
Optimizing CPU Cache Performance for

Pregel-Like Graph Computation

Songjie Niu, Shimin Chen*

State Key Laboratory of Computer Architecture

Institute of Computing Technology

Chinese Academy of Sciences
{niusongjie,chensm}@ict.ac.cn

Abstract—In-memory graph computation systems have been
used to support many important applications, such as PageRank
on the web graph and social network analysis. In this paper, we
study the CPU cache performance of graph computation. We have
implemented a graph computation system, called GraphLite, in
C/C++ based on the description of Pregel. We analyze the CPU
cache behavior of the internal data structures and operations
of graph computation. Then we exploit CPU cache prefetching
techniques to improve the cache performance. Real machine
experimental results show that our solution achieves 1.9–2.2x
speedups compared to the baseline implementation.

I. INTRODUCTION

Many real-world data sets with complex relationships can
be modeled as graphs G = (V,E). For example, in a web
graph, each vertex v ∈ V represents a web page and each
directed edge evu ∈ E represents a hyperlink in web page
v that points to web page u. In a social network graph, a
vertex v represents a user in a social network, and an edge
evu can represent the follow relationship from user v to user
u. Other examples of real-world graphs include road networks,
publication citation relationships, and semantic networks.

A large number of algorithms have been developed on
top of the graph data model, including PageRank [3], shortest
path [6], betweenness centrality [7], community structure dis-
covery [9]. For example, PageRank is a representative graph-
based algorithm. It computes a ranking score for each vertex
in a web graph, which is used to rank the web search results
in search engines. The PageRank algorithm assigns an initial
value to all vertices. Then it exploits the graph structure to
repeatedly update the PageRank values of vertices until the
values converge or other predefined criteria are met (e.g., after
a pre-defined number of iterations). Such iterative computation
is typical for most graph algorithms.

A number of graph processing systems have emerged to
support graph analysis. Pregel [16] is Google’s proprietary
system based on the principles of Bulk Synchronous Parallel
(BSP) model and vertex-centric computation. Open source
implementations of Pregel are mainly Java based, including
Giraph [8], Hama [11], GPS [19]. GraphLab [15] is another
popular graph computation system. It allows asynchronous
updates on vertex and edge values, which can speed up many
machine learning algorithms. Recent studies have investigated
various aspects of graph computation, including distributed

*Corresponding author

asynchronous graph computation [14], [10], disk I/O opti-
mizations [13], coarser grain computation units [20], [21], and
algorithm-specific optimizations [18].

In this paper, we are interested in the CPU cache per-
formance aspect of graph computation because most graph
processing systems are main memory based. CPU cache per-
formance has been extensively studied for relational database
systems [2], [17], [5], [1], [12]. However, it has not been
studied in depth for graph computation before.

We have implemented a Pregel-like graph computation
system in C/C++1, called GraphLite. We analyze the internal
data structures and operations of GraphLite, and optimize
their CPU cache performance. We find that accessing vertex-
to-vertex messages often incurs poor CPU cache behaviors.
The approach to storing all messages in contiguous arrays
requires sorting the message array in each iteration. This incurs
significant cost because message sizes are comparable to the
cache line size (e.g., 0.5 cache line large in PageRank). Instead,
we propose to exploit CPU cache prefetching to reduce the
impact of cache misses. Real machine experiments show that
our approach can significantly improve the performance of
graph computation on a single machine node.

The contributions of this paper are three fold. First, to
our knowledge, this is the first research study that focuses on
the CPU cache performance of graph computation. Second,
we analyze the CPU cache behaviors of graph computation
in depth and exploit CPU cache prefetching to improve the
cache performance. Finally, preliminary experimental results
show the significance of our proposed solution.

The rest of the paper is organized as follows. Section II
describes the programming interface and the baseline imple-
mentation of GraphLite. Section III analyzes the CPU cache
behaviors of GraphLite, and proposes prefetching schemes to
improve performance. Section IV presents preliminary exper-
imental results. Finally, Section V concludes the paper.

II. PREGEL-LIKE GRAPH COMPUTATION SYSTEM

We have implemented a graph computation system, called
GraphLite, in C/C++ based on the description of Pregel [16].
In this section, we first describe the vertex centric graph

1Open source implementation of Pregel is mostly based on Java. Because of
JVM, Java programs often have limited control of the location and the memory
layout of their allocated objects. Therefore, we find it easier to analyze and
improve CPU cache performance in C/C++ programs.

programming model, then illustrate the internal data structures
and operations in GraphLite.

A. Graph Programming Model

Pregel performs synchronous, vertex-centric graph com-
putation. It follows the Bulk Synchronous Parallel (BSP)
model. Under this model, the entire computation is composed
of a series of supersteps. In each superstep, the system
runs a user-defined compute function on each vertex in the
graph (conceptually) in parallel without any synchronization.
Synchronization occurs at the start of each superstep. The
system waits for all the operations in the previous superstep
to complete before starting the next superstep.

Figure 1 shows the vertex-centric programming interface
supported by GraphLite. The interface defines a template
class Vertex. An application program will implement a sub-
class of Vertex by overloading the compute method in
the class. Typically, compute performs local computation to
update the value of the current vertex, and communicates
with neighbor vertices through messages. The other methods
in the class are provided by the system and can be used in
the implementation of the user defined compute method. We
describe the semantics of the important methods and concepts
as follows:

• Vertex value: An application program can add a fixed
sized value of arbitrary type to each vertex. It can be
accessed with getValue and mutableValue. getVSize
returns the overall size of a user-defined Vertex, which is
used to allocate space for vertices in GraphLite.

• Outgoing messages: The two send message methods are
used to send outgoing messages from compute. Typically,
a graph algorithm will send messages along all out-edges
from a vertex. If this is the case and all the messages are
the same, then sendMessageToAllNeighbors simplifies
the algorithm implementation. Outgoing messages will be
delivered in the next superstep.

• Incoming messages: Incoming messages that are sent
in the previous superstep can be accessed by using the
MsgIterator parameter of compute.

• Global aggregates: Aggregates are useful for computing
global values such as total error and statistics. GraphLite
supports sum, avg, min, and max by default, and pro-
vides an interface to implement customized aggregates. The
accumulate method accumulates a new value to (the local
copy of) the aggregate specified by agg_id. The global
value of the aggregate is updated at the start of each
superstep at the synchronization time. This global value can
be obtained by getAggregate.

• Computation completion criteria: A vertex is in either
the active or the inactive state. A vertex is active in superstep
0. compute transfers a vertex into the inactive state by
calling voteToHalt. A vertex becomes active again if
it receives an incoming message. The graph computation
completes if all vertices are inactive and there are no
messages at the start of a superstep.

An implementation of the PageRank [3] algorithm on
GraphLite is shown in Figure 2. PageRank models a user’s
web browsing behavior as a random walk on the web graph.

1 template<typename V, typename E , typename M>
2 c l a s s Ver t ex : pub l i c Ver texBase {
3 pub l i c : / / u s e r must imp lemen t compute ()

4 v i r t u a l vo id compute (M s g I t e r a t o r ∗ msgs) =0 ;
5
6 pub l i c : / / methods p ro v i d ed by t h e s y s t em

7 cons t V & ge tVa lue () ;
8 V ∗ mutab leVa lue () ;
9

10 Ou t E d g e I t e r a t o r g e t O u t E d g e I t e r a t o r () ;
11 void sendMessageTo (cons t i n t 6 4 t& d e s t v e r t e x ,
12 cons t M & msg) ;
13 void sendMessageToAl lNe ighbors (cons t M & msg) ;
14
15 void accumu l a t e (cons t vo id ∗ p , i n t agg id) ;
16 cons t vo id∗ ge tAgg r eg a t e (i n t agg id) ;
17
18 void vo t eToHa l t () ;
19
20 cons t i n t 6 4 t & ve r t e x ID () cons t ;
21 i n t s u p e r s t e p () cons t ;
22 i n t ge tVS ize () { re turn s i z e o f (V) ; }
23 i n t ge tES i z e () { re turn s i z e o f (E) ; }
24 } ;

Fig. 1. Vertex programming interface.

1 # de f i n e AGGERR 1
2 void compute (M s g I t e r a t o r ∗ msgs)
3 {
4 double v a l ;
5 i f (s u p e r s t e p () == 0) {
6 v a l = 1 . 0 ; / / i n i t i a l v a l u e

7 }
8 e l s e {
9 / / check i f converged

10 i f (s u p e r s t e p () >= 2 &&
11 ∗ (double ∗) g e tAgg r eg a t e (AGGERR) < TH) {
12 vo t eToHa l t () ; re turn ;
13 }
14 / / compute pagerank

15 double sum= 0 . 0 ;
16 f o r (; ! msgs−>done () ; msgs−>nex t ()) {
17 sum += msgs−>ge tVa lue () ;
18 }
19 v a l = 0 .15 + 0 .85 ∗ sum ;
20 / / a ccumu la t e d e l t a pageranks

21 double acc = f a b s (ge tVa lue () − v a l) ;
22 accumu l a t e (&acc , AGGERR) ;
23 }
24 / / s e t new pagerank va l u e and propaga t e

25 ∗mutab leVa lue () = v a l ;
26 i n t 6 4 t n = g e tO u t E d g e I t e r a t o r () . s i z e () ;
27 sendMessageToAl lNe ighbors (v a l / n) ;
28 }

Fig. 2. PageRank program using vertex programming interface.

The user clicks a random hyperlink in the current web page
with a probability of 0.85 or goes to a random web page
(by entering a URL) with a probability of 0.15. As shown
in Figure 2, a vertex v in the graph represents a web page,
and an out-edge evu represents a hyperlink from v to u. The
implementation uses the vertex value to store the PageRank
score. It models hyperlink clicks by sending messages along
out-edges that carry partial PageRank scores. compute initial-
izes all PageRank scores to 1 in superstep 0 (Line 5–7). In each
subsequent superstep, it combines the incoming messages to
compute the updated PageRank score for the current vertex
(Line 14–19). At the end of a superstep, compute divides the
score of the current vertex by the number of out-edges and
sends the quotient as a message along each out-edge (Line 26–
27). The computation continues iteratively until convergence.

Vertex arrayOut-edge array

In-message
list

Received
message list

Free list

Fig. 3. Data structures in the baseline implementation.

The implementation computes the total absolute difference of
PageRank scores as an aggregate (Line 21–22), and compares
it against a predefined threshold TH (Line 9–13) to determine
if the computation should complete.

B. GraphLite Baseline Implementation

GraphLite performs distributed computation by running a
master process and a set of worker processes on different
machines and/or different CPU cores. The master coordinates
the global synchronization of each superstep and manages
the global aggregates, while each worker performs in-memory
computation on a partition of the graph.

In the following, we focus on the internal data structures
and operations of a worker, which provide the basis for
understanding and optimizing the CPU cache performance of
graph computation in this paper. (Please note that the Pregel
paper [16] mainly focuses on the distributed computation as-
pect of the system, and does not provide a detailed description
of the internals of a worker.)

Figure 3 depicts the internal data structures to support
graph computation in a worker. GraphLite allocates an array
of vertices and an array of out-edges at the initialization time.
While application programs can use arbitrary types for vertex
value V and edge value E, GraphLite utilizes the getVSize

and getESize methods to obtain their sizes2. The out-edges
are sorted according to the source vertices. Then each vertex
points to a contiguous number of edges in the out-edge array.

GraphLite maintains three data structures for messages as
shown in Figure 3. First, each vertex points to an in-message
list that contains the messages targeting this vertex received in
the last superstep. The MsgIterator for compute is built on
top of this in-message list. Second, there is a global list for
messages received in the current superstep. The destination
vertex of a message sent by compute can be on the same
worker or on a different worker. For the former case, GraphLite
puts the message directly into the global received message
list. For the latter case, the worker puts the message into
an outgoing buffer for the destination worker node. When

2GraphLite currently supports only fixed sized values and edges, which can
support many graph algorithms, including PageRank, shorted path, centrality
computation. We plan to investigate the support for variable sized values and
edges, whose sizes may change during computation.

the buffer is full, or when the current superstep completes,
the worker performs the actual communication to send the
messages in the outgoing buffer to the destination worker.
Messages received from other workers are also put into the
the global received message list. Finally, there is a global free
list to facilitate the memory management for messages.

At the beginning of a superstep, a worker delivers every
message in the received message list to the in-message lists of
the associated destination vertices. It then calls compute on
each vertex. A compute on vertex v will visit v’s in-message
list to retrieve all messages received in the last superstep, and
send new messages. After compute on v returns, the worker
will free all the messages in v’s in-message list. The allocation
of new messages is handled by the send methods. The new
messages will be put into the received message lists of the
destination workers before the start of the next superstep.

III. ANALYZING AND OPTIMIZING CPU CACHE

PERFORMANCE FOR GRAPH COMPUTATION

In this section, we first analyze the CPU cache behavior of
the baseline implementation and then discuss how to optimize
the CPU cache performance for GraphLite.

A. Analyzing CPU Cache Behavior

Let us consider the CPU cache behavior for accessing
the internal data structures in the baseline implementation as
shown in Figure 3. We assume that the size of the vertex array,
the size of the edge array, and the size of all messages are all
substantially larger than the size of the CPU cache.

• Vertex and Edge Data: In every superstep, a worker
visits every vertex and calls compute in a loop. This is
sequential memory access to the vertex array. compute
often iterates through the out-edges of the current vertex
to send messages. Since the out-edges are sorted in the
order of the source vertex, the access to the out-edge data
is also sequential. Sequential access is supported well by
CPU caches. Therefore, both vertex and edge data see very
good CPU cache behavior.

• In-Message List: In-message lists are populated at the
beginning of a superstep when the worker distributes mes-
sages from the received message list. Since the messages are
not in the order of the destination vertices, it is likely that
the delivery of each message incurs a cache miss to access
the in-message list head in the destination vertex. Since
this distribution operation shuffles the messages across the
vertices, the messages in an in-message list of a vertex are
likely to be scattered across the memory. As a result, when
reading the in-message list, compute is likely to incur a
CPU cache miss for every message in the list. Moreover,
because of the linked list organization, the memory address
of message i in the list is available only after message i−1 is
loaded into the cache. Consequently, the cache miss to load
message i will be fully exposed. It will not be overlapped
with the cache miss that loads message i− 1.

• Received Message List: The above message distribution
operation reads the messages in the received message list.
Like reading in-message lists, the read operation performs
a linked list traversal, and is likely to incur a fully exposed
cache miss for every message in the list. On the other

hand, unlike in-message lists, the operation to insert a new
message into the list has good cache performance because
the global head of the received message list is frequently
visited and usually stays in the cache.

• Free List: New messages are allocated in the send meth-
ods that are called in compute. Messages in the in-message
list are freed after compute. Therefore, the free list sees
frequent allocation and free operations. Freed memory is
likely to be reused very soon. In fact, in a graph computation
(e.g., PageRank), the number of in-messages (out-messages)
for a vertex v often equals to the in-degree (out-degree)
of v. Therefore, the length of the free list is equal to the
difference between the total in-degrees and the total out-
degrees seen so far. If the difference is not very large, the
free list is likely to stay in the CPU cache. Therefore, the
free list often sees good CPU cache performance.

We analyze the CPU cache behavior from the perspective of
a message m. m is generated by the send method called by
compute. The message allocation and the insertion of m into
the received message list are cache friendly. However, the
distribution of m to m’s destination vertex v incurs two cache
misses, one for m and one for v. Visiting m in the in-memory
list incurs another cache miss. Therefore, each message is
likely to incur three cache misses.

B. Optimizing CPU Cache Performance

We have chosen the linked list structure in our baseline
design because it is simple to implement and it is effective
to support memory reuse so as to fully utilize memory for
graph computation. However, the above analysis shows that
the linked list structure incurs poor CPU cache behavior for in-
message lists and the received message list. We would like to
re-design the data structure to improve CPU cache performance
while maintaining good space efficiency.

One approach is to discard the linked list structure alto-
gether. Instead we store the messages in arrays. All the in-
message lists are stored in an array. This in-message array
is sorted in the order of the destination vertices. In this way,
reading the in-messages in compute performs cache-friendly
sequential memory access. Similarly, the received message
list is implemented as an array. Then the distribution process
performs a sorting operation on the received message array to
sort the messages in the order of the destination vertices.

Suppose the size of a message is S, the total number
of messages is N , the CPU cache size is C, and the cache
line size is L. This approach will write NS bytes to the
received message array and read NS bytes from the in-
message array. The sorting will read and write the entire array
⌈logb

NS

C
⌉ times until the sub arrays fit into the CPU cache.

For quick sort, b = 2. One can also design a distribution
based sorting algorithm to achieve a larger b. The idea is to
divide an array into b > 2 buckets in each pass. Note that b
is limited by the number (e.g., 32) of DTLB entries so that
the distribution operation will not incur TLB misses. Every
pass of the distribution sort will need to read the array one
more time to count the number of entries in each bucket.
Overall, this approach incurs n = S

L
(2 + 2⌈logb

NS

C
⌉) cache

misses per message. When the graph is large, ⌈logb
NS

C
⌉ ≥ 2.

Since a message contains the source vertex ID, the destination

Linked list

Pointer array implemented
as 2-level tree

Fig. 4. Replacing linked lists of messages by pointer arrays in order to
remove data dependence and employ CPU cache prefetching. For very long
lists, pointer arrays are implemented as 2-level trees.

vertex ID, and the message content, S

L
is often non-trivial. For

example, in PageRank, S

L
= 0.5 and thus n ≥ 3. Therefore, the

number of cache misses per message is comparable or worse
than that of the baseline implementation. The benefit of the
array based solution will quickly diminish as the size of the
message increases.

We propose to employ CPU cache prefetching to reduce
the impact of cache misses. First, we replace all the linked list
structures with pointer arrays. Note that this does not require
additional space since we essentially move the pointer space
from every message to the pointer arrays. For in-message lists,
we use std::vector, which is a dynamic array. However,
for the global received message list, the pointer array would
be very large, and dynamic allocation and resizing would be
costly. Therefore, we design a 2-level tree structure as shown
in Figure 4. The tree node of the lower level is each 1MB
large, which can hold up to 128K 8-byte pointers.

Second, we employ simple prefetching for reading the in-
message list. Let d be the prefetching distance, which is a
tunable parameter. In the constructor of the MsgIterator

of compute, we issue prefetch instructions for the first d
messages in the list. Then when message i is accessed, we
issue a prefetch instruction for message i+ d. We make sure
that prefetching does not go beyond the end of the list.

Finally, we employ prefetching for the message distribution
process. The distribution of a message incurs two dependent
cache misses, one for the message and one for the destination
vertex. The above simple prefetching solution cannot be used
to prefetch the latter since the destination vertex is computed
from the message content. A prefetch would be issued too
late for the destination vertex. Instead, we exploit more so-
phisticated prefetching techniques, namely group prefetching
and software pipelined prefetching, as proposed previously
for cache efficient hash joins [4]. Figure 5 shows the group
prefetching implementation for the distribution process. The
algorithm delivers a group of messages at a time. For each
group, step (1) prefetches all the messages. In this way, the
cache misses to load the messages will be serviced in parallel.
Next, step (2) computes and prefetches all the destination
vertices (a.k.a. nodes). The computation assumes hash based
graph partitioning. Similarly, the cache misses to load the
nodes will be serviced in parallel. Step (3) delivers the mes-
sages. Here, pref group size is a tunable parameter. Like
group prefetching, software pipelined prefetching also takes
advantage of the fact that each message is independent of
the other messages. It builds a three stage software pipeline
(corresponding to the three steps in group prefetching), and
processes a different message at each stage in every iteration.

1 Msg ∗msg [p r e f g r o u p s i z e] , ∗mp;
2 Node ∗nd [p r e f g r o u p s i z e] , ∗np ;
3 i n t 6 4 t i , j , i ndex ;
4
5 P o i n t e rA r r a y : : I t e r a t o r ∗ i t =
6 rece ived msg−>g e t I t e r a t o r () ;
7 i n t 6 4 t t o t a l num= rece ived msg−> t o t a l () ;
8
9 / / d e l i v e r a group o f messages per i t e r a t i o n

10 i = p r e f g r o u p s i z e ;
11 f o r (; i < t o t a l num ; i += p r e f g r o u p s i z e) {
12 / / (1) p r e f e t c h t h e group o f messages

13 f o r (j = 0 ; j < p r e f g r o u p s i z e ; j ++) {
14 msg [j]= (Msg ∗) i t−>nex t () ;
15 p r e f e t c h (msg [j]) ;
16 }
17 / / (2) p r e f e t c h t h e group o f nodes

18 f o r (j = 0 ; j < p r e f g r o u p s i z e ; j ++) {
19 index= msg [j]−>d e s t i d / wo rke r cn t ;
20 nd [j]= getNode (i ndex) ;
21 p r e f e t c h (nd [j]) ;
22 }
23 / / (3) d e l i v e r t h e group o f messages

24 f o r (j = 0 ; j < p r e f g r o u p s i z e ; j ++) {
25 nd [j]−>recvNewMsg (msg [j]) ;
26 }
27 }
28
29 / / d e l i v e r t h e r e s t o f t h e messages

30 mp= (Msg ∗) i t−>nex t () ;
31 f o r (; mp ; mp= (Msg ∗) i t−>nex t ()) {
32 index= mp−>d e s t i d / wo rke r cn t ;
33 np= getNode (i ndex) ;
34 np−>recvNewMsg (mp) ;
35 }

Fig. 5. Group prefetching for message delivery.

IV. PRELIMINARY EVALUATION

In this section, we perform real-machine experiments to
understand the impact of our proposed optimizations on graph
computation. We first describe the setup for running the
experiments and then discuss the experimental results.

A. Experimental Setup

Machine configuration. In our preliminary evaluation, we
focus on the CPU cache performance of a single worker.
We perform all the experiments on an Intel x86-64 machine
equipped with a 3.40GHz Intel i7-4770 CPU, 8 MB L3 cache,
and 16 GB main memory. The machine runs Ubuntu 13.10
with Linux 3.11.0-12-generic kernel. All the code is compiled
with g++ 4.8.1 with the optimization level -O3. Before running
the experiments, we disabled dynamic power management of
the machine and set the CPU frequency to the maximum. For
each experiment, we perform 10 runs and report the average
result across the 10 runs.

GraphLite implementations. We report the results for six
implementations. Their labels and meanings are as follows. (1)
base: the baseline implementation as described in Section II-B.
(2) imm: this is a variant of the baseline. We do not maintain
the global received message list. Instead, we add a local
received message list in every vertex. Once a message arrives,
we immediately insert it into the received message list in
the destination vertex. (3) sort: we store messages in arrays
and apply quick sort as described in Section III-B. (4) opt1:
we perform group prefetching for message distribution. The
results of software pipelined prefetching are similar to those

TABLE I. DATA SET DESCRIPTION.
Name Type Vertices Edges Description

email-Enron Directed 36,692 367,662
Email communication net-
work from Enron

amazon0505 Directed 410,236 3,356,824

Amazon product co-
purchasing network from
May 05 2003

soc-Pokec-rel Directed 1,632,803 30,622,564
Pokec social network user
relationship data

soc-LiveJournal1 Directed 4,847,571 68,993,773
LiveJournal online friend-
ship social network

Note: Data sets are downloaded from http://snap.stanford.edu/data/.

of group prefetching. Hence, we omit results for software
pipelined prefetching. (5) opt12: besides opt1, we employ
simple prefetching for in-message lists. (6) opt123: besides
opt12, we further employ prefetching for the free list. This
is not described in Section III-B because our analysis in
Section III-A finds that the access to the free list often has good
cache performance. We would like to see if the experimental
results actually support our analysis.

Workload. We run the PageRank algorithm on four real-
world graphs with increasing numbers of vertices and edges, as
listed in Table I. The largest graph, soc-LiveJournal1, contains
about 69 million edges. Since the PageRank algorithm sends
a message along every edge in each iteration and the message
size is 32 byte in our current implementation, the total data
size for incoming messages in an iteration is 2.2GB, which
is much larger than the CPU L3 cache size. We modify the
PageRank implementation in Figure 2 so that the computation
completes after 10 supersteps.

B. Experimental Results

Figure 6 shows the elapsed times of the PageRank com-
putation on six variants of GraphLite implementations. From
left to right, the four figures correspond to the four graph data
sets in Table I. The number of vertices in the graphs increases
from 36.7 thousand to 4.8 million, and the number of edges
increases from 368 thousand to 69 million. As expected, the
larger the graph, the longer the execution time of PageRank.

Comparing base and imm, we see that imm improves base
by a factor of 1.2–1.4x. This shows that it is a good idea
to deliver the messages immediately when the messages are
received. Compared to the global message distribution process
in base, imm saves the cache misses for traversing he global
received message list to retrieve the messages.

Comparing sort and the two baselines base and imm, we
see that sort only slightly improves base but it is significantly
worse than imm. Note that our current implementation uses the
quick sort algorithm. A more efficient sorting algorithm may
achieve better performance. Nevertheless, the results confirm
our observation in Section III-B. Because the message size in
graph computation is comparable to the cache line size, it is
less beneficial to employ the sort approach.

The three optimization schemes employ CPU cache
prefetching to improve the CPU cache performance of graph
computation. We see that group prefetching for the message
distribution process (opt1) achieves 1.2–1.6x improvements
over base. Applying prefetching for the in-message lists
(opt12) achieves an additional 1.3–1.6x improvements over

0.0

0.1

0.2

0.3

0.4

0.5

b
a
s
e

im
m

s
o
rt

o
p
t1

o
p
t1
2

o
p
t1
2
3

email-Enron

ti
m

e
 (

s
)

0

2

4

6

8

b
a
s
e

im
m

s
o
rt

o
p
t1

o
p
t1
2

o
p
t1
2
3

amazon0505

ti
m

e
 (

s
)

0

20

40

60

80

b
a
s
e

im
m

s
o
rt

o
p
t1

o
p
t1
2

o
p
t1
2
3

soc-pokec-rel

ti
m

e
 (

s
)

0

40

80

120

160

b
a
s
e

im
m

s
o
rt

o
p
t1

o
p
t1
2

o
p
t1
2
3

soc-LiveJournal1

ti
m

e
 (

s
)

Fig. 6. Elapsed time for PageRank. (base: baseline implementation; imm: immediately deliver messages in send methods; sort: store messages in arrays and
do sorting; opt1: group prefetching for the distribution process; opt12: opt1 + prefetching for in-message lists; opt123: opt12 + prefetching for free list.)

opt1. However, prefetching for the free list (opt123) sees
little benefit over opt12. The experimental results confirm our
analysis in SectionIII. Accessing the in-memory lists and the
global received message list incur fully exposed cache misses
for the messages and/or the vertex data. CPU cache prefetching
can effectively overlap multiple memory loads that serve the
cache misses, thereby reducing the impact of cache misses
on the elapsed time. On the other hand, the free list often
stays in the cache because of the frequent allocation and free
operations. Therefore, opt123 is almost the same as opt12.

Overall, our optimizations that employ CPU cache
prefetching to reduce the impact of cache misses are very
effective. opt12 achieves 1.9–2.2x speedups over base, and
1.4–1.7x speedups over imm.

V. CONCLUSION AND FUTURE WORK

Graph is a popular data model for big data analysis. As
graph systems typically hold and process graph data in main
memory, their CPU cache behavior plays an important role in
the efficiency of the computation.

In this paper, we analyze the internal data structures and
operations of a Pregel-like graph computation system. We find
that the system often incurs expensive fully exposed cache
misses for processing inter-vertex messages. We propose to
exploit CPU cache prefetching to reduce the impact of cache
misses, while maintaining good memory space utilization of
the baseline implementation. Preliminary experimental results
show that CPU cache prefetching can significantly improve
graph computation, achieving 1.9–2.2x speedups compared to
the baseline implementation.

This paper reports our on-going effort to optimize the
CPU cache performance of Pregel-Like graph computation
system. We plan to extend this study in the following three
dimensions: (1) studying more graph algorithms that have
different computation and communication characteristics; (2)
performing experiments in a distributed environment for larger
graphs; and (3) performing in-depth quantitative analysis of the
CPU cache behaviors for graph computation.

ACKNOWLEDGMENT

The second author is partially supported by the CAS
Hundred Talents program and by NSFC Innovation Research
Group No. 61221062.

REFERENCES

[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis, “Weaving
relations for cache performance,” in VLDB, 2001, pp. 169–180.

[2] P. A. Boncz, S. Manegold, and M. L. Kersten, “Database architecture
optimized for the new bottleneck: Memory access,” in VLDB, 1999.

[3] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Comput. Netw. ISDN Syst., vol. 30, no. 1-7, pp. 107–
117, Apr. 1998.

[4] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry, “Improving
hash join performance through prefetching,” in ICDE, 2004.

[5] S. Chen, P. B. Gibbons, and T. C. Mowry, “Improving index perfor-
mance through prefetching,” in SIGMOD, 2001.

[6] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, “Shortest paths
algorithms: Theory and experimental evaluation,” Math. Program.,
vol. 73, pp. 129–174, 1996.

[7] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, vol. 40, no. 1, pp. pp. 35–41, 1977.

[8] A. Giraph, http://giraph.apache.org.

[9] M. Girvan and M. E. Newman, “Community structure in social and
biological networks,” Proc Natl Acad Sci U S A, vol. 99, no. 12, pp.
7821–7826, June 2002.

[10] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” in
Proceedings of the 10th USENIX Conference on Operating Systems

Design and Implementation, ser. OSDI’12, 2012, pp. 17–30.

[11] A. Hama, http://hama.apache.org.

[12] R. A. Hankins and J. M. Patel, “Effect of node size on the performance
of cache-conscious B+-trees,” in SIGMETRICS, 2003.

[13] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph
computation on just a pc,” in Proceedings of the 10th USENIX Confer-

ence on Operating Systems Design and Implementation, ser. OSDI’12,
2012, pp. 31–46.

[14] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed graphlab: A framework for machine learning
and data mining in the cloud,” Proc. VLDB Endow., vol. 5, no. 8, pp.
716–727, Apr. 2012.

[15] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Graphlab: A new framework for parallel machine learn-
ing,” in UAI, 2010, pp. 340–349.

[16] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale graph
processing,” in SIGMOD Conference, 2010, pp. 135–146.

[17] J. Rao and K. A. Ross, “Cache conscious indexing for decision-support
in main memory,” in VLDB, 1999, pp. 78–89.

[18] Salihoglu and J. Widom, “Optimizing graph algorithms on pregel-like
systems,” PVLDB, vol. 7, no. 7, pp. 577–588, 2014.

[19] S. Salihoglu and J. Widom, “GPS: a graph processing system,” in
SSDBM, 2013, p. 22.

[20] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson,
“From ”think like a vertex” to ”think like a graph”,” PVLDB, vol. 7,
no. 3, pp. 193–204, 2013.

[21] W. Xie, G. Wang, D. Bindel, A. J. Demers, and J. Gehrke, “Fast iterative
graph computation with block updates,” PVLDB, vol. 6, no. 14, pp.
2014–2025, 2013.

