
Map-Reduce Meets Wider
Varieties of Applications

Shimin Chen, Steven W. Schlosser

IRP-TR-08-05

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL®
PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in
medical, life saving, life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice.

Copyright © Intel Corporation 2008
* Other names and brands may be claimed as the property of others.

1

Map-Reduce Meets Wider Varieties of Applications

Shimin Chen
Intel Research Pittsburgh

4720 Forbes Ave, Suite 410
Pittsburgh, PA 15213, USA
shimin.chen@intel.com

Steven W. Schlosser
Intel Research Pittsburgh

4720 Forbes Ave, Suite 410
Pittsburgh, PA 15213, USA

steven.w.schlosser@intel.com

ABSTRACT
Recent studies and industry practices build data-center-scale com-
puter systems to meet the high storage and processing demands
of data-intensive and compute-intensive applications, such as web
searches. The Map-Reduce programming model is one of the most
popular programming paradigms on these systems. In this paper,
we report our experiences and insights gained from implementing
three data-intensive and compute-intensive tasks that have different
characteristics from previous studies: a large-scale machine learn-
ing computation, a physical simulation task, and a digital media
processing task. We identify desirable features and places to im-
prove in the Map-Reduce model. Our goal is to better understand
such large-scale computation and data processing in order to design
better supports for them.

1. INTRODUCTION
World data is growing exponentially, doubling its size every three

years [8]. Huge amounts of data are being generated from dig-
ital media (images/audio/video), web authoring, scientific instru-
ments, physical simulations, and so on. Effectively storing, query-
ing, analyzing, understanding, and utilizing these immense data
sets presents one of the grand challenges to the computing industry
and research community.

Recent studies and industry practices [5, 6, 13] build data-center-
scale computer systems to meet the high storage and processing
demands of a sample of these applications, such as web searches.
Such a system is composed of hundreds, thousands, or even mil-
lions of commodity computers connected through local area net-
works housed in a data center. It has much larger scales than a tra-
ditional computer cluster (typically of tens of machines), while en-
joying better and more predictable network connectivity than wide-
area distributed computing.

One of the most popular programming paradigms on data-center-
scale computer systems is the Map-Reduce programming model [5].
Under this model, an application is implemented as a sequence of
Map-Reduce operations, each consisting of a Map phase and a Re-
duce phase that process a large number of independent data items.
The system supports automatic parallelization, distribution of com-
putations, task management, and fault tolerance in hope that pro-
grammers can focus on application algorithms without worrying
about these complex issues.

Encouraged by its previous successes, we would like to exploit
Map-Reduce for a wider varieties of data-intensive and compute-
intensive applications. In particular, we have implemented several
application tasks, including a large-scale machine learning com-
putation [14], a physical simulation task [1], and a digital media
processing task [12]. We used Hadoop [11], an open-source Java-
based implementation of the Map-Reduce model. Our goal is to

understand the application needs, the strengths and weaknesses of
Map-Reduce, and gain insights on how to effectively support data-
intensive and compute-intensive applications.

In this paper, we report our preliminary findings. Interestingly,
we find Map-Reduce is not an exact fit for supporting these algo-
rithms. Some features (such as automatic parallelization, task dis-
tribution, and fault tolerance) are very desirable, while others (such
as the Reduce phase) may not be needed. Moreover, our findings
suggest that optimization strategies or hints are very desirable. We
describe several potential ways to improve upon this.

The rest of the paper is organized as follows. Section 2 describes
the Map-Reduce programing model, system services, and advanced
features. Section 3 presents our studies of implementing three ap-
plication tasks on a 400-core computer cluster. Section 4 summa-
rizes the insights learned from the application studies and discusses
implications for systems and data management support for data-
intensive and compute-intensive applications. Section 5 presents
related work and Section 6 concludes the paper.

2. UNDERSTANDING THE MAP-REDUCE
PROGRAMMING MODEL AND SYSTEM

When talking about Map-Reduce, one may mean the Map-Reduce
programming model (the narrow sense), or the Map-Reduce sys-
tem (the wider sense) that provides the support for the program-
ming model, as well as a rich set of system services and advanced
features. Understanding the programming model is sufficient to
write a semantically correct program. However, from our experi-
ences, in order to write a program that performs well on a data-
center-scale system, it is often necessary to understand the Map-
Reduce system. In the following, we describe the programming
model (Section 2.1), system services (Section 2.2), and advanced
features (Section 2.3), based on the original Map-Reduce paper [5]
and the open source Hadoop implementation [11].

2.1 Programming Model
Figure 1 illustrates the Map-Reduce programming model using

a word counting example. A programmer implements two func-
tions, a Map function and a Reduce function. Their semantics
are shown at the top of Figure 1. Conceptually, the input to the
Map-Reduce computation consists of a list of (in_key, in_value)
pairs. Each Map function call takes a pair of (in_key, in_value)
as input and produces zero or more pairs of intermediate key-value,
(mid_key, mid_value). Then, the system automatically performs
a group-by operation on the intermediate mid_key. After that,
each Reduce function call processes a group, i.e. a mid_key and
a list of mid_values, and produces zero or more output results. In
the word counting example shown in Figure 1, the Map function
generates a (word, 1) as an intermediate result for each encoun-

Map: (in_key, in_value) a list of (mid_key, mid_value)

Reduce: (mid_key, a list of mid_value) a list of (out_key, out_value)

c b cFile2

a b bFile1

in_valuein_key

GroupByMap

Map

1c

1b

1c

1b

1b

1a

mid_valuemid_key

1c

1c

1b

1b

1b

1a

mid_valuemid_key

Reduce

Reduce

Reduce

Performed by
system

automatically

2c

3b

1a

out_valueout_key

Figure 1: The Map-Reduce programming model illustrated with a word counting example.

M
MapTasks

M
a
p
p
e
r

P
a
rt

it
io

n
e
r

0

1

R-1

Combiner

In
p
u
t

F
o
rm

a
t

Map Task M-1

M
a
p
p
e
r

P
a
rt

it
io

n
e
r

0

1

R-1

Combiner

In
p
u
t

F
o
rm

a
t

Map Task 1

M
a
p
p
e
r

P
a
rt

it
io

n
e
r

0

1

R-1

Combiner

In
p
u
t

F
o
rm

a
t

Map Task 0

R
e
d
u
c
e
r

S
o
rt

e
rMap0-0

Map1-0

MapM-1-0

O
u
tp

u
t

F
o
rm

a
t

Reduce Task R-1

R
e
d
u
c
e
r

S
o
rt

e
rMap0-0

Map1-0

MapM-1-0

O
u
tp

u
t

F
o
rm

a
t

Reduce Task 1

R
e
d
u
c
e
r

S
o
rt

e
rMap0-0

Map1-0

MapM-1-0

O
u
tp

u
t

F
o
rm

a
t

Reduce Task 0

R
ReduceTasks

In
p
u
t

O
u
tp

u
t

Copy

Task Control

Files in distributed file system Files on local disk

Figure 2: The Map-Reduce system automatically distributes M Map tasks and R Reduce tasks across a large number of computer
nodes. (M and R are specified in the Map-Reduce job configuration).

tered word, where mid_value = 1. The Reduce function simply
sums up the list of mid_values to obtain the word count.

2.2 System Services
The system provides three categories of services to facilitate the

running of a Map-Reduce program across a large number of ma-
chines, as shown in Figure 2. (i) Distributed file system: the input
and output are stored in a distributed file system to be globally ac-
cessible. (ii) Automatically distributing tasks: the system instan-
tiates Map and Reduce tasks across a large number of machines,
partitions and assigns the input to individual Map tasks, then coor-
dinates the copying of intermediate results (stored on local disks)
from the machines running Map tasks to machines running Reduce
tasks. A typical optimization is to co-locate a Map task to a ma-
chine (or rack) that also holds a copy of the assigned input partition
in the distributed file system. (iii) Fault tolerance: the system
monitors the task executions and re-executes tasks if they fail (due
to machine crashes etc.). Since the input to a Reduce task may
come from any of the Map tasks, it is necessary to wait for all Map
tasks to finish before launching Reduce tasks. Near the end of the
Map or the Reduce phase, the system schedules backup executions
of the remaining in-progress tasks to protect against “stragglers”,
which are machines taking an unusually long time to complete
tasks due to permanent or transient hardware or software problems.

2.3 Advanced Features
Figure 2 shows the many advanced components surrounding and

supporting the Mapper and the Reducer computations. Typically,
the default implementations of these components can be replaced
with customized implementations. InputFormat extracts the in-
put record (in_key, in_value) from the input (default: extracting
a line from a text file). This gives part of the functionality of a
database access method. Partitioner computes a Reduce task ID

from mid_key, determining which local file to append an interme-
diate result (default: hash code(mid_key) modulo R). One may
perform range based partitioning instead. The local files contain-
ing intermediate results are copied to the machine running the cor-
responding Reduce task. Then Sorter sorts the intermediate results
to complete the group-by operation (default: merge sort). After
the reduce computation, OutputFormat formats output results for
writing to output files (default: out_key tab out_value per line).
The network traffic of copying can be reduced by implementing
Combiner, which is a partial reduce function, to be called on the
intermediate results local on individual Map task machines. This is
an optimization for reduce operations that are associative and com-
mutative. For example, in the above word counting example, we
can use the Reduce function as the Combiner.

3. APPLICATION STUDIES
We are actively exploiting data-center-scale computing for sup-

porting data-intensive and compute-intensive applications. There
is a cluster of 50 blade servers in Intel Research Pittsburgh. Each
server contains two 2.33GHz quad-core Intel Xeon E5345 CPUs
with 8GB of RAM and 300GB of local disk space running 64-bit
Linux and Hadoop 0.15.0. The blade servers are connected through
1Gb Ethernet. Altogether there are 400 CPU cores in this cluster.
We collaborate with researchers who are working on computer vi-
sion, machine learning, machine translation, scientific simulations,
and speech processing. In the following, we describe three of our
ongoing efforts for exploiting data-center-scale computer systems
to support large-scale data-intensive computations.

3.1 A Machine Learning Task
The first application is computing per-user-pair contingency ta-

bles for the Netflix Prize data. Netflix is an online DVD rental com-

1
7
,7

7
0
 m

o
v
ie

s

480,189 users

1% populated

A rating {1, 2, 3, 4, 5}

5

4

3

2

1

54321

U
s
e

r
A

User B

?

Figure 3: Computing contingency table per user pair for the
Netflix Prize training set.

pany, whose customers can give 1-5 integer ratings to the movies.
Netflix would like to utilize accumulated rating data to predict the
user preferences of movies. That is, when a user is browsing a
movie description web page, Netflix will show a predicted rating
of the user for the movie. In Oct 2006, Netflix started a contest
open to any one for the best algorithm that beats Netflix’s own al-
gorithm for predicting ratings by at least 10% [14]. By June 2007,
over 20 thousand teams had registered for the competition from
over 150 countries, and 2 thousand teams had submitted over 13
thousand prediction sets [2]. The current best submission achieves
9.08% improvement [14].

The contest provides a training data set, which includes 17,770
movies and 480,189 users. For each movie, there is a rating file
that contains a list of (usrID, rating, date) records. As shown
in the left part of Figure 3, the data set can be viewed as a large
sparse matrix that are stored in row order, where rows are movies,
columns are users, and matrix elements are ratings (ignoring dates
for simplicity). About 1% of the ratings in the matrix are given in
the training data set. The goal of the contest is to generate predic-
tions for a list of movie-user pairs whose ratings are only known to
Netflix. Therefore, Netflix is able to compute an accuracy score for
every submission.

We chose to use the contest as a data-intensive and compute-
intensive application and are exploring several machine learning al-
gorithms. One algorithm requires the computation of per-user-pair
contingency tables, as shown in the right part of Figure 3. In the
contingency table for user A and B, the element at the i-th row and
j-th column is the number of movies that A rated i while B rated
j. Therefore, the contingency table shows the correlation between
A’s ratings and B’s ratings. For example, if the diagonal elements
are much larger than the rest, then A’s rating is a good predictor
for B’s rating and vice versa. We find that over 87% of the con-
tingency tables are non-empty because a few popular movies were
rated by almost every user. Therefore, this computation generates
contingency tables for over 100 billion different user pairs, which
is about 5TB of uncompressed data (assuming a 16-bit integer for
each contingency table element).

Solution 1. Naive Map-Reduce. At first glance, this computation
looks similar to the previous word counting example, where the
“word” here is “userA&userB”. We implemented a Map function
that generates (userA&userB, ratingA&ratingB) for each pair
of user A and B (A < B) in a given movie file. After the auto-
matic group-by, each group contains all the information for a pair
of users. Therefore, the Reduce function simply computes a con-
tingency table from every group of intermediate results. However,
the performance of this solution is very poor. When tried on the en-
tire training set, the Map-Reduce task failed because the local disk
capacity was exhausted storing intermediate results. For testing,
we excluded the 5% most popular movies from the data set, which
reduces the non-empty contingency tables from 87% to about 15%.
This much smaller computation took over 4 days to finish using the
entire cluster.

There are two major problems of this approach. First, the in-
termediate data size is huge (2.8 trillion intermediate records, tens
of TB of data) compared to word counting, incurring high local
disk space and network communication overhead. Combiner is
not effective because the probability of finding local records of the
same user pairs is low. Second, the computation and disk space
requirements of Map tasks are very skewed: A popular movie can
have thousands of times more users than an unpopular movie, thus
producing millions of times more intermediate records. The Map-
Reduce system interpreted the longest-running tasks as stragglers,
and executed backup tasks, wasting computation resources.

Solution 2. Transpose + Reduce-less Computation. Realizing
the above problems, in the second solution, we transpose the con-
ceptual sparse matrix so that the ratings of every user are contigu-
ous. In this way, we can easily retrieve all the ratings for a given
user. Then it is straightforward to retrieve the ratings for a given
pair of users and compute their contingency table all on a single
machine. For the best performance, we use a C implementation
and a job scheduling system to submit the jobs to run on the cluster.
Using 50 cores, the computation for the entire data set completed
in 20 hours, which is dramatically faster than solution 1.

However, the job scheduling system does not support automatic
input partitioning, therefore we have to manually split the input. In
this respect, it is desirable to implement a Map-Reduce program
that does not have the Reduce function. (We call such a program
Reduce-less.) The Map function performs the contingency table
computations, while the system provides automatic input partition-
ing and the other useful system services. However, a problem arises
because of automatic input partitioning and assignments. Since the
computation creates an output file per Reduce task, it is non-trivial
to determine the mapping from user pairs to output files and loca-
tions in the files. Therefore, it is desirable to automatically create
an index structure on the output results.

3.2 A Scientific Simulation Task
Ground motion modeling, a.k.a. earthquake simulation, mod-

els the effects of earthquakes on populated areas for understanding
the earthquake energy propagation, analyzing ground motions, and
predicting the effects of earthquakes on buildings [1]. This is a
very data-intensive and compute-intensive application. Tradition-
ally, it is performed on expensive high-performance supercomput-
ers. We would like to study how well a data-center-scale system
with commodity computers (in particular a Map-Reduce system)
can support such computations. Currently, we focus on the first
computation step in this application, namely building the physical
ground model, which are then inputs to later steps.

The basic building block of this computation is a Community Ve-
locity Model (CVM). A CVM is a program that contains observed
data (e.g., for seismic events) and uses interpolation to estimate the
ground characteristics (e.g., density) for a given location (specified
by longitude, latitude, and depth). There are two CVM implemen-
tations (SCEC and Harvard). We use the faster (Harvard) CVM
implementation here. The task for building a ground model is to
query the CVM for all points in a 3D mesh, coalesce neighbors that
have similar characteristics, and build an octree structure1, where
each leaf node is a region of points having similar characteristics.
Note that coalescing reduces the number of octree nodes, which are
proportional to the amount of computation in the rest of the simula-
tion steps. In this study, we generate the ground model for a 600km
long x 300km wide x 100km deep region in southern California.

1In an octree, the root node represents the entire 3D region. A non-leaf
node has (up to) 8 child nodes, dividing its region into 8 disjoint equal-sized
octants. Octrees are 3D versions of quadtrees [9].

(a) Overview of the Map-Reduce computation.

(key, z-value, density)’s
Map

CVM

lon,lat,dep density

(x,y,z)

key: z-value with 3 bits cleared,

represents parent octree node

(b) The Map function and the manipulated keys.

Figure 4: Building a ground model for southern California.

Solution 1. Map-Reduce with Manipulated Intermediate Keys.
The overall Map-Reduce computation is shown in Figure 4(a). The
Map function queries the CVM to obtain ground characteristics for
each point in the 3D mesh at the target resolution. The Reduce
function coalesces neighbors with similar ground characteristics for
one level in the octree. After that, we feed the output of the Reduce
function to the input of another Map-Reduce computation, where
the Map is the identity function and the Reduce function is the same
as before, coalescing the next level in the octree. This process is
repeated until there is no coalescing or we reach a threshold octree
node size T .

Figure 4(b) illustrates the Map implementation. Given a (x, y, z)
coordinate, the Map function converts it into (longitude, latitude,

depth) and queries the CVM for density information. It computes
a Z-value and outputs the Z-value and density as the intermediate
value. (Later on, the octree is to be stored into a single-dimensional
B-tree structure using the Z-order space filling curve.) In order to
allow coalescing at the Reduce function, the Map function gener-
ates an intermediate key that represents the parent octree node for
this Z-value (by clearing three bits in the Z-value). In this way,
after the automatic group-by, a group contains the density informa-
tion for all the points in a corresponding octree node at one level
above. The Reduce function can then decide which node to coa-
lesce based on the similarity of densities. We find this computation
took orders of magnitude more time to complete than solution 2.

Solution 2. Generating Samples in Sorted Z-value Order. We
made the observation that we can control the order that (x, y, z)
samples are generated. If we generate the samples in Z-value or-
der, then the neighbor points in octree nodes will be adjacent to
each other. In this way, we can avoid the group-by step in Map-
Reduce. We implemented a C program that maintains the sampled
locations in a last-in-first-out stack. If a location has similar char-
acteristics as the stack top, then we push it onto the stack. If eight
contiguous entries from the top of the stack hold all the children

Image
descriptor

6 million images

total 1TB

Figure 5: Computing a descriptor (or a set of features) per im-
age for 6 million images. The total input size is about 1TB.

of an octree node, then we coalesce them into a single entry rep-
resenting the node and put it on the stack top. If a location has
different characteristics from the stack top, then we output all the
entries in the stack and clear the stack. This implementation builds
the ground model in 1 hour using 80 cores in the cluster.

It is desirable to implement a Reduce-less version of the C pro-
gram that utilizes the Map-Reduce systems service, such as input
partitioning and assignment. We divide the input region into sub-
regions that have the threshold size T . Each Map task is responsible
for generating the octree nodes for a given sub-region. Runtime is
comparable to the C implementation, only about 30% slower.

3.3 An Image Processing Task
The third application is a large-scale image processing task, whose

goal is to estimate geographic information (where is this scene?)
given an image [12]. The idea is to leverage a dataset of over 6
million GPS-tagged images and use scene matching to find out for
the given test image the most similar known image(s). Specifi-
cally, a set of features (including color, texture, line, etc.) along
with the GPS data are extracted from each of the 6 million im-
ages and stored in a database. For a test image, the same set of
features are extracted and compared against the database for the
closest matches. Here, we are concerned with the first step in this
application, namely computing a set of features per image for all
the 6 million images.

Solution: Reduce-less Computation. Examining the computa-
tion, we find that the processing of an image is independent of
the processing of the other images. Therefore, our solution sim-
ply computes the features for images in parallel. The processing of
each image takes about 15 seconds. Using the entire cluster of 400
cores, the computation completed in over 3 days. Like the previous
two examples, it is desirable to utilize Map-Reduce system services
for this computation. A Reduce-less program can achieve this.

4. IMPLICATIONS FOR SYSTEMS
AND DATA MANAGEMENT SUPPORT

We gained deeper understanding of the Map-Reduce systems
through the above application studies. Beside these experiences,
we believe it is valuable to compare Map-Reduce with the relational
data model. In the following, we first perform this comparison to
draw a bigger picture of the design space, and then describe the
implications for systems and data management support in a data-
center-scale computer system.

4.1 The Design Space
In the design space for supporting large-scale parallel computa-

tion, there is a trade-off between the flexibility of the programming
model and the automatic optimization that the system can support.
At one end is the model in a relational database system [16]. All
the individual data processing operations are well defined and have
multiple alternative implementations in the system. Application
tasks are specified in high-level descriptive languages. The sys-
tem has very good knowledge about the datasets and computations,

System Services

• Global accessibility of data (e.g. using a distributed file system)

• Automatically distributing tasks, including input partitioning and assignment

• Fault tolerance

• new: (a) Indexing; (b) provenance tracking.

Existing Components

Map Reduce

Flexibility to Compose Components into a Computation Task

GroupBy

InputFormat OutputFormat Combiner

New Components:

Sorter

HashMerger

Optimizations

• Sampling: understand skews and
estimate processing cost

• Statistics collection for repeatedly used
datasets and/or computations

• Allowing programmers to specify more
semantics for customized components

• Co-locating multiple components

Figure 6: Proposal for enhancing the Map-Reduce system for supporting wider varieties of applications.

thus is able to perform powerful cost-based optimizations. How-
ever, the limitation of such a model is its restriction on the datasets
and computations. At the other end is manually written distributed
parallel programs (e.g., with MPI [17]). There is little restriction
on the datasets and the kind of processing that a program can do.
However, the underlying system has very limited knowledge about
the computations and datasets. Typically, it only knows general
resource usages and can perform load balancing type of optimiza-
tions. Semantics-specific optimizations are not possible and the
supported system services are also very limited.

Map-Reduce is a design point in between the two ends. It im-
poses a few structures on the datasets (e.g., input key-value pairs are
independent) and the computation (i.e., Map-Groupby-Reduce). In
this way, it successfully relieves programmers from many com-
plex issues, such as input data assignment, task distributions. At
the same time, programmers still have fair amount of flexibility
to express customized computations inside the Map and Reduce
functions, as well as the other advanced customizable components.
Note that the design space in between the two ends is important as
evidenced by work in the database community on object-relational
and semi-structured data models and the industrial adoption of the
Map-Reduce model.

In the following, we discuss implications and potential enhance-
ments as summarized in Figure 6. Essentially, we are trying to
cover more design space in between the two ends so that the system
can provide effective support for a wider varieties of applications.

4.2 Desirable Systems Services
As shown in Figure 6, the Map-Reduce system services are all

very desirable. In our application studies, we consider Reduce-less
Map-Reduce programs because the system services significantly
simplifies data and task management. Besides the existing system
services, we find two additional services are desirable. (i) Index-
ing. Computed results typically reside in multiple files. There
is often a need to look up a single result for follow-on computa-
tions, which is true for all the three applications. Therefore, an au-
tomatic/configurable indexing service could significantly simplify
this task. Moreover, the current input scheme is based on a scan of
the entire input file(s). If a small fraction of the input data is actu-
ally needed, then an indexing scheme can significantly speed up the
processing (which is conventional wisdom in the database commu-
nity). (ii) Provenance Tracking. It is often necessary to track the
dependence and linkage information of data (e.g., for verification of
scientific results). For relational databases, fine-grain tracking data
item provenance can be effectively supported because the system
knows about the semantics of individual database operations [3].

In contrast, many computations use monolithic programs; it is less
feasible to track fine-grain data-item provenance. A Map-Reduce
program relieves this problem because each individual data item
is processed independently. Therefore, we can potentially support
effective fine-grained provenance tracking.

Note that all these system services only assume that the datasets
are composed of independent key-value pairs or independent groups
of key-value pairs. They do not rely on the Map-Reduce program
structure. Therefore, we can enhance a more conventional job man-
agement system (such as Condor or Maui/Torque) with the services
to achieve a design point that is more flexible than Map-Reduce.

4.3 Flexible Compositions of Components
We find that applications using the Map-Reduce program are

limited by the Map-Reduce structure. For example, we would like
to use multiple Reduce steps in the solution 1 of ground model
building. However, we are forced to use the identity Map function
with the Reduce steps, and hence the copying step is always per-
formed. It would be helpful if the system allows flexible composi-
tion of components. First, components can be turned off to achieve
good performance. For example, the Map component can be dis-
abled. If the input is already sorted, the group-by component can
be also disabled. Second, it is desirable to support multiple Map
functions reading from different input source files to connect to the
same Reduce function (e.g., for joining the inputs).2 An advantage
of explicitly specifying multiple Map functions is that the system
gains more knowledge of the computation and potentially performs
better optimizations (e.g., on co-locating tasks).

Moreover, the default group-by uses merge-sort to produce groups.
However, the database literature indicates that hash-based group-by
in many situations are faster [10], therefore it is desirable to support
a new HashMerge component.

4.4 Optimization Strategies and Hints
Optimizations are highly desirable especially for long-running

tasks. In our application studies, we have seen orders of magni-
tude differences for multiple solutions to the same problem. The
obvious question here is how to optimize? As discussed in Sec-
tion 4.1, the power to optimize is limited by the knowledge of the
system about a particular computation task. Therefore, inspired by
optimization techniques in the relational databases, we propose the
following approaches.

2Currently, for supporting joins, one has to hack the Map-Reduce model to
identify input source types in the Map function and attach a type tag to the
intermediate value.

Sampling. The system can sample a random set of input data items
to learn about task characteristics before starting the full-scale run.
For example, by sampling, the system should be able to discover
the large skews in the solution 1 of the machine learning task. Then
it can send a notification to the job submitter, and take more cares
in starting backup tasks. The system can also estimate the task
runtime and whether local disk space is sufficient.

Statistics Collection. The same datasets may be used repeatedly
for multiple slightly different computation tasks. The same kind
of computation may be applied to slightly different datasets. For
example, an actual movie rating prediction system will need to pe-
riodically incorporate new ratings and perform the same computa-
tion on the slightly different rating database. For these datasets and
computations, it is a good idea to collect statistics for one run and
utilize the statistics for improve the performance of following runs.

More Semantics From Programmers. In addition to learning the
characteristics of datasets and computations, the system may also
provide interfaces that programmers can specify certain useful at-
tributes for datasets and computations. For example, the ordering
(or sorted-ness) of a dataset and a computation component. Similar
to the database optimization, if the system knows that the input the
group-by is sorted, then the group-by step can be skipped.

5. RELATED WORK
Since Google researchers Dean and Ghemawat proposed the Map-

Reduce model for data-center-scale computing [5], it has received
much attention from across the computing industry and research
community. Yahoo has been sponsoring the open-source Java im-
plementation of the Map-Reduce system, Hadoop [11]. Several
companies announced plans to make computing resources available
for select universities for teaching the Map-Reduce programming
model, as well as utilizing it for research purposes.

Previous work exploited the Map-Reduce programming model
for parallelizing typical machine learning algorithms on a single
machine with multiple processors or cores [4]. The major algo-
rithmic structure to parallelize is the summation form in machine
learning algorithms. An example is computing the sum of a large
number of values. This work employed multiple Map tasks for
computing partial sums, then used a Reduce task for generating
the final sum from the partial results. In these computations, the
group-by step is unnecessary, supporting our proposal to make the
components of a Map-Reduce systems flexibly composable.

Several research studies also aim to improve the Map-Reduce
programming model. Yang et al. [18] proposed to add a Merge
component after the Reduce function for performing a join opera-
tion on two datasets generated by multiple Reduce functions. Is-
ard et al. [13] proposed to allow programmers to specify a DAG
for the computation. The DAG specification is sophisticated and a
manual DAG representing an SQL query on an astronomy database
was illustrated. Olston et al. [15] proposed a SQL-style declarative
language, Pig Latin, on top of the Map-Reduce model. All these
works tried to bridge the gap between Map-Reduce and the rela-
tional databases. In contrast, this paper proposes several enhance-
ments to Map-Reduce based on application studies in order to sup-
port wider varieties of applications. We consider design points that
are more flexible than Map-Reduce (as discussed in Section 4.2)
and as well as design points that provide better optimizations.

DeWitt recently posted an online blog [7] comparing Map-Reduce
and parallel relational databases. As discussed in Section 4.1, we
believe Map-Reduce and the relational model represent two design
points in the design space. It is desirable to come up with designs
that can cover the entire design space. This paper and previous

works [13, 15, 18] all aim at achieving part of this goal.

6. CONCLUSION
In this paper, we studied three data-intensive and compute-intensive

applications that have very different characteristics from previous
reported Map-Reduce applications. We find that although we can
easily implement a semantically correct Map-Reduce program, achiev-
ing good performance is tricky. For example, a computation that
looks similar to word counting at the first sight may turn out to have
very different characteristics, such as the number and variance of
intermediate results, thus resulting in unexpected performance.

Learning from the application studies, we explore the design
space for supporting data-intensive and compute-intensive appli-
cations on data-center-scale computer systems. We find two direc-
tions are promising: (i) enhancing a job control system with a set
of desirable features; (ii) supporting flexible composable compo-
nents and including more optimization supports in a Map-Reduce
system. We plan to investigate these directions in future work.

7. REFERENCES
[1] V. Akcelik, J. Bielak, G. Biros, I. Epanomeritakis, A. Fernandez,

O. Ghattas, E. J. Kim, J. Lopez, D. O’Hallaron, T. Tu, and J. Urbanic.
High resolution forward and inverse earthquake modeling on
terasacale computers. In SuperComputing, 2003.

[2] J. Bennett and S. Lanning. The netflix prize. In KDD Cup and
Workshop, 2007.

[3] P. Buneman and W.-C. Tan. Provanance in databases. In SIGMOD
(Tutorial Track), 2007.

[4] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. R. Bradski, A. Y. Ng, and
K. Olukotun. Map-reduce for machine learning on multicore. In
NIPS, 2006.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In OSDI, 2004.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and
W. Vogels. Dynamo: amazon’s highly available key-value store. In
SOSP, 2007.

[7] D. DeWitt. Mapreduce: A major step backwards.
http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-
back.html.

[8] P. Dubey. Recognition, mining and synthesis moves computers to the
era of tera. Technology@Intel Magazine, Feb. 2005.

[9] R. Finkel and J. L. Bentley. Quad trees: A data structure for retrieval
on composite keys. Acta Informatica, 1974.

[10] G. Graefe. Query evaluation techniques for large databases. ACM
Comput. Surv., 25(2), 1993.

[11] Hadoop. http://hadoop.apache.org/core/.
[12] J. Hays and et al. IM2GPS: Finding likely geographic locations from

an image. In CVPR, 2008.
[13] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:

distributed data-parallel programs from sequential building blocks. In
EuroSys, 2007.

[14] Netflix Prize. http://www.netflixprize.com/.
[15] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig

latin: A not-so-foreign language for data processing. In SIGMOD,
2008.

[16] R. Ramakrishnan and J. Gehrke. Database Management Systems.
McGraw Hill, 2003.

[17] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra.
MPI: The Complete Reference. MIT Press, 1998.

[18] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. P. Jr.
Map-reduce-merge: simplified relational data processing on large
clusters. In SIGMOD, 2007.

