
Log-Based Architectures:
Using Multicore to Help Software Behave Correctly

Shimin Chen∗ Phillip B. Gibbons∗ Michael Kozuch∗ Todd C. Mowry∗,†

∗Intel Labs Pittsburgh †Carnegie Mellon University

ABSTRACT
While application performance and power-efficiency are both im-
portant, application correctness is even more important. In other
words, if the application is misbehaving, it is little consolation that
it is doing so quickly or power-efficiently. In the Log-Based Ar-
chitectures (LBA) project, we are focusing on a challenging source
of application misbehavior: software bugs, including obscure bugs
that only cause problems during security attacks. To help detect and
fix software bugs, we have been exploring techniques for accelerat-
ing dynamic program monitoring tools, which we call "lifeguards".
Lifeguards are typically written today using dynamic binary instru-
mentation frameworks such as Valgrind or Pin. Due to the over-
heads of binary instrumentation, lifeguards that require instruction-
grain information typically experience 30X-100X slowdowns, and
hence it is only practical to use them during explicit debug cycles.
The goal in the LBA project is to reduce these overheads to the
point where lifeguards can run continuously on deployed code. To
accomplish this, we propose hardware mechanisms to create a dy-
namic log of instruction-level events in the monitored application
and stream this information to one or more software lifeguards run-
ning on separate cores on the same multicore processor. In this pa-
per, we highlight techniques and features of LBA that reduce the
slowdown to just 2%–51% for sequential programs and 28%–51%
for parallel programs.

Categories and Subject Descriptors
C.0 [General]: System Architectures; D.2.5 [Software Engineer-

ing]: Testing and Debugging–Monitors

General Terms
Algorithms, Design, Experimentation, Reliability, Security

Keywords
Program monitoring, software bugs, lifeguards, log-based architec-
tures, parallel monitoring

1. INTRODUCTION
The Log-Based Architectures (LBA) project is a joint research ef-
fort involving researchers at Intel Labs Pittsburgh and Carnegie
Mellon University. The inspiration for the project was the observa-
tion that with the industry-wide shift to multicore processing, par-
allel programming is the path to high performance in the immediate
and forseeable future, but parallel programming is also notoriously
error-prone. History has taught us that as difficult as it is to avoid
software bugs in sequential code, bugs are even more problematic
in parallel code.

In addition to the obvious frustration that software bugs cause for
end users when the system misbehaves, we are concerned about the
impact of bugs for two other reasons. First, even obscure bugs that
would rarely cause problems under normal circumstances may be
exploited by hackers as security vulnerabilities. Second, although
large data centers can successfully use redundancy to make them-
selves fairly resilient to hardware failures, the replicated nature of
software means that a single bug can potentially take down an en-
tire data center all at once.

The traditional approach to identifying the root cause of a soft-
ware bug is that once the application crashes, the programmer then
attempts to re-run the software—this time with debugging tools
turned on—and reproduce the same conditions that led to the prob-
lem. Unfortunately, for parallel software (and especially in an inter-
active networked environment), it may be extremely difficult (and
perhaps even impossible) to reproduce the exact timing and se-
quence of events that triggered the bug. Although specialized soft-
ware testing platforms might be built to carefully control the timing
and interleaving of system events, a number of important bugs do
not reveal themselves until the software is run at full-scale on a live
production system. Hence our goal is to diagnose the root cause of
a problem the first time that it occurs on a live production system.

To accomplish this goal, we have developed a new approach for
executing instruction-grain lifeguards [22, 24, 25, 27, 30], which
are software tools that run dynamically (i.e. online) with the ap-
plication, performing sophisticated instruction-by-instruction anal-
ysis of the running application to identify bugs and sometimes even
repair them (or limit their damage). Compared with static tools that
analyze code before it executes [4, 11, 12], lifeguards typically re-
port fewer false-positives, because they can directly observe the
monitored application’s dynamic behavior (e.g., pointers, control
flow, run-time inputs, etc.). Compared with post-mortem tools that
analyze code after it crashes [20, 38, 39], lifeguards may be able
to capture software bugs earlier (i.e. before a crash) and more ac-
curately (based upon instruction-grain dynamic behavior from the
start of execution, and not just from a recent window of activity).

While instruction-grain lifeguards offer compelling advantages, their
main disadvantage is run-time overhead. These tools are typically
implemented today using a dynamic binary instrumentation (DBI)
framework [2, 18, 24], and the corresponding slowdowns for the
monitored applications often range from 30X to 100X or more [24,
31].

We aim to dramatically reduce the run-time overhead of instruction-
grain lifeguards to the point where it would be practical to run them

84

on live production systems to find software bugs. We propose a log-
driven approach whereby the hardware captures a per-instruction
log from a monitored application and streams it to another core on
the same chip, where it can be processed on-the-fly by any software
lifeguard. Efficient log streaming is achieved by writing and read-
ing compressed log records into a circular memory-mapped buffer
that resides in on-chip cache memory. Through a combination of
novel hardware and software support, we have been able to reduce
the overhead of instruction-grain lifeguards by more than an order
of magnitude to a 1.02X-1.51X slowdown for sequential applica-
tions and a 1.28X-1.51X slowdown for parallel applications.

While there have been a number of hardware proposals for accel-
erating a specific class of lifeguards (e.g., lifeguards for memory-
access monitoring [32,36,41], data-race detection [40], or informa-
tion-flow tracking with simple metadata [9,10,33,35]), these mech-
anisms are useful only for the narrow class of lifeguards that they
support. LBA, in contrast, provides a framework for accelerating
arbitrary lifeguards.

The remainder of this paper is organized as follows. Section 2 pro-
vides background on the structure and requirements of instruction-
grain lifeguards. Section 3 describes our log-driven architecture.
Sections 4 and 5 describe our techniques for improving the perfor-
mance of lifeguards and enabling them to efficiently monitor paral-
lel software, respectively. Finally, Section 6 presents conclusions.

2. LIFEGUARDS
We focus on the following diverse instruction-grain lifeguards that
detect memory violations, security exploits, and data races.

AddrCheck checks whether every memory access is to an allo-
cated region of memory [21]. By intercepting memory allocation
routines such as malloc and free, AddrCheck maintains one-bit
of metadata for each byte of the monitored application’s address
space that indicates whether or not the byte is currently allocated.
AddrCheck checks these metadata for every memory access, and
raises an error if the accessed byte is not currently allocated.

MemCheck extends AddrCheck to detect also the use of uninitial-
ized values [22,23]. For this purpose, it maintains one “initialized”
bit per address byte, in addition to the “allocated” bit. It also main-
tains state per register indicating which bytes in the register contain
“initialized” values. A memory load of an uninitialized value is
not an error in itself (for example, copying a partially initialized
structure). Rather, MemCheck raises an error only if uninitialized
values are dereferenced as pointers, used in conditional tests, or
passed into system calls. To achieve this, MemCheck tracks the
propagation of uninitialized values in the monitored application:
For every executed instruction, the destination becomes uninitial-
ized if at least one of the sources is uninitialized.

TaintCheck detects memory overwrite-related security exploits,
such as buffer overflow and format string attacks [25]. The meta-
data consist of (i) one “tainted” bit per address byte of the moni-
tored application and (ii) state per register indicating which of its
bytes are “tainted”. TaintCheck marks all unverified program input
data, such as data from the network, as suspect, or tainted. Subse-
quently, it carefully tracks the propagation of tainted data through
the application: For every executed instruction, the destination be-
comes tainted if at least one of the sources is tainted. It raises an
error if the application uses tainted data in critical ways, such as in
jump target addresses, printf-like format strings, or system call ar-

��������	
���
����
�
�� ����
�
�	����
����
�
��

������ ������

���
����
��
�������

�������
�������

������
���

���	��

������
���
�������
�

�������
����������
�
��

���������	
 ���
�����

�����

����	

�

��

� � � �

�

�

�

�

�����

������
�
��

	
������

����

�

���������
����
�
��

Figure 1: Overview of LBA’s logging mechanisms.

guments. We also study a TaintCheck variant that records a history
of the taint propagation, using an 8-byte metadata structure (4-byte
“from” address, 4-byte instruction pointer) per 4-byte application
word. Upon detection, this lifeguard can reconstruct a taint propa-
gation trail.

LockSet detects data races by checking whether the monitored ap-
plication follows a consistent locking policy [30]. For each thread
t, LockSet maintains the current set St of locks held by the thread.
For each shared memory location m, it maintains a candidate set
Sm of locks. LockSet knows m to be a shared location if a second
thread accesses it; at this moment, Sm is initialized with the cur-
rent lock set of the second thread. Afterwards, whenever a thread t
references m, Sm is set to Sm ∩St. If Sm ever becomes empty, no
consistent common lock set protects accesses to m, and LockSet
raises an error. A LockSet structure is a list of lock addresses. For
every 4-byte word in the monitored application, the metadata are a
32-bit record consisting of a compressed 30-bit pointer to the ac-
tual LockSet and a 2-bit state (indicating virgin, exclusive, shared
read-only, or shared read-write [30]) for the location.

Common Lifeguard Characteristics. From the above lifeguards
and others we have studied, one can extract three common lifeguard
characteristics:

C1. A lifeguard maintains a data structure that records state infor-
mation (“metadata”) about the monitored application’s ad-
dress space (e.g., which addresses have been allocated or
tainted). There is a 1-1 mapping between application data
and lifeguard metadata at some granularity (e.g., each appli-
cation byte maps 1-1 to a metadata bit).

C2. A lifeguard is interested in observing many, but possibly not
all, application execution events. Some of the events are
needed solely to maintain the metadata. For other, “interest-
ing” events, the lifeguard checks the current metadata state,
and reports an error if an anomaly has occurred.

C3. There is a mapping from monitored application execution
events to specific lifeguard functionality (“handlers”) based
on the event type (load, store, etc.); these handlers are in-
voked in response to the sequence of execution events.

3. LBA ARCHITECTURE
The general-purpose, hardware-supported logging mechanism that
we propose for LBA is well-matched to the lifeguard characteris-
tics described above (C1, C2, and C3). Figure 1 illustrates the main
components of this design. The components shown are sufficient to
monitor single-threaded applications and will be described in this
section. Additional mechanisms are needed to track the ordering of
events in a multithreaded application running in parallel on multi-
ple cores; these will be described in Section 5.

85

The zoom-in portion of Figure 1 depicts that a software lifeguard
running on core 2 is monitoring an unmodified application running
on core 1. Also shown in the picture are four sets of components:
log producer, log transport, log consumer, and accelerator. The
optional accelerator components are described in Section 4.

3.1 Log Production
As each application instruction retires, the core on which the ap-
plication is executing (core 1 in Figure 1) captures a log record
for that instruction event (C2). Instruction event records are tu-
ples consisting of the program counter, the instruction type (C3),
the virtual memory address of any memory operands (C1), and an
indication of which operands were sources and which were destina-
tions. LBA also includes support for software-inserted annotation
records. This type of record is injected into the log by wrapped
shared library calls, for example, to indicate high-level events of
interest to the lifeguard (e.g., malloc library calls).

The stream of log records is compressed using a value predictor
based (e.g. [3]) compression engine. The resulting log records may
average less than one byte per record [5].

3.2 Log Transport
The mechanism for delivering the stream of compressed log records
to the lifeguard core may vary by implementation. For example, a
dedicated interconnect could be used to transport the log, if avail-
able. In our current design, however, we assume such special-
ized transport assists are unavailable. Rather, we leverage an ex-
isting data channel connecting the application and lifeguard cores,
namely the shared on-chip cache.

In a multicore processor, shared on-chip cache structures can be
used for the log transport channel. The compressed stream is writ-
ten to a circular memory-mapped buffer allocated by system soft-
ware, which fits within an appropriately small fraction of the largest
physically-shared on-chip cache. Delivery is effected when the de-
compression engine on the lifeguard core reads the log data back
out of this buffer. Assuming a sufficiently associative write-back
cache, this memory-backed design enables easy system manage-
ment of log buffers (e.g. across context switches) without placing
undue pressure on off-chip memory bandwidth. To reduce pollu-
tion of L1 caches, an implementation should provide special log
buffers to bypass the L1 caches or use cache accesses with explicit
replacement hints [17]. To manage producer-consumer coordina-
tion of the log, we employ the techniques described by Mukher-
jee et al. [19].

3.3 Log Consumption
After transport, the log is decompressed and delivered to the life-
guard core (core 2 in Figure 1) where the uncompressed event
records are placed into a log dispatch buffer. These records are then
processed, in-order, by passing each event record to an appropriate
handler function in the lifeguard (C3). While the lifeguard could
fetch each record, decode it, and dispatch it to the appropriate han-
dler, such a software-only fetch-and-decode loop would slow down
lifeguard processing.

As an alternative, we propose that the LBA hardware provide a
mechanism for event-driven execution. To enable this, the lifeguard
populates an event type configuration table (ETCT) and registers it
with the lifeguard core. This table is indexed by the log event type
and contains an event handler entry point for every interested log

event type. Every handler ends with a special instruction: nlba
(next LBA event). This proposed instruction indicates that the pre-
vious handler has finished and the core should now jump to the
handler address associated with the next event. Certain event val-
ues (such as application virtual addresses) that are inputs to the life-
guard handler are automatically placed in registers for ready han-
dler access.

Note that the design shown in Figure 1 enables the application and
lifeguard to operate asynchronously. In normal operation, the log
buffer contains at least a few unprocessed records; the ETCT design
enables the microarchitecture to take advantage of this situation by
reading ahead in the log and determining the next handler(s) that
will be invoked—thereby avoiding potential mispredicted-branch
penalties.

Each invoked lifeguard handler consists of arbitrary code to process
an event of a specific type, subject to the above input conventions
and ending with nlba. By C1, the typical handler uses the (appli-
cation) virtual addresses and registers in the (application) event to
compute corresponding (lifeguard) metadata addresses and access
the metadata. We use an array to store the metadata for registers,
and a two-level table to store the metadata for virtual addresses,
both allocated in the lifeguard’s address space. The two-level ta-
ble is an array of pointers to subarrays of metadata values. The
memory footprint of the metadata is reduced by allocating only
subarrays corresponding to virtual addresses allocated by the ap-
plication. Moreover, because most lifeguards use only 1 or 2 bits
per application byte, the memory footprint and the working sets of
the lifeguard are typically smaller by a corresponding factor of 8
or 4. The smaller working sets imply a corresponding decrease in
the cache misses and memory bandwidth consumption of the life-
guard relative to the application. Finally, because the application
and lifeguard run on separate cores, they do not compete for per-
core resources such as L1 caches. All these reasons serve to reduce
the lifeguard’s processing time and its impact on application per-
formance.

3.4 System Support
We rely on operating system support to manage several aspects of
the system such as forming the associations between lifeguards and
applications, allocating transport channels for the logs, scheduling
the lifeguard and application processes efficiently, spawning child
lifeguards to monitor child processes of the application, and provid-
ing mechanisms for containing failures in the monitored process.
The operating system is also responsible for maintaining appropri-
ate system protections. For example, less-privileged processes typ-
ically should not have access to the logs of more-privileged ones.
In particular, logging is typically suspended when transitioning into
the kernel and managed carefully during context switches.

Typically, when an application process is created, system software
will determine if a lifeguard should be associated with it. If so, (i)
a lifeguard process is created, (ii) the application’s process control
block is marked as logging_enabled and tagged with the events of
interest identified by the lifeguard, and (iii) a log transport channel
is allocated, and the channel’s identifier is recorded in the process
control blocks of the application and the lifeguard. Whenever the
application process is subsequently scheduled for execution, prior
to transferring control to the application, the logging hardware is
enabled to record the specified events into the specified channel.
It is advantageous to co-schedule the lifeguard process with the
application process, although not strictly required.

86

An important aspect of our design is that the log records are typi-
cally buffered by the transport mechanism, enabling the lifeguard
to make progress when the application has encountered a long la-
tency event or vice-versa. One effect of this buffering is that the
lifeguard (application) will stall if the finite buffer becomes empty
(full). Another effect is that lifeguards may detect an event some
non-trivial time after the event has occurred. This detection-delay
may be acceptable for detection-only lifeguards that seek to merely
provide the user with a warning that the violation of some invari-
ant has been observed. For security lifeguards, however, the delay
between violation and detection presents a problem; consequently,
the system software executes security-sensitive applications in con-
tainment mode. In this mode, system software contains any damage
that may be done by a corrupted application, by stalling each sys-
tem call issued by the application until the lifeguard affirms that no
corruption has been detected. Similar system call-based contain-
ment approaches can be found in the literature [13–15, 26].

3.5 Performance Gains from LBA’s Logging

Mechanism
The hardware-supported logging mechanism described in this sec-
tion accelerates a broad class of instruction-grain lifeguards, by fo-
cusing on the characteristics common to many lifeguards (C1–C3).
It reduces or eliminates most of the key overheads of software-
only (DBI) solutions such as (i) overheads of running the applica-
tion and the lifeguard functionality on the same core (e.g., stealing
CPU cycles, saving/restoring registers, polluting L1 caches) and
(ii) overheads of mimicing hardware state in software (e.g., pro-
gram counter tracking, effective address calculation). Overall, our
simulation study with CPU-intensive benchmark programs shows
that LBA’s logging mechanism reduces the performance overhead
of instruction-grain lifeguards from 30X–100X to 3X–5X [5]. In
the next section, we discuss optimizations that reduce this overhead
even further.

4. OPTIMIZING PERFORMANCE FOR

INSTRUCTION-GRAIN LIFEGUARDS
We have developed three approaches to reduce lifeguard overhead
below the 3X–5X slowdowns achieved by LBA’s logging mech-
anism. These approaches—(i) hardware accelerators [6, 7] (Sec-
tion 4.1), (ii) compiler optimizations [28] (Section 4.2), and (iii)
parallelizing the lifeguards [29] (Section 4.3)—optimize the per-
formance of instruction-grain lifeguards, and are applicable beyond
just the LBA framework (e.g., hardware accelerators are useful for
DISE [8] and compiler optimizations for Valgrind [24]).

4.1 Hardware Accelerators
We identify three main sources of overhead for a wide range of
instruction-grain lifeguards, and propose three flexible hardware
accelerators for reducing the overhead, as depicted in Figure 2:

• Inheritance Tracking (IT) for Propagation-Style Metadata Up-
dates. For dynamic information tracking (DIFT) lifeguards
(e.g., TaintCheck and MemCheck), one key source of over-
head is propagation tracking [33]: Given an executed ap-
plication instruction I , the metadata of I’s destination loca-
tion is computed as a combination of the metadata of all I’s
source locations. The challenge is to support a wide range
of lifeguard metadata organizations. Note that propagating
metadata values in hardware would be lifeguard-specific be-
cause the hardware would need to understand the specific

malloc/free - R
lock/unlock - R
syscalls etc R

ra
re

metadata
LifeguardApplication

syscalls, etc - R
addr. computation - C
memory access - C
data movement - U
computation - Ufr

eq
ue

nt

rare
events

update
metadata

check
metadata

ha
nd

le
rs

alloc/initM-TLB

IF
R

t

CU

t

event stream
IT IF

event mux

event
delivery

hardware

event
capture

hardware

Figure 2: Accelerating lifeguards with IT, IF, and M-TLB.

metadata organization. Metadata propagation, on the other
hand, follows the dataflow structure of the monitored pro-
gram, which is lifeguard-independent. Moreover, we find
that a more restricted version of propagation, unary propaga-
tion, can support many useful lifeguards (including TaintCheck
and MemCheck). Based on these insights, we propose Inher-
itance Tracking (IT) that tracks unary data inheritance with
a hardware shadow register table for effectively filtering out
propagation events associated with the flow of data through
registers.

• Idempotent Filters (IF) for Redundant Metadata Checks. For
many lifeguards (e.g., AddrCheck, MemCheck, and Lock-
Set), checking is performed on every memory reference and/or
on every address computation. We observe that if the un-
derlying metadata are not changed, metadata checks for “re-
dundant” events will have the same result. Therefore, we
propose Idempotent Filters (IF) to reduce lifeguard checking
overhead. The idea is to introduce an IF cache of recently
observed checking events. If an incoming event hits in the
cache, it is discarded (filtered). An event is delivered to the
lifeguard only upon a miss in the IF cache. To deal with
metadata changes, lifeguards can configure the IF cache to
be fully or partially invalidated upon certain events (such as
malloc and free).

• Metadata-TLB (M-TLB) for Metadata Mapping. The third
key source of overhead is the mapping from an application
address to the corresponding metadata location(s). We ob-
serve that in many frequently invoked lifeguard handlers, the
mapping often takes half of the executed instructions. We
propose a hardware translation look-aside buffer mechanism,
Metadata-TLB (M-TLB), for solving this performance prob-
lem. M-TLB translates application-space virtual addresses to
lifeguard-space (metadata) virtual addresses. Lifeguards can
use a proposed instruction, lma (load metadata address), to
look up an M-TLB entry associated with a given application-
space virtual address. M-TLB resides in user space and is
managed by lifeguards, minimizing the need for OS sup-
port: Upon an M-TLB miss, a configured software handler
is called to insert new entries into the M-TLB.

We implemented these three accelerators within LBA. Our simula-
tion study with CPU-intensive benchmark programs shows that the
hardware accelerators can effectively reduce the performance over-
head of lifeguards down to 2–51% for a wide range of lifeguards.
Further details can be found in Chen et al. [7].

87

Instruction
handler

d i tiod
e Lifeguard

Optimizer

Application
Binary

instruction
handlers

path
handlers

description

re
ad

 c
o

pr
of

ile
 h

ot
 p

at
h read individual

handlers create path handlers

Optimizer

Lifeguard Binary

Log of PCs and effective addresses

p

Figure 3: Integrating a JIT-style lifeguard optimizer.

4.2 Compiler Optimizations
We investigate an alternative approach to the above hardware tech-
niques: recognizing and eliminating the redundancy in lifeguard
checking code through compiler optimizations in software.

For decades, optimizing compilers have successfully improved soft-
ware performance by reducing redundant computations along exe-
cution paths [1]. For traditional static analysis, a control flow graph
is typically used to summarize the possible execution paths; for
more recent JIT-style dynamic code analysis, the optimizations are
typically applied to an observed set of hot paths.

We observe that a hot path (potentially spanning large numbers of
basic blocks) in the monitored application triggers a frequently ex-
ecuted, fixed sequence of lifeguard event handlers. Therefore, we
bundle all such event handlers into a single path handler. By ex-
posing the lifeguard analysis associated with an entire hot path to
our optimizer, we can find many more opportunities for eliminating
redundant work in the lifeguard analysis.

In addition to exploiting the usual forms of redundancy elimination
that are utilized by modern optimizing compilers, we explore the
common properties of lifeguards and use domain-specific knowl-
edge about the lifeguard behaviors to perform more aggressive op-
timizations. We identify and remove redundant checks on the same
metadata (i.e., checks without any metadata changes in between).
Because there is a one-to-one mapping from application data to
lifeguard metadata, alias analysis for metadata can be effectively
performed using the monitored application’s data addresses. More-
over, we exploit spatial locality of metadata accesses and share por-
tions of the metadata mapping computations across multiple meta-
data accesses. Finally, we apply the optimizations across path han-
dlers especially for hot paths in loops.

As shown in Figure 3, we propose to incorporate a JIT-style life-
guard optimizer into the lifeguard supporting framework. The life-
guard optimizer obtains the application’s hot control flow profiles
from the log. It then reads the hot code paths from the applica-
tion binary, reads the relevant instruction event handlers from the
lifeguard binary, and composes and optimizes the appropriate se-
quences of event handlers into path handlers. The optimizer is de-
signed to execute off the critical path of application-to-lifeguard
communication and hence should have minimal adverse impact on
application and lifeguard performance. A path handler is invoked
whenever the corresponding hot path is at the head of the log; oth-
erwise an appropriate instruction handler is invoked.

We incorporated our approach into both LBA’s logging mechanism
from Section 3 and a lifeguard platform based on dynamic binary

Application

Core 0

Worker 1

Core 1

Worker 2

Core 2

Master

Core 3

ITAB

BLOG

CLOG

Summary

Segment 1 Segment 2

Log partition

Figure 4: Parallelizing a DIFT Lifeguard.

instrumentation (Valgrind) [24]. We did not use the hardware ac-
celerators described in Section 4.1. Perhaps surprisingly, we show
that, even starting with well-optimized applications and hand-tuned
lifeguard handlers, our optimizations can find and eliminate signif-
icant redundancy in both frameworks, achieving improvements of
up to 31% on Valgrind and 53% on LBA. Further details can be
found in Ruwase et al. [28].

4.3 Parallelizing Lifeguards
Given the high overheads for instruction-grain lifeguards, it is nat-
ural to consider whether these overheads can be significantly re-
duced by parallelizing the monitoring functionality. For certain
lifeguards such as AddrCheck, the parallelization is straightforward
because the monitoring work can be partitioned on a per-address
basis and divided among multiple lifeguard cores. Program instruc-
tions that allocate or free blocks of memory may need to be broad-
cast to all the lifeguard cores, but other than these rare events, each
lifeguard core can independently check memory accesses that fall
within its assigned partition. Similarly, LockSet, although slightly
more complicated, can be readily partitioned such that each life-
guard core independently checks accesses that fall within its parti-
tion.

Far more challenging to parallelize, however, are DIFT lifeguards
(e.g., TaintCheck and MemCheck). These have strong serial de-
pendencies among lifeguard event handlers because the event han-
dlers perform metadata propagations that follow the data flow in the
monitored application. To address this challenge, we partition the
log into segments and then track the metadata propagation within a
segment symbolically whenever the values are unable to be deter-
mined explicitly (because they are being computed concurrently by
another lifeguard core).

Figure 4 depicts an overview picture of our parallel DIFT algo-
rithm. The lifeguard is composed of a master thread and a number
of worker threads, each running on a separate core. The log is con-
ceptually divided into disjoint and equal-sized partitions. Each par-
tition is further divided into k disjoint segments if there are k work-
ers, where the ith worker is assigned the ith segment. All workers
read their assigned segments in parallel (we assume that a lifeguard
thread can selectively read portions of the log), and generate a data
structure that symbolically summarizes propagation information in
the segment. After processing a log segment, a worker passes the
generated summary to the master thread, and waits until the next
assigned log segment in the next log partition is available. The
master thread combines the summaries according to the log order.
By plugging in the explicit metadata values at the start of a segment,
the master computes the final metadata values for every segment,
updates lifeguard metadata, and performs the actual checks. As an

88

event stream

event capturing
application
thread 1 application-only

order capturing

lifeguard
thread 1order enforcing

event delivery

accelerators: IT, IF, MTLB

event stream

event capturing
application
thread K application-only

order capturing

lifeguard
thread Korder enforcing

event delivery

accelerators: IT, IF, MTLB

application lifeguardonline parallel monitoring platform

global
metadata

dependence arcs

Figure 5: The ParaLog parallel monitoring platform, highlighting components with new features.

opimization, the master can also be assigned a segment at the head
of the log to process in parallel with the workers.

We implemented a parallel taint analysis algorithm in LBA’s log-
ging mechanism (i.e., techniques from Section 3 but not Sections 4.1
nor 4.2) using this approach. Our simulation results on SPEC bench-
marks and a video player show that, on a 16 core processor, our
parallel algorithm reduces the lifeguard performance overhead to
as low as 1.2X using 9 monitoring cores. Further details can be
found in Ruwase et al. [29].

5. ENABLING AND ACCELERATING

ONLINE PARALLEL MONITORING
Thus far, we have discussed techniques and mechanisms suitable
for monitoring applications executing on a single core, either single-
threaded applications or multithreaded applications that are time-
sliced on a single core. In this section, we describe techniques and
hardware mechanisms for monitoring parallel applications, i.e., mul-
tithreaded applications concurrently executing on multiple cores.

Prior to our work, the only practical way to monitor a parallel
application using lifeguards was to time-slice the multiple appli-
cation threads onto a single processor and analyze the resulting
interleaved instruction stream sequentially. This resulted in un-
acceptably poor performance because neither the application nor
the lifeguard could enjoy parallel speedups. We present two ap-
proaches enabling both the application and the lifeguard to oper-
ate in parallel with high performance. A key challenge addressed
by these approaches is how to ensure that the lifeguard processing
properly accounts for any inter-thread data dependences among ap-
plication threads. The approaches differ fundamentally in how they
solve this challenge: ParaLog (Section 5.1) uses an efficient hard-
ware mechanism to log inter-thread data dependences, while But-
terfly Analysis (Section 5.2) is a software-based approach adapting
dataflow analysis techniques. Both can be viewed as extensions of
LBA’s solutions for monitoring single core applications, although
the techniques apply more broadly.

5.1 ParaLog
ParaLog [37] is a general-purpose platform for online monitoring
of parallel applications, as shown in Figure 5. Compared to Fig-
ures 1 and 2, there are K > 1 application threads running on K
(application) cores, each producing an event stream (log) that is
processed by a distinct lifeguard thread running on a distinct (life-
guard) core. Components with new features for parallel monitoring
are highlighted. Our goal is to support correct and efficient paral-
lel monitoring while minimizing the lifeguard developers’ efforts
to port a single-threaded lifeguard. To achieve this goal, our design

addresses the following three major challenges: (i) capturing inter-
thread data dependences between the application threads and repro-
ducing their effects appropriately in the lifeguard processing, (ii)
ensuring the multiple lifeguard threads atomically access the global
metadata at negligible cost, and (iii) adapting the three hardware
accelerators from Section 4.1 to work for parallel applications. We
will discuss ParaLog’s solution to each of these challenges in turn.

Application Event Ordering. Each application thread is moni-
tored by a corresponding lifeguard thread. To reduce delays, each
lifeguard thread greedily processes its application thread’s log asyn-
chronously with respect to other logs, except where necessary to
preserve lifeguard correctness. Specifically, because multiple ap-
plication threads share the same address space, their data sharing
and synchronization activities will result in dependences among in-
struction events. To maintain the correct view of the application’s
state, the lifeguard must process application events in an order that
reflects these dependences. In TAINTCHECK, for example, if one
application thread taints a memory location that is read by another
application thread, the corresponding lifeguard threads must pro-
cess the former event prior to the latter event, in order to ensure
lifeguard correctness.

We assume the application and lifeguard are running on a pro-
cessor supporting the sequential consistency (SC) memory model,
although our approach can be extended to the total store order
(TSO) memory model. ParaLog piggybacks off cache coherence
messages to capture inter-thread dependences. Unlike FDR [38]
and related work on capturing inter-thread dependences, (i) depen-
dences are tracked per-application rather than system-wide, (ii) the
sequence of dependence events are gathered per application-thread
rather than centralized, and (iii) the dependence information is con-
sumed online. In our application-only order capturing component
(see Figure 5), the starting point (thread ID, record ID) of a depen-
dence arc is recorded in the log associated with the receiving end of
the arc. Our order enforcing component enforces the captured arcs,
without modification to the lifeguard-specific code, by (a) publish-
ing the record ID of the most recent event record processed by each
lifeguard thread, and (b) stalling a lifeguard thread at a dependence
(t, i) until the published record ID for t is at least i.

There are two sources of dependences that are not captured by the
above approach: (i) system calls because we do not capture (priv-
ileged) OS kernel activity, and (ii) races not reflected in cache co-
herence traffic (such as between freeing a block of memory and
a read to an address within the block). Both sources are handled
via a message broadcasting mechanism (called conflict alerts) that
alerts all the other lifeguard threads at system call boundaries and
potentially problematic events.

89

Metadata Access Atomicity. Lifeguard threads reading and writ-
ing the global metadata must be properly synchronized. Using
locks or atomic instructions for each such access would be pro-
hibitively expensive. Fortunately, for a wide range of lifeguards
(basically, lifeguards such as TAINTCHECK and ADDRCHECK with
a 1-1 mapping from data to metadata such that application reads
translate only into metadata reads), no explicit synchronization is
required to preserve metadata access atomicity in an event han-
dler’s frequent “fast path”. This is because races between metadata
accesses correspond to inter-thread application dependences, and
hence our event ordering mechanisms already prevent the race. In
some cases, a lock must be acquired on a handler’s infrequent “slow
path”; however, we show that correctness is ensured even though
the fast paths acquire no locks.

Local Hardware Accelerators with Possible Remote Conflicts.

The hardware accelerators discussed in Section 4.1 all maintain
monitoring states: Inheritance Tracking (IT) keeps inherits-from
information, Idempotent Filters (IF) cache recently seen check events,
and Metadata TLB (M-TLB) caches frequently used metadata map-
pings. Note that some events may conflict with (i.e., invalidate) an
accelerator’s state. For example, a malloc/free event may signifi-
cantly change metadata, thus conflicting with an accelerator’s state.
However, detecting conflicts is a challenge when monitoring paral-
lel applications because an event at one application core may con-
flict with the accelerator state at other lifeguard cores. To properly
handle such remote conflicts, we use (i) the conflict alert mecha-
nism discussed above for high-level conflicts such as those involv-
ing malloc or free, and (ii) a lighter-weight delayed advertising ap-
proach for the more frequent instruction-level conflicts involving
a single application write (e.g., that updates a taint status). In de-
layed advertising, the published record ID for a lifeguard thread t
is not updated to i until record i’s effect has been flushed from t’s
accelerator state, thereby ensuring accelerator correctness.

Our simulation study with CPU-intensive benchmark programs run-
ning on a 16-core processor (8 application threads, 8 lifeguard threads)
shows that ParaLog reduces the performance overhead of ADDRCHECK
and TAINTCHECK down to 1.28X and 1.51X, respectively, on av-
erage. Further details can be found in Vlachos et al. [37].

5.2 Butterfly Analysis
Butterfly Analysis [16] is a complementary approach to enabling
online monitoring of parallel applications. Compared to ParaLog,
it requires neither hardware support for tracking inter-thread data
dependences nor processors with strong memory consistency mod-
els (SC, TSO), but it can result in some false positives in lifeguard
analysis. (It never misses errors, but it can occasionally report a
possible error when none exists.) Instead of relying on detailed
inter-thread dependence tracking and SC/TSO, butterfly analysis
relies only on the fact that in modern processors, any memory ac-
cess in the distant past (1000s of instructions ago) has become vis-
ible to all the threads. It makes no assumptions on (and avoids the
overheads of tracking) the relative ordering of more recent memory
accesses by different threads. Instead, the analysis must account
for this bounded window of uncertainty in the orderings of recent
events by concurrent threads.

Butterfly analysis is a new framework for performing lifeguard anal-
ysis that automatically reasons about bounded windows of uncer-
tainty using an approach inspired by interval analysis [34]. Un-
like traditional dataflow analysis, which performs static analysis
on control flow graphs, our approach analyzes dynamic traces of

Figure 6: Potential concurrency modeled in butterfly analy-

sis: instructions in the Body interleave with instructions in the

Wings, the Head has already executed, and the Tail has not yet

executed.

instructions on different threads. We adapt two techniques from
static dataflow analysis, reaching definitions and reaching expres-
sions, to this new domain of online parallel monitoring, in order to
overcome the potential state explosion of considering all the possi-
ble orderings among events in each window of uncertainty. Signif-
icant modifications to these techniques are required to ensure the
correctness and efficiency of the approach.

Heartbeats, Epochs, and Butterflies. We rely on a regular sig-
nal, or heartbeat, to be reliably delivered to all application cores
and placed in the respective logs. This could be implemented using
a software token ring. We do not require instantaneous heartbeat
delivery, but do assume a maximum skew time for heartbeats to be
delivered. The heartbeats serve to partition the logs into epochs. By
making sure that the time between heartbeats is always larger than
the maximum delay due to a core’s reorder and store buffers, mem-
ory latency, and skew in heartbeat delivery, we ensure that non-
adjacent epochs (i.e., epochs that do not share a heartbeat bound-
ary) have strict happens-before relationships. On the other hand,
we will consider instructions in adjacent epochs, i.e., epochs that
share a heartbeat boundary, to be potentially concurrent when they
are not in the same thread. Figure 6 depicts blocks of instructions
for three epochs (rows) across seven threads (columns), summariz-
ing the potential concurrency with instructions by thread t in epoch
l (labeled the Body of the “butterfly”). (In reality, epoch boundaries
will be staggered and blocks will be of somewhat varying sizes.)

Two-pass Lifeguard Analysis. Lifeguard analysis proceeds using
a sliding window of three epochs. Because the analysis considers
only three epochs at a time, we can introduce state to summarize
earlier epochs. Let strongly ordered state be the global metadata
state resulting from events that are known to have already occurred,
i.e., state resulting from instructions executed at least two epochs
prior. To perform lifeguard analysis on an epoch l, we use a two
pass approach. In a first pass over the log entries in each block
of epoch l, each lifeguard thread performs our dataflow analysis
using locally available state (i.e., ignoring the wings), producing a
summary of lifeguard-relevant events. Next, the lifeguard threads
compute the meet of all the summaries produced in the wings. In a
second pass over the blocks, we repeat our dataflow analysis, this
time incorporating state from the wings, and performing necessary
checks as specified by the lifeguard writer. Finally, the lifeguard
threads agree on a summarization of the entire epoch’s activity, and
update the strongly ordered state accordingly.

The lifeguard writer specifies the events the dataflow analysis will

90

track, the meet operation, the metadata format, and the checking al-
gorithm. Tolerating uncertainty potentially introduces imprecision
into our dataflow analysis. We prove that our approach does not
miss any errors, and sacrifices precision only due to the lack of a
relative ordering among recent events.

Further details on butterfly analysis, including its formalization and
performance, can be found in Goodstein et al. [16].

6. CONCLUSION
Log-Based Architectures (LBA) is a general-purpose monitoring
framework that exploits multicore processors to help detect and fix
software bugs. This paper discussed our solutions for accelerat-
ing dynamic program monitoring tools (a.k.a. lifeguards), and for
supporting parallel applications. Overall, LBA reduces the slow-
down of dynamic monitoring from 30X-100X to just 2%–51% for
sequential benchmark programs and 28%–51% for parallel bench-
mark programs.

This paper mainly focuses on monitoring user-level applications.
We are currently investigating how to protect operating system ker-
nels against device driver crashes and rootkit exploits. Several
unique challenges arise in kernel monitoring: for example, how
to effectively manage log generation and processing for potentially
a large number of threads that execute in different contexts, such as
system calls or interrupts? How to contain bugs in the kernel? How
to improve and adapt existing user-level lifeguards for monitoring
kernels? We are actively working on addressing these challenges.

Acknowledgement. This work was supported in part by a Na-
tional Science Foundation grant. The authors thank Babak Falsafi,
Michelle Goodstein, Olatunji Ruwase and Evangelos Vlachos for
their collaboration on the LBA project. We also thank Anastassia
Ailamaki, Limor Fix, Greg Ganger, Bin Lin, Vijaya Ramachan-
dran, Michael Ryan, Steve Schlosser, Vivek Seshadri, Theodore
Strigkos and Radu Teodorescu for their contributions to LBA.

7. REFERENCES
[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques,

and Tools. Addison-Wesley, 1986.
[2] D. Bruening. Efficient, Transparent, and Comprehensive Runtime

Code Manipulation. PhD thesis, MIT, 2004.
[3] M. Burtscher. VPC3: A fast and effective trace-compression

algorithm. In SIGMETRICS/PERFORMANCE, 2004.
[4] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for

finding dynamic programming errors. Software – Practice and
Experience, 30(7), 2000.

[5] S. Chen, B. Falsafi, P. B. Gibbons, M. Kozuch, T. C. Mowry,
R. Teodorescu, A. Ailamaki, L. Fix, G. R. Ganger, B. Lin, and S. W.
Schlosser. Log-based architectures for general-purpose monitoring of
deployed code. In ASID Workshop at ASPLOS, 2006.

[6] S. Chen, M. Kozuch, P. B. Gibbons, M. Ryan, T. Strigkos, T. C.
Mowry, O. Ruwase, E. Vlachos, B. Falsafi, and V. Ramachandran.
Flexible hardware acceleration for instruction-grain lifeguards. IEEE
Micro, 29(1), 2009. Top Picks from the 2008 Computer Architecture
Conferences.

[7] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C.
Mowry, V. Ramachandran, O. Ruwase, M. Ryan, and E. Vlachos.
Flexible hardware acceleration for instruction-grain program
monitoring. In ISCA, 2008.

[8] M. L. Corliss, E. C. Lewis, and A. Roth. DISE: A programmable
macro engine for customizing applications. In ISCA, 2003.

[9] J. R. Crandall and F. T. Chong. Minos: Control data attack prevention
orthogonal to memory model. In MICRO, 2004.

[10] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A flexible
information flow architecture for software security. In ISCA, 2007.

[11] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules
using system-specific, programmer-written compiler extensions. In
OSDI, 2000.

[12] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for Java. In PLDI, 2002.

[13] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A delegating
architecture for secure system call interposition. In NDSS, 2003.

[14] D. P. Ghormley, D. Petrou, S. H. Rodrigues, and T. E. Anderson.
SLIC: An extensibility system for commodity operating systems. In
USENIX ATC, 1998.

[15] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A secure
environment for untrusted helper applications. In USENIX Security,
1996.

[16] M. L. Goodstein, E. Vlachos, S. Chen, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry. Butterfly analysis: Adapting dataflow analysis to
dynamic parallel monitoring. In ASPLOS, 2010.

[17] J. Gummaraju and M. Rosenblum. Stream programming on
general-purpose processors. In MICRO, 2005.

[18] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation. In PLDI, 2005.

[19] S. S. Mukherjee, B. Falsafi, M. D. Hill, and D. A. Wood. Coherent
network interfaces for fine-grain communication. In ISCA, 1996.

[20] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Continuously
recording program execution for deterministic replay debugging. In
ISCA, 2005.

[21] N. Nethercote. Dynamic Binary Analysis and Instrumentation. PhD
thesis, U. Cambridge, 2004. http://valgrind.org.

[22] N. Nethercote and J. Seward. Valgrind: A program supervision
framework. Electronic Notes in Theoretical Computer Science, 89(2),
2003.

[23] N. Nethercote and J. Seward. How to shadow every byte of memory
used by a program. In VEE, 2007.

[24] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In PLDI, 2007.

[25] J. Newsome and D. Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on
commodity software. In NDSS, 2005.

[26] N. Provos. Improving host security with system call policies. In
USENIX Security, 2003.

[27] F. Qin, C.Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu. LIFT: A
low-overhead practical information flow tracking system for
detecting security attacks. In MICRO, 2006.

[28] O. Ruwase, S. Chen, P. B. Gibbons, and T. C. Mowry. Decoupled
lifeguards: Enabling path optimizations for dynamic correctness
checking tools. In PLDI, 2010.

[29] O. Ruwase, P. B. Gibbons, T. C. Mowry, V. Ramachandran, S. Chen,
M. Kozuch, and M. Ryan. Parallelizing dynamic information flow
tracking. In SPAA, 2008.

[30] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic race detector for multi-threaded programs. ACM
TOCS, 15(4), 1997.

[31] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer: Data race
detection in practice. In WBIA, 2009.

[32] R. Shetty, M. Kharbutli, Y. Solihin, and M. Prvulovic. Heapmon: A
helper-thread approach to programmable, automatic, and
low-overhead memory bug detection. IBM J. on Research and
Development, 50(2/3), 2006.

[33] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program
execution via dynamic information flow tracking. In ASPLOS, 2004.

[34] R. E. Tarjan. Fast algorithms for solving path problems. J. ACM,
28(3), 1981.

[35] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic.
FlexiTaint: A programmable accelerator for dynamic taint
propagation. In HPCA, 2008.

[36] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic.
MemTracker: Efficient and programmable support for memory
access monitoring and debugging. In HPCA, 2007.

[37] E. Vlachos, M. L. Goodstein, M. A. Kozuch, S. Chen, B. Falsafi,
P. B. Gibbons, and T. C. Mowry. ParaLog: Enabling and accelerating
online parallel monitoring of multithreaded applications. In ASPLOS,
2010.

[38] M. Xu, R. Bodik, and M. D. Hill. A ‘flight data recorder’ for enabling
full-system multiprocessor deterministic replay. In ISCA, 2003.

[39] M. Xu, R. Bodik, and M. D. Hill. A regulated transitive reduction
(RTR) for longer memory race recording. In ASPLOS, 2006.

[40] P. Zhou, R. Teodorescu, and Y. Zhou. HARD: Hardware-assisted
lockset-based race detection. In HPCA, 2007.

[41] Y. Zhou, P. Zhou, F. Qin, W. Liu, and J. Torrellas. Efficient and
flexible architectural support for dynamic monitoring. ACM TACO,
2(1), 2005.

91

