
Progressive Join Algorithms Considering User Preference

Mengsu Ding Shimin Chen∗
SKL of Computer Architecture, ICT, CAS

University of Chinese Academy of Sciences
{dingmengsu,chensm}@ict.ac.cn

Nantia Makrynioti Stefan Manegold
CWI, Amsterdam, The Netherlands

{nantia.makrynioti,stefan.manegold}@cwi.nl

ABSTRACT
Progressive query processing is a new attractive paradigm
for exploratory data analysis. This paper considers the case
where users want to receive results ordered according to their
preference, and specifically focuses on the design of join algo-
rithms. We investigate the use of contour lines in progressive
algorithms with user preferences, and propose ContourJoin
to reduce sorting overhead of progressive preference-aware
joins. Experimental results show that compared with the
näıve blocking algorithm and the top-k RankJoin algorithm,
ContourJoin has superior performance in both early result
generation and total result computation.

1. INTRODUCTION
Exploratory data analysis is essential in a variety of ap-

plications [8], from analyzing astronomy data to detecting
financial fraud and improving decision-making in healthcare.
To support these applications, the research community has
long realized the need for a new progressive query processing
paradigm, where initial partial results are quickly returned
to the user and then complemented gradually over time, in-
stead of asking the user to wait for the full output at the end
of query processing. The adaptation of joins, an essential op-
eration in relational databases, under this new progressive
paradigm has attracted considerable interest [13, 9, 11, 20].

However, there are cases where not all tuples are equally
interesting to the user. In such cases the user would like to
receive results relevant to her preferences first. If the sys-
tem returns plenty of uninteresting results, this will disrupt
the user’s concentration and hamper interactive exploration.
Hence, the progressive generation of results needs to consider
user preferences as well. When a join operation is involved
and assuming that a user preference is expressed as a score
associated to each tuple in a table, the goal is to output join
results of the highest combining preference (computed as a
function on the individual table scores) first. A straight-
forward solution is to first join the tables and then sort the

∗Corresponding author

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2021.
11th Annual Conference on Innovative Data Systems Research (CIDR ‘21)
January 10-13, 2021, Chaminade, USA.

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
100

103

106

time(s)

]r
es

u
lt

s

JS

RJ (k = ∞)

Figure 1: Problematic performance of a blocking algorithm
and a representative top-k join algorithm using two TPC-H
tables (cf., Table 3) and default settings (cf., Section 4).

results on their combined scores. However, this is a blocking
algorithm and it violates the requirements of the progressive
paradigm. A more promising direction would be the use of
top-k join algorithms [9, 11, 20], which can report the k most
interesting join results early on. However, in a data explo-
ration scenario, the value of k would not be defined a priori,
and could end up being even equal to the total number of
results, if the user decides to see the entire result set. Fig-
ure 1 demonstrates the problematic performance of the two
described solutions: the blocking JoinSort (JS) algorithm
depicts 0.8 seconds of “silent” processing before showing any
result — during this time, top-k RankJoin (RJ) [9] produces
more than 700,000 result tuples — and then yields all results
“instantly”, while the top-k RankJoin starts yielding results
instantly, but takes more than 3 times longer than JoinSort
to produce all results.

In this paper, we investigate progressive join algorithms
that take user preferences into account and need to (1) pro-
duce early results with the highest preference as quickly as
possible without knowing k, and (2) progressively converge
to the complete result set with low latency.

We propose ContourJoin, a new progressive preference-
aware join algorithm. It is based on the idea of contour
lines, which capture join results with equal combined prefer-
ence scores. We conceptually divide the join solution space
into score ranges using contour lines. Then we can pro-
cess the input tables to cover the score ranges in descend-
ing order. In contrast with top-k join algorithms, there is
no parameter k in ContourJoin. The algorithm sorts the
results only within individual score ranges, and avoids the
sorting overhead across score ranges, as they are already or-
dered. If the user can tolerate small predefined errors in the
preference order of the results, we can further remove the
inner-range sorting overhead with a relaxed ContourJoin al-
gorithm. Hence, by following the contour lines to access the
tuples of the relations, we need to buffer fewer intermediate
results and reduce sorting in comparison to RankJoin.

Contributions. The key contributions of the paper are:

• We investigate the use of contour lines in progressive
algorithms with user preferences. We propose Con-
tourJoin that exploits contour lines to reduce sorting
overhead of progressive preference-aware joins.

• We perform experiments to compare the efficiency of
ContourJoin with the top-k RankJoin and the naive
blocking algorithm (i.e. hash join then sort). Ex-
perimental results show that ContourJoin has superior
performance in both (i) early result generation and (ii)
total result computation.

Paper Organization. The remainder of the paper is or-
ganized as follows. Section 2 describes preliminaries and
fundamentals. Section 3 elaborates on the algorithm design,
and Section 4 presents experimental results. Section 5 dis-
cusses relevant issues, such as multi-way joins and unsorted
inputs. Section 6 describes related work. Finally, Section 7
concludes the paper.

2. BACKGROUND
We define the problem of progressively joining preference-

scored relations. Then, we discuss the limitations of a rep-
resentative top-k join algorithm, RankJoin [9].

2.1 Problem Definition
We consider an equality join between two input tables L

and R. Each table contains at least two columns, i.e. a join
key and a preference value. The preference value is nor-
malized to [0,1]. Suppose the preference value columns of
tables L and R are x and y, respectively. The tuples in
each table are sorted in the descending order of preference
values. The preference score of a result tuple from joining
tuple (key, x) from L and (key, y) from R is given by a mono-
tonic score function f(x, y). This follows the most popular
way (i.e. quantitative approach) in representing preferences,
where preferences are described by certain columns (e.g.,
price, rating, speed) with numeric values (can also be nor-
malized to [0, 1]) and composed using functions [11, 2, 17,
14, 1]. A two-way preference-aware progressive join is to re-
port matches between L and R in order of decreasing result
preference. We discuss how to use the two-way preference
progressive join as a building block to support multi-way
preference-aware progressive joins in Section 5.

In this paper, we assume that the input tables and the
join results can all fit into main memory1. We shall mainly
focus on the weighted sum, i.e. f(x, y) = Ax + By, which
is a popular score function [16]. Without loss of generality,
A > 0 and B > 0. If A < 0, then let A′ = −A > 0 and
f ′(x, y) = f(x, y)+A′ = A′−A′x+By = A′(1−x)+By. We
simply read L in the reverse order and compute the results
using f ′(x, y). If A = 0, then the score function degenerates
to f(x, y) = By. We discuss the support for this degenerated
score function and other functions briefly in Section 3.4.

2.2 Top-k Join Algorithms Meet Any-k
Top-k join algorithms could be adapted to meet any-k sce-

narios. However, their performance degrades considerably
as k grows.

1To support tables larger than memory, we can develop a
solution by combining the proposed technique in this work
and external sorting.

 𝑟𝑛 … 𝑟2 𝑟1

Hash
tables

L

R Symmetric
hash join

Priority Queue
(ordered by preference scores)

Join
results

Sorted
join

results

dL

dR

Check bound: max(f(x0,y), f(x ,y0)) dL dR

Figure 2: The RankJoin algorithm [9].

Algorithm 1: RankJoin (Any-k)

1 Function RankJoin(table L, table R, combining
function f(x, y) = Ax+By)

2 x0=xdL= L.first.x; y0=ydR= R.first.y;
3 while L or R has next record do
4 determine next dataset to access, I;
5 record = I.getNext();
6 insert record into I’s hash table;
7 probe the other hash table with record;
8 foreach valid join combination do
9 compute the join result score using f(x, y);

10 insert the join result in priority queue Q;

11 if I is L then xdL= record.x ;
12 else ydR= record.y ;
13 T = max(f(x0, ydR), f(xdL , y0));
14 while !Q.empty() and Q.top().score >= T do
15 next result= Q.pop();

16 while !Q.empty() do
17 next result= Q.pop()

We use RankJoin [9] as a representative top-k join algo-
rithm in our analysis below. To the best of our knowledge,
RankJoin is the most efficient top-k join algorithm that can
be easily extended for any-k scenarios. Figure 2 illustrates
the RankJoin algorithm. It performs a symmetric hash join
on the two input relations L and R, as shown in the left
part of Figure 2. The join result tuples are inserted into a
priority queue ordered by the preference scores. However,
before returning any join result to the user, RankJoin must
make sure that no future join results can have larger prefer-
ence scores. This is achieved using an upper bound on the
preference scores of future join results.

Let us understand the bound. x0 (y0) denotes the pref-
erence value of the first tuple in L (R), which is the largest
preference value in L (R). xdL (ydR) denotes the prefer-
ence value of the last processed L (R) tuple so far by the
symmetric hash join. The tuples of L are read in the de-
scending order of preference values. Hence, for any unread
tuple l(key, x) in L, we know x ≤ xdL . Tuple l may join
with some R tuple r(key, y). Whether r has been processed
or not, y ≤ y0 is always true. As f(·) is a monotonic func-
tion, f(x, y) ≤ f(xdL , y0). In other words, f(xdL , y0) is an
upper bound of the preference score of joining any unread
L tuple with R tuples. Similarly, f(x0, ydR) is an upper
bound of the preference score of joining any unread R tuple
with L tuples. Therefore, max(f(x0, ydR), f(xdL , y0)) gives
an upper bound of the preference score of any future join
result.

L R
key score key score

1 1.0 1 1.0
2 0.4 2 0.4
3 0.3 3 0.3
4 0.2 4 0.2

Figure 3: An example for which RankJoin works poorly.

The original top-k RankJoin keeps a priority queue of size
k. It updates the priority queue until the last tuple in the
queue has a preference score greater than or equal to the
bound. At this moment, RankJoin has seen all join result tu-
ples with preference scores larger than the bound. RankJoin
returns the k tuples in the queue.

We extend RankJoin to support any k (cf., Algorithm 1)
as follows. First, we do not restrict the size of the priority
queue. A new result tuple does not replace a tuple in the
queue. Second, we output the top-most tuple t of the prior-
ity queue whenever t’s score ≥ bound (Line 14 – Line 15).

However, the any-k RankJoin has two main sources of
inefficiency: sorting overhead and score bound.

Sorting overhead. A priority queue is used to sort the
join result tuples. In any-k RankJoin, a large number of
low-score result tuples stay in the priority queue. For n
result tuples, the queue performs O(n log(n)) tuple compar-
ison and swap operations. To make matters worse, the most
efficient priority queues are implemented by heaps, which
have poor CPU cache behaviors. Heap operations often in-
cur random memory accesses, resulting in a large number of
expensive CPU cache misses and TLB misses.

Score bound. The bound does not handle skewed score
distributions well. Figure 3 shows an example. Suppose
f(x, y) = x+ y. Even if all tuples are processed, the bound
is 1.2, which is still quite large. This is larger than the score
of all but the first join result tuple. Thus, RankJoin can
produce only one early result tuple. The rest will be output
at the end of the join.

3. CONTOURJOIN
In this section, we introduce the idea of contour lines,

a method for partitioning the result space of a join into
score ranges. Based on this idea, we propose ContourJoin,
a progressive preference-aware join algorithm, and describe
four variants of it. Finally, we briefly discuss support for
other score functions.

3.1 Contour Lines and Contour Bounds
Assuming that input tables are ordered on preference val-

ues, we divide the tuples into ranges based on the preference
values. For example, in Figure 4, x-axis and y-axis repre-
sent the preference value space for each table. Table L and
R are divided into pL and pR ranges, respectively. In each
range Li of table L, x ∈ (1 − i+1

pL
, 1 − i

pL
]. In each range

Ri of table R, y ∈ (1 − j+1
pR

, 1 − j
pR

]. Note that pL and pR

satisfy A
pL

= B
pR

, which ensures that L and R contribute to

the final score equally. The diagonal lines in Figure 4, each
delimiting a contoured area, are called contour lines. Final
scores on a contour line are the same.

Features. Contour lines have the following features.

1. Input data which lie between any two successive lines
generate join results with the same score range;

R0 R0

R1 R1

R2 R2

R3 R3

L0

L0

L1

L1

L = { Li | 0 ≤ i < pL }
Li = { l ∈ L |
 l.x ≤ 1 - i / pL ∧
 l.x > 1 - (i+1) / pL }

R = { Rj | 0 ≤ j < pR }
Rj = { r ∈ R |
 r.y ≤ 1 - j / pR ∧
 r.y > 1 - (j+1) / pR }

Uh = { Li ⋈ Rj | i + j = h }
 (0 ≤ h < pL + pR - 1)

R
.y

(∈

 [
0

,1
])

B
 *

 R
.y

(∈

 [
0

,B
])

A = 1.0 ; B = 2.0 ; ε = 1.0
pL = 2 * A / ε = 2 ; pR = 2 * B / ε = 4

A * L.x (∈ [0,A])

f(x,y) = A * x + B * y
 f(x,y) ∈ [0.0,0.5]
 f(x,y) ∈ (0.5,1.0]
 f(x,y) ∈ (1.0,1.5]
 f(x,y) ∈ (1.5,2.0]
 f(x,y) ∈ (2.0,2.5]
 f(x,y) ∈ (2.5,3.0]

0.00

0.25

0.50

0.75

1.00
0.000.501.00

0.00

0.50

1.00

1.50

2.00

0.000.501.00

U0 : L0 ⋈ R0 U1 : L1 ⋈ R0

U1 : L0 ⋈ R1 U2 : L1 ⋈ R1

U2 : L0 ⋈ R2 U3 : L1 ⋈ R2

U3 : L0 ⋈ R3 U4 : L1 ⋈ R3

Buf0
Buf1
Buf2
Buf3
Buf4
Buf5

L.x (∈ [0,1])

Figure 4: Contour lines.

2. As contour lines go forward (i.e. from bottom-left to
top-right), the result score range that they cover de-
creases.

Essentially, a contour line determines the score bound
(contour bound) between the two areas that it divides, which
can be exploited to output join results with higher scores
first. Unlike previous top-k join algorithms where the thresh-
old values have to be updated every time after reading an
input record (in order to output early results), the contour
bounds are constant, and not limited by the top-first pref-
erence values of the input data. Hence, by accessing the
input tuples in the order of the contour lines, our proposed
ContourJoin can avoid unnecessary caching of join matches
and cluster results into buffers to reduce sorting overhead.

3.2 The ContourJoin Algorithm
The join operation can be viewed as the process of span-

ning the space of contour lines to get valid join combina-
tions. An important observation is that, after spanning a
line, parts of results can be output early. Algorithm 2 shows
the generic framework for ContourJoin algorithm. The al-
gorithm works as follows.

1. (Line 3) Compute parameter pL and pR.

2. (Line 4) Retrieve and process input data in a loop,
following the contour lines (i.e. from the highest to
the lowest score range).

3. (Line 5 – Line 8) For each tuple that resides in the rect-
angle covered by the line, generate join combinations
using a join strategy (cf., Sec. 3.3).

4. (Line 18) For each resulting join combination, compute
the combined score using the score function f .

5. (Line 19 – Line 20) Map each join result to a buffer
based on its combined score. For example, in Figure 4
Buf0 contains results with a score between 2.5 and
3.0. In this way, the algorithm avoids the sorting cost
across buffers.

6. (Line 21 – Line 25) If the lower bound of a buffer is
larger than the contour bound (i.e. the bound of the
current line), sort (if needed) and output the buffer.
Join results over the following contour lines cannot
have higher scores than the current contour bound.

Algorithm 2: ContourJoin Generic Framework

1 Function ContourJoin(table L, table R, combining
function f(x, y) = Ax+By, ε)

2 initialize a set of buffers;
3 Divide2Ranges(L, R, f , ε);
4 while (cur line id=getNextContourLine()) and

cur line id < |contour lines| do
5 nextL = L.getNextRange();
6 nextR = R.getNextRange();
7 /* depends on join strategy */
8 Join(nextL, nextR, f);
9 OutputBuffer(cur line id);

10 Function Divide2Ranges(table L, table R, combining
function f(x, y) = Ax+By, ε)

11 if relaxation is allowed then
12 calculate integer pL, pR:

13
A
pL

= B
pR

and A
pL
≤ ε

2

14 else
15 calculate integer pL, pR: A

pL
= B

pR

16 divide L and R into pL, pR ranges, respectively

17 Function MapJoinResult(a join result < li, rj >,
combining function f(x, y))=Ax+By)

18 calculate score s = f(li, rj);
19 buf id = getBufID(s) ;
20 push the result to buffer[buf id];

21 Function OutputBuffer(contour line lid)
22 buf id = getOutputBufID(lid);
23 if relaxation is not allowed then
24 sort results in buffer[buf id];

25 output results in buffer[buf id] ;

Buffer Maintenance. ContourJoin exploits the features
of contour lines to temporarily cache results into buffers.
Join results that lie between any two successive contour lines
are mapped to the same buffer. In this way, inter-buffer
sorting is avoided. The algorithm can output early results
in a buffer when the score range of the buffer is greater than
or equal to the current contour line. The number of buffers
to maintain and whether intra-buffer sorting is necessary
depend on the specific join strategy (cf., Section 3.3.1) and
relaxation policy (cf., Section 3.3.2).

3.3 Variants of ContourJoin
ContourJoin can be viewed as a generic framework for

any-k join algorithms. For example, when pL = pR = 1, it
becomes a blocking algorithm, i.e. join everything first and
then sort; when pL and pR are large enough, it is similar to
RankJoin, which takes a single tuple as an input. Further-
more, we can have an approximate version of the algorithm
by adding an appropriate parameter. We discuss variants of
the algorithm below.

3.3.1 Join Strategy
The order in which the points in the result space are

checked has a great effect on the intermediate result size.
The larger the intermediate result, the more buffers are re-
quired to cache results, and the more cache misses and TLB
misses. Figure 5 presents two strategies and the join combi-

Algorithm 3: Join Inputs Follow Contour Lines

1 Function Join(partition nextL, partition nextR,
combining function f(x, y) = Ax+By)

2 for each r ∈ nextL do
3 insert r into L’s hash table;
4 probe R’s hash table to find join matches;
5 for each join match < li, rj > do
6 MapJoinResult(< li, rj >, f);

7 for each r ∈ nextR do
8 insert r into R’s hash table;
9 probe L’s hash table to find join matches;

10 for each join match < li, rj > do
11 MapJoinResult(< li, rj >, f);

Algorithm 4: Both Join Inputs and Join Results
Follow Contour Lines

1 Function Join(partition nextL, partition nextR,
combining function f(x, y))

2 if nextL(nextR) is not null then
3 cache nextL(nextR);

4 for each rectangle rect covered by the current
contour line do

5 Partition li = rect.getPartitionFromL();
6 Partition rj = rect.getPartitionFromR();
7 compute join matches on li and rj using

existing join methods (e.g., sort merge join,
hash join, ...);

8 for each join match < li, rj > do
9 MapJoinResult(< li, rj >, f);

nations they produce.
The first join strategy (Figure 5a) ensures that join in-

puts follow contour lines. It spans the space of the Carte-
sian product of the input relations by exploiting symmetric
hash join, which is a popular non-blocking join algorithm [4,
7]. Algorithm 3 shows the join algorithm. At each invo-
cation, it retrieves input data from the next range of both
input relations, and computes valid join combinations on
all tuples seen so far (Line 2 – Line 11). The generated
join results may lie in many contour areas. A maximum of
|contour lines| + 1 (where |contour lines| = pL + pR − 1)
buffers are required for caching results. The total buffer size
for the whole process is O(total results).

On the other hand, the second strategy (Figure 5b) en-
sures that both join inputs and join results follow contour
lines. It exploits contour lines’ features to span the contour
space. At each invocation, it follows the next contour line
to retrieve input data and then computes join matches only
on the data that lie in the rectangles covered by the line
(Line 4 – Line 9 in Algorithm 4). New results lie in at most
2 adjacent contour areas, and results in the higher contour
area can be output first. Therefore, at most 2 buffers are
required for caching results. When join results are uniformly
distributed in the result space, the size of the intermediate
buffer for the whole process is O(

√
total results).

3.3.2 Relaxation of Output Order

Table 1: Notations.

Notation Description Notation Description

upper(RRec(i,j)) upper-bound value of output results for Li 1 Rj nL, nR, nO number of L, R, output records
lower(RRec(i,j)) lower-bound value of output results for Li 1 Rj ccompute computation time
β1, β2, β3 coefficient (build, probe, sort cost per tuple) γ join selectivity
RRec(i,j) number of output results for Li 1 Rj |R| number of inputs in total
α coefficient (1/0 for precise/relaxed ContourJoin) cjoin join time
upper(Uk) upper-bound value of output results in Uk csort sort time
lower(Uk) lower-bound value of output results in Uk |L| number of inputs in total

Hash

tables

L

R Symmetric
hash join

Buffers
(inter-buffer: ordered by preference scores)

Sorted
join results

in 𝐵𝑢𝑓𝑖

Check bound: upper(𝑈𝑖+1) < 𝑙𝑜𝑤𝑒𝑟(𝐵𝑢𝑓𝑖)

Join
results

𝑈𝑖

0 1 2
0
1
2

(a) Join inputs follow contour line

L

R join

(inter-buffer: ordered by preference scores)

Sorted
join results
in Buf𝑖%2

Check bound: upper(𝑈𝑖) < 𝑙𝑜𝑤𝑒𝑟(𝐵𝑢𝑓𝑖%2)

Join
results

𝑈𝑖𝑅0

𝑅1
𝑅2

𝐿0
𝐿1

0
1
2

0 1 2 Buffers

𝐿2

(b) Both join inputs and join results follow contour line

Figure 5: ContourJoin algorithms.

In real-world applications there are cases where the exact
output order of the results based on preference might not
matter so much for the user. Therefore, we can relax the
sorting precision by allowing a small error in the order of
tuples with very similar scores.

Definition 1 (Relaxation of Order). For any two tu-
ples ti, tj, if |ti.score − tj .score| <= ε, then ti and tj are
regarded as in order.

If we ensure that the absolute difference between any two
successive contour lines, i.e. the maximum absolute differ-
ence of any two results within a buffer, is not greater than
ε, then there is no need to sort the buffers that cache the
results (Line 23 – Line 25 in Algorithm 2).

3.3.3 Number of Partitions
The number of partitions, and consequently the interval

of contour lines, is determined by pL and pR. We consider
three goals for choosing pL and pR: (i) satisfy the properties
of the contour lines so that partitions contribute to the fi-
nal score equally; (ii) output early high-score results within
tfirst (e.g., tfirst=0.5s [18]) to offer a more interactive user
experience; (iii) take the relaxation of order into considera-
tion to avoid sorting.

Goal (i) is achieved by satisfying A
pL

= B
pR

= ρ. We

proceed with finding the value of ρ that satisfies the other
two goals.

Goal (ii) requires computing the first contour space within
tfirst, that is, ccompute ≤ tfirst. We have to estimate the

input data sizes nL, nR and the output result size nO of the
first contour space. For simplicity, we assume that both join
keys and scores are uniformly distributed (if not, nL, nR, nO
can be sampled). Table 1 lists notations used in this paper.

Theorem 1. If join keys and scores are uniformly dis-
tributed, and ρ satisfies that
β1ρ|L|
A

+ β2ρ|R|
B

+ αβ3
γρ2|L||R|

AB
log(γρ

2|L||R|
AB

) ≤ tfirst,
then goal (ii) is achieved.

Proof. Since scores are uniformly distributed, we have

nL = |L|
pL

= ρ|L|
A

and nR = |R|
pR

= ρ|R|
B

. Since join keys are

uniformly distributed, we have nO = γnLnR = γρ2|L||R|
AB

.
ccompute = cjoin + αcsort ≤ tfirst
⇒ β1nL + β2nR + αβ3nOlognO ≤ tfirst
⇒ β1ρ|L|

A
+ β2ρ|R|

B
+αβ3

γρ2|L||R|
AB

log(γρ
2|L||R|
AB

) ≤ tfirst.

Goal (iii) is achieved by ensuring that (1) the score differ-
ence between any two results which reside in the bottom-left
rectangle (i.e. L0, R0) is not greater than ε (Equation 1) and
(2) the score difference between any two results which reside
in the area between any two successive lines is not greater
than ε (Equation 2).

upper(RRec(0,0))− lower(RRec(0,0)) ≤ ε (1)

upper(Ui)− lower(Ui) ≤ ε (2)

Theorem 2. If ρ ≤ ε
2

, then goal (iii) is achieved.

Proof. upper(RRec(i,j)) − lower(RRec(i,j)) = 2ρ ≤ ε,
so Equation 1 is satisfied.
upper(Uk)− lower(Uk)

= max(upper(RReci,k−i)))−min(lower(RReci,k−i)))
= (A+B−kρ)− (A+B− (k+2)ρ) = 2ρ ≤ ε, so Equation 2
is satisfied.

3.3.4 Four Variants
Based on the aforementioned parameters and design choices,

we implement four variants of ContourJoin, as shown in Ta-
ble 2. We evaluate the performance of all variants in Sec-
tion 4.

3.4 Supporting Other Combining Functions
For a combining score function, we can compute the shape

of its contour lines, then employ ContourJoin.

f(x,y)=By. When A = 0, f(x, y) = Ax + By degenerates
to f(x, y) = By. The contour lines are determined only
by R tuples, and are horizontal lines. Then ContourJoin
essentially performs a simple hash join. It first builds the
hash table on L, then probes the hash table for R tuples

Table 2: Four Variants of ContourJoin (CJ).

Variants
Follow Contour Lines

Relaxation
Join Inputs Join Results

CJpI X
CJpB X X
CJrI X X
CJrB X X X

p: precise, r: relaxed, I: Inputs, B: Both inputs and results

max
0 1 2 3

minL

0

1

2

3
min

R

(a) Min(x,y)

max
0 1 2 3

minL

0

1

2

3
min

R

(b) Max(x,y)

Figure 6: Contour lines of other functions (Rectangles filled
with the same color are covered by the same contour line).

with decreasing preference values, progressively generating
join results.

Min(x,y). The contour lines of min(x, y) are ” ” shaped
(Figure 6a) . In this case, contour lines correspond to space
covered by the symmetric hash join. We can apply strategy
(a) of ContourJoin to generate early results progressively.

Max(x,y). The contour lines of max(x, y) are ” ” shaped
(Figure 6b) . Unfortunately, all input tuples from both ta-
bles may contribute to join results with the maximal scores.
Hence, all input tuples must be processed before generating
any output results. Neither ContourJoin nor other top-k
join algorithms can output progressive results for function
max(x, y).

4. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of Contour-

Join. We would like to answer the following questions:

• How does ContourJoin compare to the fastest blocking
algorithm and the efficient top-k rank join algorithm?

• How effective are our proposed algorithm optimization
techniques (i.e. join strategy, relaxation)?

4.1 Experimental Setup
Machine Configuration. The experiments are performed
on a machine equipped with one Intel Core i7-4770 CPU @
3.40 GHz (8 MB cache) and 32 GB memory, running 64-bit
Ubuntu 16.04 LTS with 4.15.0-62-generic Linux kernel.

Algorithms. We implement all algorithms in C++ using
the same data structures for the same functionality and com-
pile them using the GNU C++ compiler with optimization
option -O3. Input data is loaded into memory and IO costs
are ignored. Output results are cached in memory.

We compare ContourJoin with two baselines: (1) Join-
Sort (JS), a baseline for total result computation. It com-
putes the full results using hash join2, then sorts all results.
(2) any-k RankJoin (RJ) (cf. Section 2.2), a baseline for
early result generation. As for ContourJoin, CJpI and CJrI
are implemented using symmetric hash join, and CJpB and

2We build the hash table on the smaller table.

CJrB are implemented using sort merge join3 on individual
partitions.

Datasets. We generate data based on two TPC-H tables,
i.e. Lineitem and Partsupp. In Lineitem (Partsupp), we use
l partsupp and l suppkey (ps partsupp and ps suppkey) as
a composite key to generate the key column, and l discount
(ps availqty) to generate the preference column. Each gen-
erated tuple consists of a 32-bit integer key and a normalized
decimal preference value (a.k.a score) in [0, 1].

We generate three datasets based on the two base TPC-
H tables. For datasets]1, we fix the input table sizes while
varying the output result size by a factor of m1, where scale
factor m1=1, 4, 16, or 64. For datasets]2, we fix the output
result size while varying the input table sizes by a factor of
m2, where scale factorm2=1, 4, 16, or 64. For datasets]3, we
vary both the input sizes and the output result size by a fac-
tor of m3, where scale factor m3=1, 4, 16, or 64. Details of
data generation and statistics are presented in Appendix A.

The larger the input size, the higher the join cost. The
larger the output size, the higher the sort cost. Therefore,
using datasets]1, we can observe increasing sort overhead
as m1 increases. Using datasets]2, we can observe increas-
ing join overhead as m2 increases. Datasets]3 is between
datasets]1 and datasets]2, both join overhead and sort over-
head increase as m3 increases.

We run all experiments and report the results for scale
factors 1 and 64 (the cases for scale factors 4 and 16 show
similar trends).

Query. The query in the experiments is as follows. It per-
forms an equality join on Lineitem and Partsupp. A score
function is computed on the join result to obtain a combined
score. The join results are ordered by the combined scores.
The query is progressively computed except for the blocking
JoinSort algorithm, which produces all results at the end of
the query processing.

select L.key, f(L.score, PS.score) as score
from Lineitem as L, Partsupp as PS
where L.key = PS.key
order by score desc
any k

Parameters. In our experiments, the combining score func-
tion is f(x, y) = Ax+By. We consider two cases: A = B = 1
(by default) and A = 10, B = 1. For A = B = 1, we set
pL=200 and pR=200. For A = 10, B = 1, we set pL=2000
and pR=200. We set the relaxation error ε = 0.01 for the
relaxed ContourJoin algorithms, i.e. CJrI and CJrB.

4.2 Experimental Results

4.2.1 Overall Performance
Figure 7 presents the progress of preference-aware join

computation on various datasets over time, while varying
scale factors. In the figure, x-axis is the elapsed time and
y-axis shows the ratio between the number of results pro-
duced so far and the total number of results. We report the
generated number of results every 0.1 s. Note that JoinSort
is a blocking algorithm. It generates all results at the end
of the computation.

3We find that sort merge join is more efficient than hash
join for Strategy (B) because hash join incurs large amount
of TLB misses, especially when pL or pR grows.

0 0.5 1 1.5 2 2.5
1

10

100
all datasets, m1 = m2 = m3 = 1

0 8 16 24 32 40
0.1

1

10

100
datasets]1, m1 = 64

0 4 8 12 16 20

1

10

100
datasets]2, m2 = 64

0 8 16 24 32 40 48 56

1

10

100

time(s)

datasets]3, m3 = 64

p
ro
gr
es
s
(%

)

JS RJ CJpI CJpB CJrI CJrB

(a) f(x, y) = x+ y, pL = 200, pR = 200

0 0.5 1 1.5 2 2.5
1

10

100
all datasets, m1 = m2 = m3 = 1

0 8 16 24 32 40
0.1

1

10

100
datasets]1, m1 = 64

0 4 8 12 16 20

1

10

100
datasets]2, m2 = 64

0 8 16 24 32 40 48 56

1

10

100

time (s)

datasets]3, m3 = 64

p
ro
gr
es
s
(%

)

JS RJ CJpI CJpB CJrI CJrB

(b) f(x, y) = 10x+ y, pL = 2000, pR = 200

Figure 7: Fraction of result records produced over time for various datasets varying scale factors.

From Figure 7, we see that the best ContourJoin signifi-
cantly outperforms RankJoin for computing both early re-
sults and full results. More precisely, compared to RankJoin,
the best precise ContourJoin achieves 1.0x–7.0x (1.4x–7.7x)
improvements for obtaining the top 1% (10%) early results,
and 1.4x–10.6x improvements for computing full results. Re-
laxation further improves performance. The best relaxed
ContourJoin achieves 1.0x–14.0x (1.4x–50.8x) improvements
for obtaining the top 1% (10%) early results, and 1.4x–39.4x
improvements for computing full results. Moreover, com-
pared to JoinSort, the best ContourJoin obtains comparable
or better performance for computing full results. The ratio
between the execution time of JoinSort to that of the best
ContourJoin is between 0.3 and 9.0.

ContourJoin achieves good performance for the following
main reasons. First, ContourJoin exploits contour lines to
avoid inter-buffer result sorting. Figure 8 shows the execu-
tion time breakdowns for all the experiments in Figure 7.
For an experiment, the height of the corresponding bar in-
dicates the total time for computing full results. The bar is
broken down into two parts. The lower part shows the time
spend in sorting results and the upper part shows the time
taken by the join operation. From the figure, we see that
compared to RankJoin and JoinSort, the best precise Con-
tourJoin reduces sorting time by 8.2x–19.1x and 1.4x–2.1x,
respectively. Second, relaxed ContourJoins further avoid re-
sult sorting within individual buffers by using the relaxation
policy, leading to zero sort times, as shown in Figure 8.
Third, the join times of the best ContourJoin are comparable

to that of JoinSort. Finally, the second ContourJoin strat-
egy (i.e. CJpB and CJrB), where both join inputs and join
results follow contour lines, use up to two buffers, thereby
significantly reducing the intermediate result sizes, as shown
in Figure 9.

In the following subsections, we study the performance
impact of different scale factors, different datasets, and dif-
ferent combining score parameters to better understand the
behavior of ContourJoin.

4.2.2 Base Case: Scale Factor=1, f(x,y)=x+y
When the scale factor (i.e. m1, m2, and m3) is 1, all three

datasets are the same. From Figures 7(a) and 8(a), we see
that the best ContourJoins (i.e. CJrB and CJpB) produce
both early results and full results significantly faster than
RankJoin. Note that the RankJoin curve in Figures 7(a)
does not show the full execution of RankJoin. The total
execution time of RankJoin can be seen in Figure 8(a).

On the other hand, we see that ContourJoin is slower than
JoinSort for generating full results. From Figure 8(a), we see
that ContourJoin spends longer time in performing the join
operation. The two input tables, i.e. Lineitem and Part-
supp, have very different sizes. There are about 6 million
records in the Lineitem table, but only 800 thousand in the
Partsupp table. JoinSort builds a hash table on the smaller
input table, Partsupp, and probes the hash table using each
Lineitem record. In contrast, CJpI and CJrI are based on
symmetric hash join, which builds and probes a second hash
table on the much larger Lineitem table. This increases the

J
S

R
J

C
J
p
I

C
J
p
B

C
J
rI

C
J
rB

0

1

2

3

m1 = m2 = m3 = 1

J
S

R
J

C
J
p
I

C
J
p
B

C
J
rI

C
J
rB

0
50

100
150

datasets]1, m1 = 64

ti
m
e
(s
)

Sort Join

J
S

R
J

C
J
p
I

C
J
p
B

C
J
rI

C
J
rB

0

50

100

150
datasets]2, m2 = 64

J
S

R
J

C
J
p
I

C
J
p
B

C
J
rI

C
J
rB

0

50

100

150
datasets]3, m3 = 64

ti
m
e
(s
)

(a) f(x, y) = x+ y, pL = 200, pR = 200

J
S

R
J

C
J
p
I

C
J
p
B

C
J
rI

C
J
rB

0

1

2

3

m1 = m2 = m3 = 1

J
S

R
J

C
J
p
I

C
J
p
B

C
J
rI

C
J
rB

0

50

100

150

datasets]1, m1 = 64

ti
m
e
(s
)

Sort Join

J
S

R
J

C
J
p
I

C
J
p
B

C
J
rI

C
J
rB

0

50

100

150
datasets]2, m2 = 64

J
S

R
J

C
J
p
I

C
J
p
B

C
J
rI

C
J
rB

0

50

100

150
datasets]3, m3 = 64

ti
m
e
(s
)

(b) f(x, y) = 10x+ y, pL = 2000, pR = 200

Figure 8: Execution Time Breakdown: Total = Sort + Join.

join times significantly. CJpB and CJrB compute joins for
individual rectangles. Consider a contour range Li. It has
to be joined with each of the pR contour ranges in R. There-
fore, L records are processed pR times for finding matches in
individual rectangles. Similarly, R records are processed pL
times. We employ sort merge joins to sort each range once
and then use efficient merging to find matches for individual
rectangles. However, even with this optimization, the join
overhead is larger than that in JoinSort.

4.2.3 Effect of Increasing Scale Factor
In this section, we study how algorithms perform when

scale factor increases. We consider combing score function
f(x, y) = x+ y here, and discuss effect of different combing
score function in Section 4.2.4.

Datasets]1: increasing result sorting time. As scale
factorm1 increases from 1 to 64, the input size is not changed,
but the output size increases by 64x. This results in in-
creasing sorting time. From Figures 8(a), we see that in
RankJoin, the result sorting time increases by 91.2x but
the joint time increases by only 6.5x. RankJoin uses heap-
based structure for the priority queue, which sees signifi-
cantly higher cost with increasing result records. Similarly,
in JoinSort, the result sorting time increases by 67.2x as
the output size increases. In ContourJoin, the result sorting
(join) time of the best precise ContourJoin increases by 56.5x
(2.3x), and the sort time of the best relaxed ContourJoin is 0.
Precise ContourJoin removes inter-buffer result sorting, and
intra-buffer result sorting is further removed by relaxation.
To sum up, as the output result size increases, ContourJoin
sees the smallest performance impact, and therefore Con-
tourJoin’s performance advantage for computing early re-
sults and full results becomes larger compared to RankJoin
and JoinSort.

Datasets]2: increasing join time. As m2 increases from
1 to 64, the output size is unchanged but the input size in-
creases by 64x. This results in increasing join time. From
Figures 8(a), we see that the join times of RankJoin and
JoinSort increase by 15.3x and 14.9x, respectively. The join
times of CJpI and CJrI increase by 10.1x and 9.1x, respec-
tively. Therefore, the performance comparison of CJpI/CJrI
with RankJoin and JoinSort for m2=64 is similar to that in

the base case. However, the join times of CJpB and CJrB
show more drastic 52.6x and 65.1x increases. This is because
their join strategy computes matches for individual rectan-
gles in the result space. Every input record is matched mul-
tiple times with different contour ranges in the other table.
As a result, CJpI and CJrI become the best precise and re-
laxed ContourJoin algorithms when the input size increases.

Datasets]3: increasing join and result sorting time.
As m3 increases from 1 to 64, both the input size and the
output size increase by 64x. This results in increasing join
and sort time. From Figures 8(a), we see that the join
(result sorting) times of RankJoin and JoinSort increase
by 22.7x (65.8x) and 90.4x (42.2x), respectively. Interest-
ingly, the change in JoinSort’s join time is much more dras-
tic compared to RankJoin. JoinSort builds a hash table
on the smaller Partsupp table and probes the hash table
with records in Lineitem table. As m3 increases, the num-
ber of records in Partsupp increases by m3 times but the
number of unique keys is kept the same. As a result, the
number of records per join key increases by m3 times. All
m3 records with the same join key now goes into the same
hash bucket. This makes the hash table probing less ef-
ficient. On the other hand, RankJoin employs symmetric
hash join, which builds and probes hash tables on both Part-
supp and Lineitem. As m3 increases, the number of dupli-
cate records per unqiue join key does not change in Lineitem
table. Therefore, the efficiency of accessing the hash table
on Lineitem is roughly the same, while accessing the hash ta-
ble on Partsupp becomes less efficient. The combined effect
gives a more mild impact on the join time for RankJoin. As
for ContourJoin, the join (result sorting) times of CJpI and
CJpB increase by 19.3x (60.1x) and 53.2x (53.6x), respec-
tively. The join times of CJrI and CJrB increase by 18.0x
and 65.9x, respectively; their sorting times are 0. CJpB and
CJrB have larger increased join times because of the join
strategy, as analyzed in the case of datasets]2.

Summary. For full computation performance, we see that
the join algorithms see increasing join times as the input
size increases, and they see increasing result sorting times
as the output size increases. For early result generation per-
formance, we see from Figure 7(a) that the input size has

1 64

10−2

100

102

104

scale factor

b
y
te
s
(M

B
)

datasets]1

JS RJ CJpI CJpB CJrI CJrB

1 64

10−2

100

102

104

scale factor

datasets]2

1 64

10−2

100

102

104

scale factor

datasets]3

(a) f(x, y) = x+ y, pL = 200, pR = 200

1 64

10−2

100

102

104

scale factor

b
y
te
s
(M

B
)

datasets]1

JS RJ CJpI CJpB CJrI CJrB

1 64

10−2

100

102

104

scale factor

datasets]2

1 64

10−2

100

102

104

scale factor

datasets]3

(b) f(x, y) = 10x+ y, pL = 2000, pR = 200

Figure 9: Maximum intermediate result size.

larger impact on the performance for generating top 1% re-
sults than the output size for ContourJoin. If we fix the
output size and vary the input size (e.g., increasing m2 from
1 to 64 in datasets]2), the times to generate top 1% re-
sults increase by 12.5–40.0x for ContourJoin algorithms. In
contrast, if we fix the input size and vary the output size
(e.g., increasing m1 from 1 to 64 in datasets]1), the times
to generate top 1% results increase modestly by 1–3x for
ContourJoin algorithms. We can also compare the case of
datasets]2 m2=64 and the case of datasets]3 m3=64. The
two cases also have the same input size but different output
sizes. The times to generate top 1% results differ by only
0.9–1.2x for the two cases.

4.2.4 Effect of Different Function Parameters
We study how algorithms perform when the parameters

of the combining score function f(x, y) = Ax + By change.
As A increases from 1 to 10, the join time and result sort-
ing time do not have large changes, as shown in Figure 8.
For example, for JoinSort, the change in the score function
does not impact the behavior of the join and the sorting
in the algorithm. Therefore, its performance does not vary
significantly for different function parameters. We focus our
discussion on early result generation below.

For RankJoin, as A increases, the contributions of prefer-
ence values from the two tables to the combined score be-
come less balanced, resulting in more skewed result score dis-
tribution. Due to the limitation of RankJoin’s score bound,
more results with low preference are generated early and
cached, and the maximum intermediate result size increases.
This explains why RankJoin has worse early result perfor-
mance when A is larger, as shown in Figure 7. For example,
it can produce 23% fewer early results for datasets]2 and
13% fewer early results for datasets]3 within the same given
time when scale factor is 64.

For ContourJoin, as A increases from 1 to 10, the number
of input partitions (i.e. pL) increases by 10x and there are

more contour lines. Each contour line tends to cover less
input data, and each buffer tends to hold fewer results. As
the buffers become finer-grain, fewer intermediate results
are cached (see Figure 9) and more results are output early.
Therefore, ContourJoin has better early result performance
when A increases (e.g., 5% – 14% improvements when scale
factor is 64 in all datasets), as shown in Figure 7.

5. DISCUSSION
Multi-way Join. We mainly study two-way preference-
aware progressive joins. Our proposed ContourJoin algo-
rithms can be applied to support multi-way preference-aware
progressive joins. For a multi-way preference-aware progres-
sive join, we assume that the input tables A1, A2, ..., Am
are all sorted according to the descending order of their pref-
erence values. The preference score of a join result tuple is
given by a linear score combining function f(x1, x2, ..., xm) =
a1x1+a2x2+· · ·+amxm. A multi-way join can be computed
as a tree of two-way join operations. Therefore, we would
like to compute the multi-way preference-aware progressive
join as a tree of two-way preference-aware progressive joins.
To achieve this, we can break down the m-variable linear
function f(·) into a set of two-variable functions that corre-
spond to each two-way join in the tree. Then, we employ
precise ContourJoins for all but the final two-way join at the
root of the tree. A precise ContourJoin will generate results
in the descending preference order. Hence, the join results
of a child precise ContourJoin operator can be used as input
to a parent ContourJoin operator. For the final join at the
root, we can employ either a relaxed or precise ContourJoin
depending on whether the relaxed output order is sufficient.

Unsorted Input. In this work, we follow previous top-k
studies, including TA [5], J* [15], and RankJoin [9], to as-
sume sorted inputs. This assumption is needed so that the
first join result can be generated without reading all the in-
put tables. If inputs are unsorted according to the preference

values, we have to first sort the inputs on the fly, then apply
preference-aware progressive join algorithms. However, the
cost of input sorting can substantially limit the capability of
displaying early results fast. It is interesting to design auxil-
iary data structures and optimize the input sorting process.
We leave a detailed study on unsorted inputs as future work.

6. RELATED WORK
Progressive Paradigms. There are several progressive
paradigms. The first representative application is online
aggregation [7, 13]. It reports approximate answers with
quality guarantee (usually in the form of confidence inter-
vals), accuracy is improved as more time is spent, but it can
only report aggregation results. The second paradigm [6, 3]
reports approximate answers, but it will return final pre-
cise results as long as it takes enough time. The third
paradigm [21] always returns precise results progressively,
more results are generated as time goes by. ContourJoin
follows the third paradigm.

Top-k and Any-k Algorithms. Fagin’s threshold algo-
rithm (TA) [5] is one of the best-known top-k approaches.
However, it solves top-k selection problem [10], which is not
a general case of join. Unlike top-k selection, top-k join
querie [9, 19, 10] solves more general join problem. It as-
sumes each record in a table has a score, and reports only k
(k is known apriori) join results with top-ranked scores. Re-
lated literature has three common points. First, input tables
are sorted by scores. If not, this can be handled in prepro-
cessing step. Second, they store only k results with highest
score, at any time of computing, any subsequent results with
lower score are pruned, and those with higher scores replace
earlier results. Finally, they often derive a score bound on
future join results for fast pruning results with low scores.
They achieve good performance when the number of top-
ranked tuples that have to be accessed is quite small. One
of the best top-k join algorithm is RankJoin [9]. There are
some work [22] that performs better than RankJoin. How-
ever, they treat join as a path query in a graph. They as-
sumes that the join relationship between records in differ-
ent tables are already known and can be represented as a
graph (a.k.a join graph). In the paper, we focus on the gen-
eral join case without knowing k apriori, results are progres-
sively generated. We propose a novel bound-based technique
and compare with RankJoin. To the best of our knowledge,
RankJoin is the most efficient top-k join algorithm that can
be easily extended for the problem. Previous any-k join [21]
shares the same problem as our study. However, it is based
on a join graph.

Exploiting Hyperplanes for Query Processing. Khan
et al. [12] propose Planar index for fast pruning d-dimensional
data points for scalar product queries with f(x1, ..., xn) =∑n

1 aixi ≤ b, without actually computing the scalar prod-
uct. Their method is based on the assumption that query
fields are known apriori, so that inputs can be pre-sorted in
ascending order of the query field values. Then, an index
is built by creating hyperplanes on sorted data according to
function parameters. In this way, data points are pruned
according to the interval of the hyperplanes. If we consider
2-dimensional data, the constructed index is actually a set of
lines. Different from our work, the way to create lines pro-
posed in the paper is not targeted at maintaining contour
areas. What’s more, we propose ContourJoin algorithms

for progressively joining two (or more) tables. This is quite
different from computing scalar product queries on tables.

7. CONCLUSION
In this paper, we study progressive preference-aware join

algorithms to provide good performance in terms of both
early result generation and total result computation for in-
teractive data analysis and exploration. We propose Con-
tourJoin, which exploits contour lines for generating results
in the descending order of user preference. Following contour
lines, we compare different join strategies and introduce re-
laxation by controlling line intervals. These techniques help
reduce intermediate result size and sorting overhead. Ex-
perimental results show that ContourJoin has comparable
or better performance to the fast blocking algorithm (i.e.
hash join and sort) and the efficient top-k rank join algo-
rithm (i.e. RankJoin).

8. ACKNOWLEDGMENTS
The first and the second authors are partially supported

by National Key R&D Program of China (2018YFB1003303)
and K.C.Wong Education Foundation. Shimin Chen is the
corresponding author.

9. REFERENCES
[1] R. Agrawal and E. L. Wimmers. A framework for

expressing and combining preferences. In W. Chen,
J. F. Naughton, and P. A. Bernstein, editors,
SIGMOD, pages 297–306, Dallas, Texas, USA, May
2000. ACM.

[2] A. Arvanitis and G. Koutrika. Towards
preference-aware relational databases. In ICDE, pages
426–437, Washington, Apr. 2012. IEEE Computer
Society.

[3] B. Chandramouli, J. Goldstein, and A. Quamar.
Scalable progressive analytics on big data in the cloud.
Proc. VLDB Endow., 6(14):1726–1737, 2013.

[4] S. Chen, P. B. Gibbons, and S. Nath. Pr-join: a
non-blocking join achieving higher early result rate
with statistical guarantees. In SIGMOD, pages
147–158, Indianapolis, IN, USA, June 2010. ACM.

[5] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. J. Comput.
Syst. Sci., 66(4):614–656, 2003.

[6] A. Gogolou, T. Tsandilas, K. Echihabi, A. Bezerianos,
and T. Palpanas. Data series progressive similarity
search with probabilistic quality guarantees. In
SIGMOD, pages 1857–1873, Portland, OR, USA, June
2020. ACM.

[7] P. J. Haas and J. M. Hellerstein. Ripple joins for
online aggregation. In SIGMOD, pages 287–298,
Philadelphia, PA, USA, June 1999. ACM.

[8] S. Idreos, O. Papaemmanouil, and S. Chaudhuri.
Overview of data exploration techniques. In SIGMOD,
pages 277–281, Melbourne, Vic, Australia, June 2015.
ACM.

[9] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid.
Supporting top-k join queries in relational databases.
In VLDB, pages 754–765, Berlin, Germany, Sept.
2003. VLDB End.

[10] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey
of top-k query processing techniques in relational
database systems. ACM Comput. Surv.,
40(4):11:1–11:58, 2008.

[11] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski.
Prefjoin: An efficient preference-aware join operator.
In ICDE, pages 995–1006, Hannover, Germany, Apr.
2011. IEEE.

[12] A. Khan, P. Yanki, B. Dimcheva, and D. Kossmann.
Towards indexing functions: answering scalar product
queries. In C. E. Dyreson, F. Li, and M. T. Özsu,
editors, International Conference on Management of
Data, SIGMOD 2014, Snowbird, UT, USA, June
22-27, 2014, pages 241–252. ACM, 2014.

[13] F. Li, B. Wu, K. Yi, and Z. Zhao. Wander join and
XDB: online aggregation via random walks. ACM
Trans. Database Syst., 44(1):2:1–2:41, May 2019.

[14] N. Meneghetti, D. Mindolin, P. Ciaccia, and
J. Chomicki. Output-sensitive evaluation of prioritized
skyline queries. In T. K. Sellis, S. B. Davidson, and
Z. G. Ives, editors, SIGMOD, pages 1955–1967,
Melbourne, Victoria, Australia, May 2015. ACM.

[15] A. Natsev, Y. Chang, J. R. Smith, C. Li, and J. S.
Vitter. Supporting incremental join queries on ranked
inputs. In P. M. G. Apers, P. Atzeni, S. Ceri,
S. Paraboschi, K. Ramamohanarao, and R. T.
Snodgrass, editors, VLDB 2001, Proceedings of 27th
International Conference on Very Large Data Bases,
September 11-14, 2001, Roma, Italy, pages 281–290.
Morgan Kaufmann, 2001.

[16] K. Stefanidis, G. Koutrika, and E. Pitoura. A survey
on representation, composition and application of
preferences in database systems. ACM Trans.
Database Syst., 36(3):19:1–19:45, 2011.

[17] B. Tang, K. Mouratidis, M. L. Yiu, and Z. Chen.
Creating top ranking options in the continuous option
and preference space. Proc. VLDB Endow.,
12(10):1181–1194, 2019.

[18] W. Tao, X. Liu, Ç. Demiralp, R. Chang, and
M. Stonebraker. Kyrix: Interactive visual data
exploration at scale. In CIDR, Asilomar, CA, USA,
Jan. 2019. www.cidrdb.org.

[19] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, and
D. Srivastava. Ranked join indices. In ICDE, pages
277–288, Bangalore, India, 2003. IEEE.

[20] N. Tziavelis, D. Ajwani, W. Gatterbauer,
M. Riedewald, and X. Yang. Optimal algorithms for
ranked enumeration of answers to full conjunctive
queries. Proc. VLDB Endow., 13(9):1582–1597, 2020.

[21] N. Tziavelis, W. Gatterbauer, and M. Riedewald.
Optimal join algorithms meet top-k. In SIGMOD,
pages 2659–2665, Portland, OR, USA, 2020. ACM.

[22] M. Wu, L. Berti-Équille, A. Marian, C. M. Procopiuc,
and D. Srivastava. Processing top-k join queries. Proc.
VLDB Endow., 3(1):860–870, 2010.

APPENDIX
A. DATA GENERATION AND STATISTICS

Table 3 summarizes the data characteristics of the two
TPC-H tables, i.e. Lineitem and Partsupp. We call the orig-
inal TPC-H tables base tables. In Lineitem (Partsupp), we
use l partsupp and l suppkey (ps partsupp and ps suppkey)
as a composite key to generate the key column, and l discount
(ps availqty) to generate the preference column. We gener-
ate the following three datasets based on the two base ta-
bles, while keeping the key distribution and preference score
distribution the same as base tables. Each generated tuple
consists of a 32-bit integer key and a normalized decimal
preference value (a.k.a score) in [0, 1].

• Datasets]1 (with fixed input size and increas-
ing output size): We fix the input table sizes while
varying the output result size by a factor of m1, where
m1=1, 4, 16, or 64. To achieve this, we reduce the
number of unique keys in each table by rewriting ev-
ery original key orig key derived from the base tables
as new key = b orig key

m1
c. In this way, each Lineitem

record matches m1 Partsupp records, and the number
of results records is m1 times as many as the base case.

• Datasets]2 (with fixed output size and increas-
ing input size): We fix the output result size while
varying the input table sizes by a factor of m2, where
m2=1, 4, 16, or 64. To achieve this, we copy every
record m2 times so that the input table sizes are m2

times larger than the base tables. Then in every group
of m2 copied records, we rewrite the key of record i
(i ∈ [0,m2 − 1]) as follows:

For Lineitem:

new key =

{
orig key ∗ (2m2 − 1), i = 0

orig key ∗ (2m2 − 1) + 2i− 1 i > 0

For Partsupp:

new key =

{
orig key ∗ (2m2 − 1), i = 0

orig key ∗ (2m2 − 1) + 2i i > 0

In this way, only record 0 in every group has matches.
The other records do not contribute to the join output.
The total number of result records is kept the same as
the base case.

• Datasets]3 (with increasing input and output
size): We vary both the input sizes and the output
result size by a factor of m3, where m3=1, 4, 16, or 64.
To achieve this, we copy every record m3 times so that
the input table sizes are m3 times larger than the base
tables. Then in every group of m3 copied records, we
rewrite the key of record i (i ∈ [0,m3 − 1]) as follows:

For Lineitem: new key = orig key ∗m3 + i

For Partsupp: new key = orig key ∗m3

In this way, record 0 in every group in Lineitem matches
all m3 records in the corresponding group in Partsupp,
while the other records in Lineitem do not have any
matches. Hence, the total number of result records is
m3 times more than in the base case.

Statistics of the three datasets are shown in Tables 4–6.

Table 3: TPC-H tables: Lineitem and Partsupp (sf=1.0)

Table #Records #Unique-Keys #Matches-Per-Record
Lineitem 6001215 799541 1
Partsupp 800000 800000 [0, 24]; avg. 7.5

Table 4: Statistics of Datasets]1

Table m1 #Inputs #Unique-Keys #Matchs-Per-Record #Outputs

Lineitem

1

6001215

799541 1 6001215
4 200000 4 24004860
16 50000 16 96019440
64 12500 64 384077760

Partsupp

1

800000

800000 [0,24]; avg. 7.5 6001215
4 200000 [9,57]; avg. 30 24004860
16 50000 [70,166]; avg. 120 96019440
64 12500 [394,569]; avg. 480 384077760

Table 5: Statistics of Datasets]2

Table m2 #Inputs #Unique-Keys #Matchs-Per-Record #Outputs

Lineitem

1 6001215 799541

1

6001215

4 24004860 3198164
16 96019440 12792656
64 384077760 51170624

Partsupp

1 800000 800000

[0,24]; avg. 7.5
4 3200000 3200000
16 12800000 12800000
64 51200000 51200000

Table 6: Statistics of Datasets]3

Table m3 #Inputs #Unique-Keys #Matchs-Per-Record #Outputs

Lineitem

1 6001215 799541 1 6001215
4 24004860 3198164 4 24004860
16 96019440 12792656 16 96019440
64 384077760 51170624 64 384077760

Partsupp

1 800000

800000 [0,24]; avg. 7.5

6001215
4 3200000 24004860
16 12800000 96019440
64 51200000 384077760

