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ABSTRACT
Dynamic information flow tracking (DIFT) is an important
tool for detecting common security attacks and memory
bugs. A DIFT tool tracks the flow of information through a
monitored program’s registers and memory locations as the
program executes, detecting and containing/fixing problems
on-the-fly. Unfortunately, sequential DIFT tools are quite
slow, and DIFT is quite challenging to parallelize. In this
paper, we present a new approach to parallelizing DIFT-like
functionality. Extending our recent work on accelerating se-
quential DIFT, we consider a variant of DIFT that tracks
the information flow only through unary operations (relaxed
DIFT ), and yet makes sense for detecting security attacks
and memory bugs. We present a parallel algorithm for re-
laxed DIFT, based on symbolic inheritance tracking, which
achieves linear speed-up asymptotically. Moreover, we de-
scribe techniques for reducing the constant factors, so that
speed-ups can be obtained even with just a few processors.
We implemented the algorithm in the context of a Log-Based
Architectures (LBA) system, which provides hardware sup-
port for logging a program trace and delivering it to other
(monitoring) processors. Our simulation results on SPEC
benchmarks and a video player show that our parallel re-
laxed DIFT reduces the overhead to as low as 1.2X using 9
monitoring cores on a 16-core chip multiprocessor.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Reliability

General Terms
Algorithms, Reliability, Security

Keywords
dynamic information flow tracking (DIFT), program moni-
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1. INTRODUCTION
Programmers and users of software care about three met-

rics: correctness, performance, and power consumption. Of
the three, correctness is paramount. However, imperfect
code consistently finds its way to market despite advance-
ments in software development tools. This is partly due
to the challenge of writing bug-free code and partly due to
software life cycle pressures that encourage software vendors
to continuously rush new functionality to market. Making
matters worse, even the most obscure bug can represent a
security vulnerability that potential attackers may exploit.

A variety of tools have been developed to help find and
even fix bugs [1–12, 14–27, 29–36]. One class of such tools—
which we call lifeguards—monitors an application as it exe-
cutes. Complementing compile-time or other pre-execution
tools, lifeguards have the advantages of (i) observing the ac-
tual dynamic state (e.g., program inputs, memory aliasing,
etc.), and (ii) hopefully limiting the damage of a problem
through either containment or on-the-fly repair. Unfortu-
nately, many of the most useful lifeguards monitor nearly
every program instruction, and as a result, slow down the
monitored program significantly (e.g., by 3–50X [19]). Ex-
amples include lifeguards that check whether each mem-
ory reference is to allocated memory (AddrCheck [17]),
each read is to initialized memory (MemCheck [19]), and
each memory location is accessed with a consistent locking
policy—i.e., there is no data-race (LockSet [24]).

Given the high overheads for lifeguards that monitor nearly
every program instruction, it is natural to consider whether
these overheads can be significantly reduced by parallelizing
the monitoring functionality. For certain lifeguards such as
AddrCheck, the parallelization is straightforward because
the monitoring work can be partitioned on a per-address ba-
sis and divided among the lifeguard processors. Program in-
structions that allocate or free blocks of memory may need to
be broadcast to all the lifeguard processors, but other than
these rare events, each lifeguard processor can independently
check memory accesses that fall within its assigned parti-
tion. Similarly, LockSet, although slightly more complex,
can be readily partitioned such that each lifeguard processor
independently checks accesses that fall within its partition.

Far more challenging to parallelize, however, are lifeguards
that track the flow of information through a monitored pro-
gram’s registers and memory locations. Such lifeguards,
which are called dynamic information flow tracking (DIFT)
lifeguards [8, 9, 20, 27, 30], are used to detect security ex-
ploits (e.g., TaintCheck [20]) as well as certain memory
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Figure 1: Example code segment, showing the infor-
mation flow dependencies.

bugs (e.g., MemCheck, as explained in Section 2). In DIFT,
certain types of instructions initiate a “taint” status on their
destination (register or memory location) and other types
of instructions are errors if they have a “tainted” source.
Most instructions simply propagate the status: if the in-
struction has one or more tainted sources, then its destina-
tion becomes tainted. Because information flows between
addresses, simple address-based partitioning (as described
for AddrCheck) is impractical. To further understand the
challenge in parallelizing DIFT lifeguards, consider the fol-
lowing example.

1.1 Challenge: Serial Dependencies in DIFT
Figure 1 depicts an example code segment (between the

dotted lines) from a monitored program. There are seven in-
structions, shown as square nodes that are labeled by their
destination. The edges between the nodes show the informa-
tion flow (serial dependencies) between instructions: an edge
from i to j exists if instruction j has a source that instruc-
tion i defines. Note that information flows to instructions 1
and 2 from two instructions occurring prior to this segment,
one that writes Mx and one that writes R1, respectively. A
sequential DIFT lifeguard would process this segment only
after processing these prior instructions, and hence would
know the status of Mx and R1 before processing the segment.
Thus, it could readily process these seven instructions ac-
cording to the propagation rule. For example if Mx were
tainted then R2 would become tainted by instruction 1, and
so on. In a parallel DIFT lifeguard, on the other hand, a
lifeguard processor P assigned to this segment would seek
to process this segment in parallel with preceding segments.
In other words, P needs to process the segment without
knowing the relevant incoming status.

Recently and independently, Nightingale et al. [21] pro-
posed an approach to parallelizing DIFT on commodity chip
multiprocessors (CMPs). Their approach is to have each
lifeguard “worker” processor scan through its assigned seg-
ment and compress it in a manner akin to mark-and-sweep
garbage collection, preserving only instructions that either
affect the taint status of locations (addresses/registers) that
are inputs to error checks or that determine the end-of-
segment taint status of any location. Then a master pro-
cessor processes the compressed logs sequentially. On their
platform, running sequential taintcheck slows down a me-
dia player benchmark by 18X. By parallelizing TaintCheck

across nine processor cores (a master and 8 workers), they
were able to reduce this slowdown to 9X.

1.2 Solution: Symbolic Inheritance Tracking
In this paper, we present a new approach to parallelizing

DIFT-like functionality. The key idea is that rather than al-
ways computing taint values explicitly after each instruction

(as is done in sequential DIFT algorithms), parallel DIFT
workers track the taint status symbolically whenever they
are unable to determine the value explicitly.

The first step is to temporally segment the execution trace
(as suggested by Figure 1) and to assign each segment to a
separate “worker” processor. Next, to overcome the chal-
lenge of processing a segment without knowing the relevant
incoming status, the lifeguard processor assigned to a seg-
ment computes the status symbolically by tracking the in-
heritance of the status: i.e. lifeguard processor P processes
instruction 1 in Figure 1 by recording that R2 inherits the
status that Mx holds at the start of the segment, etc. The
end result is an inheritance table for the segment, which
summarizes the net propagation effect of the segment, as
shown in Figure 2(a). At the end of the segment, R1 is un-
tainted (instruction 7 clears its taint value), R2 inherits its
taint value from the start-of-segment status of Mx, and so
on. Thus, given the taint status at the start of the segment,
we can compute the taint status at the end of the segment
by plugging in the appropriate starting taints; we call this
resolving an inheritance table (see Figure 2(b)). Resolving
is done by a distinct lifeguard (“master”) processor, concur-
rently with the “worker” processors who process subsequent
segments. Because the typical program segment reuses des-
tinations many times over (locality of reference), the inher-
itance table is often considerably smaller than the segment
size, resulting in potentially large speed-ups.

Unfortunately, our experiments with up to six worker pro-
cessors on SPEC benchmarks show that the parallel DIFT
lifeguard is slower than the sequential DIFT lifeguard! A
key bottleneck, not surprisingly, is the processing of binary
nodes. Because each binary node depends on the taint status
of two other nodes, which may in turn depend on the status
of other binary nodes, a single destination may inherit its
taint from (the OR of) a large number of nodes. Processing
such nodes slows down parallel DIFT considerably.

This bottleneck arising from binary nodes led us to con-
sider versions of DIFT that propagate only through unary
nodes. In our recent work on accelerating sequential DIFT [4],
we addressed the slowdowns incurred by binary nodes in se-
quential DIFT by proposing a hardware mechanism for re-
laxed DIFT, a variant of DIFT that tracks the information
flow only through unary operations. As argued in [4] and in
Section 3, such relaxed versions make sense from a lifeguard
perspective (for both TaintCheck and MemCheck). In
this paper, we show how removing the binary node bottle-
neck can be exploited for parallel DIFT. First, with relaxed
DIFT and the inheritance approach, all destinations inherit
from at most one source (as shown in Figure 2(c)), making
the master processing fast. Second, any pair of inheritance
tables for consecutive segments can be combined into a single
inheritance table. Finally, all entries of the first unresolved
inheritance table can be resolved in parallel. (See Section 3
for details.) As a result, our parallel relaxed DIFT achieves
linear speed-up asymptotically.

While the parallel DIFT algorithm is asymptotically opti-
mal, our implementation revealed that constant factors lim-
ited the performance improvement for modest numbers of
processors. In particular, a small number of workers are
unable to process the execution segments fast enough to
keep the master busy. Consequently, we have the master
lifeguard processor run sequential DIFT (with its small con-
stant factors) and use parallel DIFT as an accelerator. In



destination status destination status destination status
R1 untainted R1 untainted R1 untainted
R2 from Mx R2 tainted R2 from Mx

Mx from Mx Mx tainted Mx from Mx

My from Mx & R1 My tainted My untainted

(a) (b) (c)

Figure 2: For the code segment in Figure 1, (a) the inheritance table for DIFT, (b) the resolved inheritance
table when given that Mx is tainted and R1 is untainted at the start of the segment, and (c) the inheritance
table for relaxed DIFT.

other words, segments of the monitored program’s instruc-
tions processed using sequential DIFT are alternated with
segments processed using parallel DIFT. By balancing the
work rates, we achieve our best speed-ups for small numbers
of processors.

1.3 Contributions
The main contributions of this paper are as follows. First,

we present a new approach to parallelizing DIFT-like func-
tionality, based on symbolic inheritance tracking. We show
that while standard DIFT is challenging to parallelize, we
can obtain linear speed-ups (asymptotically) for relaxed DIFT.
Second, we present techniques for reducing the overheads in
practice, both in cases with just a few processors and cases
with more processors. Finally, we provide an extensive study
of an implementation of the algorithm in the context of a
Log-Based Architectures (LBA) system [3, 4]. LBA provides
hardware support for logging a program trace and delivering
it to other (monitoring) processors. Our simulation results
on SPEC benchmarks and a video player show that, on a 16-
core CMP, our parallel relaxed DIFT reduces the overhead
to as low as 1.2X using 9 monitoring cores.

In the remainder of the paper, Section 2 provides back-
ground information and discusses related work. Section 3
presents our algorithms. Section 4 describes our implemen-
tation in LBA. Section 5 presents our experimental study,
and Section 6 presents conclusions.

2. BACKGROUND AND RELATED WORK

2.1 Example DIFT Lifeguards
A Security Checking Lifeguard. TaintCheck [20] pro-
tects a vulnerable application from a common class of se-
curity exploits that corrupt the application’s memory with
malicious input data (e.g., via buffer overflows). By over-
writing branch target addresses (e.g., return addresses on
the stack, or the global offset table for calling shared li-
braries), a successful stack/heap overflow attack can gain
control of the application by supplying a branch or jump in-
struction with a corrupted address. By overwriting a format
string interpreted by printf-family functions, a format string
attack can write arbitrary data to an arbitrary memory lo-
cation. TaintCheck prevents such attacks by monitoring
the propagation of input data in the application’s memory.
Input data to the application (e.g via socket recv or read

system calls), are noted as suspect or tainted in a bitmap
maintained by the TaintCheck lifeguard.

Subsequently, the propagation of tainted data through the
application is carefully tracked using this bitmap, which con-
tains one bit per byte of the application’s address space as
well as one bit per architectural register. When the applica-
tion copies data from one memory location to another, the

lifeguard copies the associated taint bits. For binary opera-
tions, the result destination is tainted if at least one of the
sources is tainted. TaintCheck reports an error if tainted
data are used in a critical way, such as in jump target ad-
dresses, format strings, or system call arguments; such uses
are often good indicators of security exploits.

A Memory Checking Lifeguard. MemCheck [17, 18]
is designed to detect memory violations, including accesses
to unallocated memory regions, uses of uninitialized values,
double free’s, invalid free’s, and memory leaks. To do so,
the MemCheck lifeguard maintains two bits of metadata
for every byte in the application’s address space: one bit
which indicates if the corresponding memory location has
been allocated and one indicating if it has been initialized.

While maintenance of the allocated bits does not require
information flow tracking (accesses between malloc/free events
may be considered independently), maintenance of the ini-
tialized bits does—but for a subtle reason. Because pro-
grams frequently copy data structures that may have one
or more uninitialized elements, reporting each read/copy of
uninitialized values yields an unacceptably high number of
error messages that the programmer would consider to be
false positives. Consequently, MemCheck tracks the prop-
agation of uninitialized values in much the same way that
TaintCheck tracks taint values and defers the reporting
of uninitialized memory accesses until a critical use, such
as pointer dereferencing, conditional test determination, or
system call argument evaluation. Therefore, MemCheck

falls squarely into the category of DIFT lifeguards.

2.2 Decoupling Application Execution and
Lifeguard Monitoring

The emergence of chip multiprocessors (CMPs) has in-
spired efforts to improve software monitoring performance
by decoupling application execution from lifeguard execu-
tion [4, 21, 22, 25]. In these techniques, the application and
lifeguard concurrently execute on separate cores. While the
application runs, a log of its interesting execution events is
captured and is subsequently consumed by the lifeguard to
perform its checking functionality. We refer to these tech-
niques as log-based monitoring. Because the storage space
available for buffering the log is finite, if the lifeguard’s rate
of log consumption does not keep pace with the applica-
tion’s rate of production, the application must be repeat-
edly stalled waiting for the lifeguard. These stalls translate
to significant slowdowns in the application execution time
for the DIFT lifeguards considered in this paper.

One consequence of the decoupled nature of execution and
checking is that the lifeguard is often performing checks on
instructions the application executed thousands of cycles
earlier, and hence will detect a violation long after it has
occurred. Therefore log-based monitoring schemes rely on



OS level support for fault containment, from stalling the ap-
plication at system calls until the lifeguard catches up [4] to
checkpoint-based execution rollback [21].

2.3 Related Work
Newsome and Song [20] reported that the TaintCheck

lifeguard slowed down monitored applications by over 30X.
They implemented sequential TaintCheck using each of
two state-of-the-art dynamic binary instrumentation tools,
Valgrind [19] and DynamoRio [1]. In their experiments,
the application and lifeguard run on commodity single core
hardware. Qin et al. [23] proposed dynamic compilation
techniques that reduce the slowdown of sequential Taint-

Check to 3.6X for SPEC benchmarks. In light of the high
overhead of software-only solutions, several recent studies [8,
9, 27, 30] proposed hardware support for DIFT by modify-
ing the processor pipeline to automatically propagate taint
status and/or by enhancing registers/caches/memories with
taint status tags. None of these works considered parallel
DIFT or relaxed DIFT.

Our previous work [3, 4] proposed Log-Based Architec-
tures (LBA) that provide a set of hardware extensions to
CMPs in order to support general-purpose log-based moni-
toring for a wide range of lifeguards, including TaintCheck,
MemCheck, and a number of non-DIFT lifeguards. Our
baseline LBA system achieves a factor of 3.4X slowdown for
TaintCheck and a factor of 7.8X slowdown for MemCheck

on SPEC benchmarks. We also proposed three hardware ac-
celeration techniques beyond the baseline LBA, including a
technique for relaxed DIFT that reduces the overheard of
monitoring information flow through registers. (The other
two techniques introduce redundant event filtering and new
instructions for speeding up lifeguard metadata address trans-
lations.) Together, the three techniques reduce the slow-
down to 1.4X for TaintCheck and 3.3X for MemCheck.
While our previous work focused on sequential lifeguards,
this paper focuses on parallelization as the means to improve
lifeguard performance. Therefore, we use the baseline LBA
(without the three acceleration techniques) as the baseline
system for our performance study. The baseline LBA will
be described in further detail in Section 4.1.

As mentioned in Section 1, Nightingale et al. [21] proposed
a parallel log-based monitoring approach in which the log
is partitioned into disjoint segments that are processed in
parallel on commodity CMPs. Our approach differs by (i) its
use of symbolic inheritance tables that collapse unary chains,
(ii) its use of sequential DIFT when there are few lifeguard
processors and a parallelized master when there are more
lifeguard processors, and (iii) its consideration of relaxed
DIFT and its study under a different baseline architecture,
resulting in substantially different performance (2.1X vs. 9X
on a media player benchmark). Costa et al. [6] consider a
variant of relaxed DIFT that monitors only copy operations,
but do not report any slowdown numbers. To our knowledge,
there are no other papers that study parallelizing DIFT or
relaxed DIFT.

3. PARALLEL INHERITANCE TRACKING
In this section, we present our parallel symbolic inheri-

tance tracking algorithms for accelerating DIFT lifeguards.
We call our first parallel algorithm Original-DIFT because
it provides full information-propagation tracking. Then we
discuss the rationale of relaxing full propagation tracking

Application

Core 0

Worker 1
Core 1

Worker 2

Core 2

Master
Core 3

ITAB

BLOG

CLOG

Summary

Segment 1 Segment 2

Log partition

Figure 3: A parallel DIFT lifeguard with a mas-
ter thread and two worker threads is monitoring
an application on a quad-core log-based monitoring
system. Every worker thread computes a summary
from its assigned log segment. The master thread
consumes the summaries and performs the actual
checking.

and present our second algorithm, called Relaxed-DIFT. We
also show how to improve the performance when there are
only a few workers. Finally, we show how we can obtain
linear speedup (asymptotically) by parallelizing the master
functionality.

3.1 Algorithm General Structure
Figure 3 depicts an overview picture of our parallel DIFT

algorithms. Here, we assume an underlying log-based sup-
port (such as LBA) that extracts the execution trace of the
monitored application into a log, which can then be con-
sumed by lifeguard threads for monitoring purposes. We
further assume that the lifeguard thread can selectively read
portions of the log.1 We consider a single application thread.
For applications with multiple threads, each thread gener-
ates a log. We rely on the underlying log-based support to
provide the needed coordination between logs (this support
is beyond the scope of the paper).

The lifeguard is composed of a master thread and a num-
ber of worker threads (e.g., two workers in Figure 3), each
running on a separate core. The log is conceptually divided
into disjoint and equal-sized partitions. Each partition is
further divided into k disjoint segments if there are k work-
ers, where the ith worker is assigned the ith segment. All
workers read their assigned segments in parallel, and gener-
ate a data structure summarizing the segment. After pro-
cessing a log segment, a worker passes the generated sum-
mary to the master thread, waits until the next assigned
log segment in the next log partition is available, and starts
working on the next segment. The master thread combines
the summaries according to the log order. It updates life-
guard metadata and performs the actual checking for each
log segment.

3.2 Original-DIFT for General Propagation
For tracking general propagation, a lifeguard worker thread

generates three data structures in the summary: (i) an in-
heritance table (ITAB); (ii) a log of binary operations (BLOG);

1If log records are compressed, they may not be individu-
ally accessible. In this paper, we will assume that the log is
decomposed into chunks of reasonable sizes such that each
chunk is compressed independently. This way, the log can
be partitioned among the lifeguard threads at chunk granu-
larity.
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Figure 4: The DIFT worker algorithm.

and (iii) a log of checking operations (CLOG). Figure 4 de-
scribes the Original-DIFT worker algorithm.

At the start of the algorithm, all three structures are set
to empty. A worker processes a log segment by consuming
the log records of that segment in order. As log records are
consumed, the worker updates the ITAB so that it reflects the
state of all distinct destinations (register names or memory
addresses) encountered up to that point in the log. Each
element in the ITAB associates a unique destination with one
of three types of state information: (i) a known value (e.g.
tainted or untainted for TaintCheck, initialized or unini-
tialized for MemCheck); (ii) an address or register name,
y, indicating that the destination’s state is inherited from
the state of y at the beginning of this log segment; or (iii)
an ID identifying a BLOG entry, which means that the state
is derived from the corresponding binary operation. ITAB

supports three operations. set(x,v) sets the state of x to
v. get(x) gets the state of x. If x is an immediate, then
get(x) returns untainted for TaintCheck and initialized
for MemCheck. If x is a register or address that does not
exist in ITAB, get(x) returns x indicating that x has not
been overwritten, and therefore, it retains its original state.
A call to isknown(x) returns true if the state of x is one
of the known values. The worker records binary operations
in BLOG, and lifeguard-specific checking events (e.g., indirect
jumps, printf-like calls, and system calls for TaintCheck)
into CLOG. BLOG and CLOG are append-only structures. A call
to append(y) adds y to the end of the structure and returns
a unique identifier of the entry.

The worker is interested in three kinds of log record events:
information flow, checking, and events that explicitly set

� �

����

��������

Figure 5: Dependency graph of BLOG, CLOG and ITAB.

PC  Record

100 R2 = Mx

101 R1 = R1 + R2

102 printf (R1)
MxR2

R1

<R1,   Mx >1

102

CLOG

ITAB

BLOG

Figure 6: Simple code snippet and its summary.

state (such as socket recv system call in TaintCheck). To
track information flow, the worker obtains the destination
and sources from the log records. If there is one source, then
the state of the source is propagated to the destination. If
there are two sources, a BLOG entry is created and its ID is
recorded as the state of the destination. However, if at least
one of the two sources operands is in a known state, then
a BLOG entry is not created, instead the propagation rule is
used to derive the state of the destination. Although quite
rare, it is possible to have more than two sources in a log
record. Such cases are handled by combining the sources
into a binary tree where a BLOG entry is created for each
inner node. The ID of the entry corresponding to the root
is assigned to the destination. The CLOG records the states
of the parameters of checking events.

After processing a log segment, a worker sends the sum-
mary to the master. Because all three data structures may
include references to particular entries in the BLOG, the mas-
ter must be careful to respect the dependencies introduced
by these references. That is, the result of a BLOG entry must
be computed before any other entries which depend on it
may be processed. The dependencies are depicted in Fig-
ures 5 and 6. Note that, although the BLOG structure intro-
duces some dependencies, the ITAB and CLOG structures may
be processed in parallel. In fact, the individual elements
within those structures may also be processed in parallel.

Therefore given a summary, the master first processes BLOG
in FIFO order2 to compute the outcome state of every binary
operation. Note that a BLOG entry contains states of the
two sources of a binary operation, which are obtained using
ITAB.get() in the worker algorithm. In other words, the
states may be known values, may refer to starting states of
other addresses, or may refer to earlier binary operations.
In all three cases, the master can obtain the input states and
compute the outcome state.

Next, the master processes the CLOG and ITAB. There are no
dependencies among the entries in CLOG, therefore each entry
can be processed in parallel. The master processes the ITAB

structure in two logical steps. First, the final state value
for each entry in the ITAB is computed using the segment
starting states and the resolved BLOG entries. This step can
be done in parallel for each entry since all the writes are
to distinct locations in the ITAB. Second, the main logical

2FIFO order is not strictly required. Independent chains of
BLOG entries could be processed in parallel.



bitmap (for the full address space) is updated with the final
states for the destinations recorded in the ITAB. This step can
also be done in parallel because all the writes are to distinct
locations in the logical bitmap. At the end of this step,
the logical bitmap reflects the correct DIFT state associated
with the processing of all the records of the current segment.

3.3 Relaxed-DIFT for Unary Propagation
From the above discussion, we see that the BLOG process-

ing presents a special challenge to fully parallelizing DIFT
lifeguards. This challenge could be eliminated if, say, the
outcome of binary operations could be determined at the
time the workers handle binary operations. Such determi-
nations could be made if either (A) the lifeguard considers
binary operations to be checking operations or (B) binary
operations are considered to be non-propagating operations.
In both cases, the taint status of the destination is cleared
as a result of the operation (as shown in the Relaxed-DIFT

worker algorithm of Figure 4). The difference is that in case
(A), the worker also inserts two checking operations into
the CLOG (one for each source). We consider both cases to be
relaxations of the lifeguard; applying case (B) weakens the
lifeguard’s checks, and applying case (A) strengthens the
lifeguard’s checks. The benefit of both relaxations is that
the BLOG may be completely eliminated.

We suggest that case (A) is a reasonable relaxation for
MemCheck. This relaxation suggests that, if the input to a
binary operation is uninitialized, an error should be brought
to the programmer’s attention immediately rather than de-
ferring the message until the result propagates to a checking
operation. Consequently, this relaxation is more conserva-
tive in the sense that it catches a superset of the errors
identified by the original and it alerts the programmer at
least as early during execution as the original.

We also suggest that case (B) is a reasonable relaxation
for TaintCheck despite the fact that it provides slightly
weaker security guarantees than the original. First, how
is it weaker? Relaxed TaintCheck could potentially fail
to identify an attack if the malicious, triggering input is
subjected to non-unary computation before being exercised
by the critical operation that corresponds to the check that
would have caught the attack in the original version. Note,
however, that the attacker is unable to supply this non-unary
computation; no attacker-supplied code executes until after
the critical operation. Hence, such code must already exist
in the monitored application (in addition to the overflow
vulnerability).

Further, note that detecting such situations is challenging
for potential attackers. Third-party analysts [28] often iden-
tify overwrite-based security vulnerabilities in proprietary
software by causing a software crash through the introduc-
tion of a long input composed of a known pattern (e.g. re-
peating 0x55). A vulnerability is identified if the pattern is
observed in expected locations in the core dump. This tech-
nique relies on a direct (unary) propagation of the input.
To empirically evaluate these claims, we analyzed the first
six months of CVE security alert entries in 2007 [28]. For
the entries involving open source software, we studied the
source code patches and found that every memory overwrite
vulnerability was due to unary propagation. The security lit-
erature [7, 32] similarly reports that overwrite attacks (e.g.
buffer overflow) rely almost exclusively on direct copying.
Costa et al. [6], in fact, reported successful detection of the

infamous Slammer, Blaster, and CodeRed Internet worms
using a further-relaxed propagation model, copy-only, which
tracks propagation solely through copy operations.

The bottom line, of course, is that relaxation presents a
performance-security trade-off. As we shall see, the per-
formance benefit may be significant, so the trade-off may
be worthwhile—particularly if the overhead of running the
original algorithm is so great that the user chooses to oper-
ate with no lifeguard. However, certain applications may be
so sensitive that even small security compromises are unac-
ceptable. Consequently, we present results for both versions
of the algorithm in Section 5.2.

3.4 Achieving Speedups with Few Workers
When the number of workers is small, e.g., 1-4, our ex-

perimental study in Section 5 reveals that constant factors
limited the speed-ups. In a nutshell, the common case for
sequential DIFT takes 3 instructions per log entry (after
careful tuning), whereas the common case for a worker in
parallel DIFT takes 6 instructions (after careful tuning). To
help overcome this, we divide each log partition into an ini-
tial portion that is processed using sequential DIFT and the
remainder portion that is processed using parallel DIFT. In
other words, the parallel DIFT is used as an accelerator for
the sequential algorithm. The size of the initial portion is
chosen to minimize the overall time. For example, with 1
worker, we allocate 2/3 of the partition to sequential DIFT
and 1/3 to parallel DIFT. This variant makes sense only for
small numbers of workers.

3.5 Parallelizing the Lifeguard Master for
Linear Speedup

We have described the processing of the workers’ inheri-
tance tables as being performed by one “master” thread as
shown in Figure 3. When there are more than a few work-
ers, this processing by the master becomes the bottleneck.
Fortunately, with relaxed DIFT, each entry in an inheri-
tance table is a pair (destination, status), where the status
is “tainted”, “untainted” or “inherited” from a prior segment
(as in Figure 2(c)). Thus, the entries of this table can be
processed in parallel, segment by segment. A given segment
will be ready for processing once all prior segments have been
processed, because the metadata will be current up to the
start of the segment. An entry in the current segment is pro-
cessed by updating its status by a look-up to the metadata
table. After all segments in the table have been resolved
in this way, one final parallel step can revisit each entry in
parallel and update the status in the metadata table. See
Figure 7.

Theorem 3.1. Consider a log partition of n instructions
(RAM operations). Then the algorithm in Figure 7 runs in
O(n

p
+ p) time on a CREW PRAM.

Proof. Both the metadata and inheritance tables can
readily be implemented to support look-ups and updates in
constant time (i.e., with a constant number of operations)–
Section 4 describes one such implementation. Because each
processor reads n/p log entries and updates its own inheri-
tance table n/p times, step 3 takes O(n/p) time. Each inher-
itance table Tj has mj ≤ n/p entries (typically, mj ≪ n/p).
In step 6, each processor resolves at most mj/p entries, up-
dating its own part of Tj . In step 7, each processor writes
mj/p entries. Because a given destination occurs at most



Parallel Relaxed Taint Analysis w/ Linear Speedup:

1. Foreach log partition L in turn {

2.   divide L into p equal-sized segments

S1,S2,...,Sp
3.   each processor i (in parallel)

processes log entries in Si in order,

creating an inheritance table Ti
4.   For j=1 to p {

5.      partition the entries in Tj into p

equal-sized parts

6.      each processor i (in parallel)

resolves the status of each entry

(destination, from X) in its part

by looking up the status of X in

the metadata table

7.      each processor i (in parallel)

updates the metadata table with the

resolved status

8.   } /* for at step 4 */

9. } /* foreach at step 1 */

Figure 7: Parallel relaxed taint analysis with linear
speed-up.

once in Tj , these updates are to exclusive metadata ta-
ble entries. Considering all p iterations of the loop, the
overall time is O(

Pp

i=1
mj/p) = O(n/p + p) on a CREW

PRAM.

Thus, as long as n is Ω(p2), the algorithm in Figure 7
achieves linear speed-up. Because we consider p ≤ 16, it is
easy to select log partitions such that n ≥ p2.

The above proof ignores a subtle issue that arises with
how we represent metadata. Namely, as discussed in Sec-
tion 4.4, each 32-bit word of the application’s address space
is represented with one 8-bit byte of metadata. Thus, tech-
nically the algorithm is exclusive write with respect to a
PRAM with byte-sized memory cells. In practice, two pro-
cessors could possibly race to write two bytes of the same
word concurrently in step 7, but existing CMPs will handle
this correctly, albeit with some performance hit.

Another potential source of parallelism is that any pair
of inheritance tables Tj , Tj+1 for consecutive segments can
be combined into a single inheritance table: For each unre-
solved entry “(X, from Y )” in Tj+1, see if Y is a destination
in Tj , and if so, copy Y ’s status into X’s status. In addi-
tion, add to Tj+1 any entry with a destination NOT in Tj ,
and then delete Tj . Such a step doubles the segment size
for the inheritance table, and can be repeated log p times to
obtain a single inheritance table for the entire table, where p
is the number of initial segments (and hence the number of
processors). With each such doubling step we also reassign
the processors so that each new pair of segments (of double
the previous size) is assigned all of the processors assigned
initially to the component segments.

The above method is fast, but incurs work O(n log p). If
we have the further assumption that the number of distinct
destinations in a segment of m instructions is at most mα for
some constant α < 1 (because of locality of reference), then
this method enables linear speed-up for any n ≥ p log p,
because the parallel time per step becomes geometrically
decreasing.

Finally, we note that similar bounds are not likely for the

original DIFT for the following reason. Once we have the
entire log for a partition, we have a directed graph with
its input values known (i.e., tainted or not tainted), and
DIFT can be viewed as computing DAG reachability from
the tainted inputs. Thus, the problem of constructing an
efficient NC algorithm (i.e., a polylog time algorithm that is
within a polylog factor of linear work) suffers from the well-
known transitive closure bottleneck (see, e.g., [13]). With
relaxed DIFT, in contrast, the graph is a forest of trees with
the inputs at the roots. In theory, parallel tree contrac-
tion and related techniques [13] could be used for the prop-
agation. However, in practice, such techniques suffer from
the high costs of performing extensive pointer manipulations
and contending for cache lines and locks.

4. IMPLEMENTATION OF A PARALLEL
TAINT ANALYSIS LIFEGUARD

In this section, we apply our parallel DIFT algorithms
to taint analysis. We describe the parallelization of the
TaintCheck lifeguard on Log Based Architectures (LBA) [4],
a platform that supports log-based monitoring.

4.1 Log Based Architectures (LBA): A
Log-Based Monitoring Platform

We choose the baseline LBA [4] as our underlying log-
based monitoring platform. LBA augments every processor
core of a chip multiprocessor (CMP) with a log producer
component and a log consumer component. To monitor an
application, we enable the log producer component on the
core running the application, and enable the log consumer
component on all the cores running the lifeguard threads.

The log producer component captures an execution trace
of the application and writes instruction records into a log
buffer in the last level on-chip cache (e.g., L2 cache if the
CMP has two levels of caches). (The log buffer takes 1/8 of
the cache in our experiments in Section 5.) The log con-
sumer component reads instruction records from the log
buffer and delivers it to the lifeguard thread. The appli-
cation (lifeguard) core stalls if the log buffer is full (empty,
respectively). To support parallel DIFT lifeguards, we en-
hanced LBA to enable multiple log consumer components
to read different portions of the log buffer.

LBA makes an important optimization at the consumer
component: It supports hardware-based event-driven life-
guard execution. The goal is to remove the software loop
that retrieves and interprets each log record (such a loop is
depicted in Figure 4). Because the real work performed for a
log record can be as little as a few instructions, the overhead
of such a loop can be very significant in or even dominate
the lifeguard execution time. Given this optimization, a life-
guard is implemented as a set of event handlers, which are
registered with the LBA consumer component. The con-
sumer component repeatedly retrieves the next log record,
determines its event type, and calls the handler registered
for this event type.

4.2 Synchronization Between Lifeguard
Master and Workers

As described in Section 3.1, workers generate summaries
of log segments, which are processed by the master. At life-
guard initialization, the master forks a number of workers
as child processes. For each worker, the master allocates a



Table 1: Simulation Setup.
Simulator description

Simulator Virtutech Simics 3.0.22
Extensions Log capture and dispatch
Processor core in-order scalar
Number of cores 8 or 16
Cache simulation g-cache module
Target OS Fedora Core 5 for x86

Simulation parameters

Private L1I 16KB, 64B line, 2-way assoc, 1-cycle access lat.
Private L1D 16KB, 64B line, 2-way assoc, 1-cycle access lat.
Shared L2 64B line, 8-way, 10-cycle access lat., 4 banks
L2 Size 2MB (for 8 cores) / 4MB (for 16 cores)
Main Memory 200-cycle latency
Log buffer 1/8 of L2 size, assuming 1B per compressed record [4]

shared memory region called the Summary Page Pool (SPP)
for the worker to generate its summaries. The SPP is di-
vided into equal-sized pages. The pages are accessed (for
writing by the worker, and for reading by the master) in a
sequential order starting with the first page. Each worker
process repeatedly processes a log segment and writes the
summary into the next SPP page. Semaphores are used for
synchronizing SPP page accesses.

4.3 Parallel Taint Analysis: Worker
Workers perform the algorithm in Figure 4, except that

the software event processing loop is replaced by a set of
event handlers. For example, each if test in the loop corre-
sponds to several LBA-defined events. The different switch

cases also correspond to separate LBA-defined events. There-
fore, the event handlers roughly correspond to the if/case

code segments. In the following, we mainly focus on the de-
scription of the three data structures that summarize a log
segment.

ITAB. The inheritance table ITAB is conceptually an index
structure that maps distinct addresses/registers to state in-
formation. The tracking is done at application byte granu-
larity. The state records for registers are represented using a
fixed-sized array. To reduce its memory footprint, the index
for addresses is implemented as a two-level page-table-like
structure, where the second level structure is allocated on
demand if there is a destination address in the correspond-
ing range. This structure maps every application word ad-
dress to a 4-byte state record pointer, which is initialized
to null. When an application word (or part of the word) is
used as the destination of an operation for the first time,
the worker allocates four contiguous state records, each per
application byte, and sets the word’s corresponding pointer
to the starting address of the first state record. The two-
level structure is accessed privately by every worker, while
the state records are allocated in pages in the SPP. A state
record is a tuple of <DestAddr, Type, InheritFrom>. DestAddr

is the destination address. Type is one of TAINTED, UN-
TAINTED, ADDR (inherits from a memory address), REG
(inherits from a register), and BINOP (inheritance infor-
mation derived from a binary operation). For ADDR and
REG, InheritFrom holds an address or a register name, re-
spectively. For BINOP, InheritFrom holds a pointer to the
corresponding BLOG entry.

BLOG. The binary log BLOG is allocated in the SPP. Each
BLOG entry is a tuple of <Src0-Type, Src0-InheritFrom, Src1-

Type, Src1-InheritFrom>, which represents the inheritance
information of the two sources of the binary operation. This
inheritance information has the same semantics as that of
the ITAB state record.

CLOG. The checking log CLOG is also allocated in the SPP.
CLOG records the state information (<Type, InheritFrom>)
of parameters of checking operations (e.g., indirect jumps,

system calls, printf-like calls). The program counter (PC) is
also included in the entry so that the master, if it detects a
security violation, can report the PC in its error messages.

4.4 Parallel Taint Analysis: Master
The master process follows the algorithm described in Sec-

tion 3.2 for processing the summaries of log segments accord-
ing to the log order. The taint tracking metadata structure
in the master is implemented as a two level table that holds
taint values of the memory bytes in the application’s address
space. For space efficiency, the second level structure is al-
located only if the corresponding application addresses are
used. Because 4 byte accesses are the most frequent, we op-
timize the metadata access for 4-byte application memory
accesses as follows. We use 2 bits to represent the meta-
data for each byte, so that 4 bytes of application memory is
represented by a meta data byte. Taint information for the
architectural registers are stored in a small fixed-sized array.

Although the CLOG and ITAB could be processed in parallel,
our current implementation does not exploit this opportu-
nity.

4.5 Parallel Relaxed Taint Analysis
The implementation of the master and worker algorithms

are similar to that of the original parallel taint analysis de-
scribed above except for the handling of binary operations.
The result of a binary operation is set to be UNTAINTED,
as described in Figure 4. Moreover, there is no need for the
BLOG.

5. PERFORMANCE EVALUATION
In this section, we evaluate our parallel DIFT lifeguard

algorithms through simulations. We begin by describing the
experimental setup.

5.1 Experimental Setup
Simulation Methodology. We evaluate our algorithms
on the baseline Log-Based Architecture (LBA) systems, as
described in [4]. We simulate LBA by extending the Vir-
tutech Simics full-system simulator with log capture and
dispatch components. The simulation parameters are shown
in Table 1. We model chip-multiprocessor systems with pri-
vate L1 caches and a shared L2 cache. Each processor core
is an in-order single-issue scalar core. We use an 8-core con-
figuration with 2MB L2 cache and a 16-core configuration
with 4MB L2 cache. The log buffer for application instruc-
tion records is configured to be 1/8 of the entire L2 cache.
LBA’s compression mechanism can achieve about 0.8 bytes
per instruction record. We conservatively assume 1 byte
per log record in the simulation. The application and the
lifeguard are running as two processes on a 32-bit Fedora
Core operating system modified to recognize the association
of lifeguards and applications. The application core stalls if
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Figure 8: Application slowdown with Relaxed-Hybrid

and Original-Hybrid monitoring (1 worker, 8-core con-
figuration).

the log buffer is full, while the lifeguard cores stall if the log
buffer is empty. The simulator models the detailed cache
contention effects between lifeguard cores and application
cores.

Lifeguard Designs. The lifeguard design has two orthogo-
nal options: (i) original taint tracking (Original) vs. relaxed
taint tracking (Relaxed); (ii) the lifeguard master only re-
solves inheritance tables produced by the workers (Pure) vs.
it also processes part of the log (Hybrid). We implemented all
four varieties of the lifeguard. We examine the first option
in Section 5.2, and the second option in Section 5.3. We did
not implement the techniques in Section 3.5 for parallelizing
the master functionality.

Benchmarks. We choose CPU-intensive benchmarks, thus
making it more difficult for lifeguards to keep up than with
I/O-intensive applications. Our benchmarks include 10 of
the SPEC2000 integer programs running the test input. We
also studied the Mplayer version 1.0rc2 video player, with
the trailer of the movie National Treasure as input. We
simulated all benchmark runs to completion.

5.2 Relaxed vs. Original: Performance
Benefits of Relaxing Taint Propagation

We begin our performance analysis by quantifying the
benefits of a key feature of our algorithm: relaxing DIFT
such that we need to track dependencies only through unary
operations rather than binary operations. Figure 8 compares
the performance of the Relaxed-Hybrid and Original-Hybrid

algorithms, where the Y-axis shows the slowdown compared
to the execution time of the benchmark without lifeguard
monitoring. To err on the conservative side, we run our
parallel algorithm with only a single worker thread, since
this maximizes the partition size (thereby minimizing the
expected number of unknown partition inputs per instruc-
tion). In Figure 8, the Original bars are each broken down
into two components: (i) time spent processing the binary-
operation log in the lifeguard master (BINOP), and (ii) the
remainder of the time (OTHER). As we see in Figure 8, the
Relaxed algorithm offers significant performance gains over
the Original algorithm in several cases, and this improve-
ment is due to eliminating the work associated with binary
operations (BINOP). For the benchmarks where the BINOP time
is small, we observe that most of the binary operations had

at least one input in a known (TAINTED/UNTAINTED) state. For
larger numbers of workers, we observe a similar (and some-
times even larger) performance gain from the Relaxed al-
gorithm. Hence we focus on the Relaxed algorithm in the
remainder of our evaluation.

5.3 Pure vs. Hybrid: Performance Benefits of
Reducing Master Idle Time

Recall that in the Pure model, the lifeguard master thread
only resolves inheritance tables produced by the workers,
and in the Hybrid model, it also processes part of the log
for the sake of not remaining idle. Intuitively, we expect
the master thread to waste more of its time in an idle state
when there are fewer worker threads.

Figure 9 compares the performance of Relaxed-Pure vs.
Relaxed-Hybrid using eight of the SPEC benchmarks. The
Y-axis shows the execution time of Relaxed-Pure normal-
ized to that of Relaxed-Hybrid as we increase the number of
worker threads from one to six. As we see in Figure 9, the
Relaxed-Hybrid algorithm does indeed offer significant per-
formance gains (up to 2.9X for gcc) relative to Relaxed-Pure

when there is only a single worker thread. As more worker
threads are added, the performance gap decreases; with six
workers, the two schemes perform nearly the same because
the master thread is saturated with processing inheritance
tables from the workers. In summary, when the number
of available cores is limited such that there are few worker
threads, the Relaxed-Hybrid approach offers significant ad-
vantages; with six or more workers in our experiments, how-
ever, the Relaxed-Pure approach offers similar performance
and it enjoys the advantage of being simpler to implement.
Hence, we focus on Relaxed-Pure in the remainder of our
evaluation.

5.4 Bottom Line Performance
Our final set of experiments studies the bottom line per-

formance of our parallel lifeguard for relaxed taint propaga-
tion, measured two ways.

First, in Figure 10, we show the speed-up of our parallel
lifeguard (Relaxed-Pure) over the sequential lifeguard (Re-
laxed) for relaxed taint propagation. We consider all ten
benchmarks in our study. We used the 16-core configura-
tion and evaluated Relaxed-Pure with 4, 6, and 8 workers.
As shown in Figure 10, we achieve 1.2X–3.4X speedup with
8 workers.

Second, in Figure 11, we show the application slowdown
resulting from running our parallel lifeguard (Relaxed-Pure).
Recall that the application is stalled whenever the log buffer
fills up, so the application’s running time is dominated by
the time for the lifeguard (even though the lifeguard is run-
ning in parallel with the application). We again consider all
ten benchmarks under the 16-core configuration. For each
benchmark, we report the lifeguard overhead, i.e., the run-
ning time with the lifeguard executing normalized to the
running time with no lifeguard. As a point of comparison,
the overhead for sequential relaxed taint propagation (Re-
laxed), averaged over our benchmarks, is 3.4X, the same as
for sequential full taint propagation.

As shown in Figure 11, the lifeguard overhead of Relaxed-
Pure using 8 workers is as low as 1.2X (vpr, crafty). How-
ever, some benchmarks experience significant slowdowns (up
to 3.1X for parser). We observed that for these benchmarks
with high overheads, the workers are unable to reduce signif-
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Figure 11: Application slowdown with
Relaxed-Pure using 8 workers.

icantly the amount of work done by the master. For example
the average number of ITAB entries per log segment for parser
is 3X that of crafty. Therefore the master, which executes
sequentially in our implementation, becomes the overall bot-
tleneck. Parallelizing the master, as outlined in Section 3.5,
would help mitigate this bottleneck. The slowdown for our
non-SPEC benchmark, Mplayer, was 2.1X, in the middle of
these two extremes.

While a direct comparison of our approach with Speck [21]
cannot be made because of the differences in platforms, our
study does include the one benchmark (Mplayer) used in the
Speck study of propagation tracking. For this benchmark,
we reduced the slowdown for Mplayer from 3.6X to 2.1X
with 8 workers, while Speck reduced the slowdown from 18X
to 9X with 8 workers.

6. CONCLUSIONS
In this paper, we have proposed and evaluated a novel

form of parallel dynamic information flow tracking (DIFT)
that (1) uses inheritance tables to track symbolically the net
effects of segments that are processed in parallel by worker
threads, and (2) relaxes DIFT such that information flow
needs to be tracked only through unary operations. Our
experimental results demonstrate speedups of 1.5X to 3.4X
with 8 worker threads for seven of the ten SPEC bench-
marks that we study, which is a positive result considering
how difficult it is to speed up this “embarrassingly sequen-
tial” application. We observe that our relaxed DIFT offers
significant performance advantages over the original DIFT
in several cases (e.g., a factor 3X improvement for twolf)
by reducing the work associated with tracking information
flow through binary operations. We also observe that our



hybrid algorithm offers significant performance advantages
when the number of cores is limited, because it reduces idle
time on the master thread. Perhaps most importantly, we
have reduced the overall slowdown of DIFT to as low as
1.2X for some benchmarks, approaching our goal of making
it practical to run DIFT continuously on deployed code.
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