1 with γ = 2 and γ = 0.5. As discussed in Section 4.4,
increasing γ results in faster end-to-end performance but probably
lower early result rate. This is clearly shown in the comparison of
γ = 1 with γ = 2. However, the case of γ = 0.5 not only has
longer end-to-end time, but also has lower early result rate. This is
because when γ = 0.5, PR-Join performs dramatically more reads
from temporary storage for performing the join invocations more
frequently than γ = 1. It is impossible to overlap all the SSD I/Os
with input reading, thus resulting poorer performance.

Handling Data Skews. Figure 12 shows the PR-Join performance
with join key skews using otherwise the same setting as in Fig-
ure 10(d). For the particular hash function used in PR-Join, we
generate a skewed key input according to Zipf distribution. As a
result the largest partition contains more than 1GB of data each
from A and B. There are also significant duplicates in the join
keys. Therefore, the number of join results is about 4 times of the
default configuration. In Figure 12, we compare PR-Join that de-
tects data skews and remap data to hash buckets as described in
Section 5.1, with GRACE and a variant of PR-Join that does not
do skew remapping. The latter two joins are allowed to use more
memory for joining partitions to avoid costly re-partitioning. In
other words, we compare PR-Join against two enhanced baselines.
From Figure 12, PR-join without skew remapping generates large
step-shape curves. The reasons are two-fold: (i) it takes a long time
for the smaller partitions to satisfy the join invocation condition;
(ii) the larger partitions take longer time to do a join. In contrast,
PR-Join achieves good end-to-end time and smooth early results.

Varying Relation Size. In the above experiments, we use equal-
sized input relations, where the Cartesian product space is square.
Figure 13 shows the results of joining 10GB A with 20GB B,
where the Cartesian product space is rectangle. From Figure 13,
we can reach similar conclusions as from Figure 10(d): PR-Join
achieves almost ideal performance with fast, smooth representative
early results and close to optimal end-to-end performance.

Impact on Confidence Intervals. Figure 14 compares the con-

10
5

10
6

10
7

10
8

 0 500 1000 1500 2000 2500

#
 r

e
s
u

lt
s

Time (sec)

PR-Join
RPJ

10
5

10
6

10
7

10
8

 0 50 100 150 200 250 300 350

#
 r

e
s
u

lt
s

Time (sec)

PR-Join
RPJ

(a) Slow streams (b) Fast streams

Figure 15: Comparison of PR-Join and RPJ.

vergence of confidence intervals for PR-Join and Ripple Join. The
experimental setting is the same as in Figure 10(d), where the query
is “SELECT SUM(B.val) FROM A, B WHERE A.key=B.key”.
B.val is randomly generated according to the Pareto distribution
with shape parameter 1.5. Pareto distribution has been observed in
many social and scientific phenomena. For such a query, online ag-
gregation reports the estimated sum to be in [s− ǫ, s+ ǫ] with 95%
probability, where s is the estimated sum, and ǫ is the half confi-
dence interval. The Y-axis in Figure 14 reports ǫ/s, the relative half
confidence interval. As shown in Figure 14, to converge to a rel-
ative half confidence interval of 0.001, PR-Join is 3.4x faster than
Ripple Join. This is because PR-Join can generate much higher
representative early result rate.

6.2 PR-Join on Finite Data Streams:
Simulation Study

To evaluate how PR-Join performs in a streaming scenario, we
compare it with RPJ, the state-of-the-art progressive join algorithm.
We use the same RPJ simulator, data set, and experimental settings
used in [24]. The memory/page size is fixed to 1024 bytes. Each
record has a length of 12 bytes. The available memory contains
1000 pages. Each stream contains 1 million tuples. The join at-
tribute is an integer within the range [1,10000].

In the first set of experiments, we consider both streams to have
the same data distribution (called the harmony scenario in [24]).
We consider two scenarios. In the slow streams scenario, succes-
sive tuples in a stream have a fixed inter-arrival time of 1ms (called

the reliable scenario in [24]). In the fast streams scenario, one
packet containing 100 tuples arrive every 1ms, and hence the av-
erage inter-arrival time of tuples is 0.01ms. Figure 15 shows the
results of these two experiments. As shown, the output rate of PR-
Join is significantly faster than RPJ for the both scenarios. This can
be explained by the fact that with a very small inter-tuple arrival
time, RPJ never invokes md- or dd-stages before streams terminate
(at time 2000 and 20 in Figures 15(a) and 15(b), respectively), and
hence its output rate is limited by the in-memory tuples. RPJ’s
output rate dramatically increases only after both the streams ter-
minate, at which point RPJ starts using the tuples in disk for join
execution. In contrast, PR-Join outputs results based on both in-
memory and in-disk tuples from the very beginning, and hence
yields a very high output rate from the very beginning. Even af-
ter the streams terminate, PR-Join requires less time to finish the
entire join operation, as shown in Figure 15(b). This is because i) it
reads in-disk part of each bucket exactly once (in contrast RPJ can
read some buckets twice), and ii) it uses hash join for joining in-
dividual buckets (in contrast, RPJ uses more expensive Progressive
Sort Merge Join [5]).
We have also considered a few additional experimental setups

considered in [24]. We considered a setup where one stream is 5
times faster than the other, a setup where one stream has an oppo-
site data distribution as the other (denoted as reverse in [24]), and a
setup where inter-arrival time of successive tuples follow a Zipf dis-
tribution (denoted as unreliable in [24]). In the unreliable streams
setup, RPJ and PR-Join show very similar output rates. Since unre-
liable streams occasionally suspend, the slow arrival rate becomes
the bottleneck for join processing. Hence, RPJ can invoke md- and
dd-stages to produce almost as many results as produced by PR-
Join. In all other setups (with reliable streams), PR-Join shows a
significantly higher output rate than RPJ. We omit the graphs here
for lack of space (the graphs have similar trends as Figure 15(a)).

7. CONCLUSION
In this paper, we analyze existing non-blocking joins for online

aggregation in DWBI environments, using a new metric, represen-
tative early result rate. We find that a large region of the design
space is still empty. We propose a new non-blocking join algo-
rithm, Partitioned expanding Ripple Join (PR-Join), targeting this
empty region. Both analytical study and real-machine experiments
show that PR-Join achieves an order of magnitude higher early re-
sult rates than previous non-blocking joins. Moreover, we exploit
SSDs as temporary storage for join operations. Real machine ex-
periments show that PR-Join achieves close to optimal end-to-end
performance. As a result, we are able to obtain a nearly ideal de-
sign in the design space. Furthermore, we extend PR-Join for join-
ing finite data streams. We find in our experiments that PR-Join
achieves comparable or higher performance than the state-of-the-
art algorithm specialized for this purpose.
In conclusion, PR-Join is a simple non-blocking join algorithm

with good analytical properties that can efficiently handle two very
different usage scenarios: online aggregation in DWBI systems and
finite data stream processing.

8. REFERENCES

[1] D. Agrawal, D. Ganesan, R. Sitaraman, Y. Diao, and
S. Singh. Lazy-adaptive tree: An optimized index structure
for flash devices. PVLDB, 2(1):361–372, 2009.

[2] M. Canim, B. Bhattacharjee, G. A. Mihaila, C. A. Lang, and
K. Ross. An object placement advisor for db2 using solid
state storage. PVLDB, 2(2):1318–1329, 2009.

[3] S. Chen. Flashlogging: exploiting flash devices for
synchronous logging performance. In SIGMOD, 2009.

[4] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro,
M. Stonebraker, and D. A. Wood. Implementation techniques
for main memory database systems. In SIGMOD, 1984.

[5] J.-P. Dittrich, B. Seeger, D. S. Taylor, and P. Widmayer.
Progressive merge join: A generic and non-blocking
sort-based join algorithm. In VLDB, 2002.

[6] A. Dobra, C. Jermaine, F. Rusu, and F. Xu. Turbo-charging
estimate convergence in dbo. PVLDB, 2(1):419–430, 2009.

[7] Gartner, Inc. Market share: Business intelligence platform
software, worldwide, 2007.
http://www.gartner.com/it/page.jsp?id=700410, 2008.

[8] G. Graefe. Query evaluation techniques for large databases.
ACM Comput. Surv., 25(2):73–170, 1993.

[9] G. Graefe. The five-minute rule twenty years later. In
DaMoN Workshop, 2007.

[10] P. J. Haas and J. M. Hellerstein. Ripple joins for online
aggregation. In SIGMOD, 1999.

[11] J. M. Hellerstein, R. Avnur, and V. Raman. Informix under
control: Online query processing. Data Min. Knowl. Discov.,
4(4), 2000.

[12] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In SIGMOD, 1997.

[13] IDC. The diverse and exploding digital universe.
http://www.emc.com/collateral/analyst-reports/diverse-
exploding-digital-universe.pdf, 2008.

[14] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable
approximate query processing with the dbo engine. ACM
Trans. Database Syst., 33(4), 2008.

[15] C. Jermaine, A. Dobra, S. Arumugam, S. Joshi, and A. Pol.
The sort-merge-shrink join. ACM Trans. Database Syst.,
31(4):1382–1416, 2006.

[16] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka. Application
of hash to data base machine and its architecture. New
Generation Comput., 1(1):63–74, 1983.

[17] I. Koltsidas and S. Viglas. Flashing up the storage layer. In
VLDB, 2008.

[18] R. Lawrence. Early hash join: A configurable algorithm for
the efficient and early production of join results. In VLDB,
2005.

[19] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim. A
case for flash memory ssd in enterprise database
applications. In SIGMOD, 2008.

[20] G. Luo, C. J. Ellmann, P. J. Haas, and J. F. Naughton. A
scalable hash ripple join algorithm. In SIGMOD, 2002.

[21] M. F. Mokbel, M. Lu, and W. G. Aref. Hash-merge join: A
non-blocking join algorithm for producing fast and early join
results. In ICDE, 2004.

[22] S. Nath and P. B. Gibbons. Online maintenance of very large
random samples on flash storage. In VLDB, 2008.

[23] S. Nath and A. Kansal. FlashDB: dynamic self-tuning
database for NAND flash. In ACM/IEEE IPSN, 2007.

[24] Y. Tao, M. L. Yiu, D. Papadias, M. Hadjieleftheriou, and
N. Mamoulis. RPJ: Producing fast join results on streams
through rate-based optimization. In SIGMOD, 2005.

[25] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L. Wiener,
and G. Graefe. Query processing techniques for solid state
drives. In SIGMOD, 2009.

[26] T. Urhan and M. J. Franklin. Xjoin: A reactively-scheduled
pipelined join operator. Data Eng. Bull., 23(2):27–33, 2000.

