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Abstract
Online program monitoring is an effective technique for detect-
ing bugs and security attacks in running applications. Extending
these tools to monitor parallel programs is challenging because the
tools must account for inter-thread dependences and relaxed mem-
ory consistency models. Existing tools assume sequential consis-
tency and often slow down the monitored program by orders of
magnitude. In this paper, we present a novel approach that avoids
these pitfalls by not relying on strong consistency models or de-
tailed inter-thread dependence tracking. Instead, we only assume
that events in the distant past on all threads have become visible;
we make no assumptions on (and avoid the overheads of track-
ing) the relative ordering of more recent events on other threads.
To overcome the potential state explosion of considering all the
possible orderings among recent events, we adapt two techniques
from static dataflow analysis, reaching definitions and reaching ex-
pressions, to this new domain of dynamic parallel monitoring. Sig-
nificant modifications to these techniques are proposed to ensure
the correctness and efficiency of our approach. We show how our
adapted analysis can be used in two popular memory and security
tools. We prove that our approach does not miss errors, and sac-
rifices precision only due to the lack of a relative ordering among
recent events. Moreover, our simulation study on a collection of
Splash-2 and Parsec 2.0 benchmarks running a memory-checking
tool on a hardware-assisted logging platform demonstrates the po-
tential benefits in trading off a very low false positive rate for (i)
reduced overhead and (ii) the ability to run on relaxed consistency
models.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
Analysis; D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel Programming; D.2.5 [Software Engi-
neering]: Testing and Debugging—Monitors

General Terms Algorithms, Design, Experimentation, Measure-
ment, Performance, Reliability

Keywords Data Flow Analysis, Static Analysis, Parallel Program-
ming, Dynamic Program Monitoring
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1. Introduction
Despite the best efforts of programmers and programming systems
researchers, software bugs continue to be problematic. To help
address this problem, a number of tools have been developed over
the years that perform static [7, 13, 15], dynamic [6, 14, 22, 27, 34],
or post-mortem [24, 39] analysis to diagnose bugs. While these
different classes of tools are generally complementary, our focus
in this paper is on dynamic (online) tools, which we refer to as
“lifeguards” (because they watch over a program as it executes
to make sure that it is safe). To avoid the need for source code
access, lifeguards are typically implemented using either a dynamic
binary instrumentation framework (e.g., Valgrind [27], Pin [22],
DynamoRio [6]) or with hardware-assisted logging [8]. Lifeguards
maintain shadow state to track a particular aspect of correctness
as a program executes, such as its memory [28], security [29], or
concurrency [34] behaviors.

Existing lifeguards have focused on monitoring sequential pro-
grams. As difficult as it is to write a bug-free sequential program,
however, it is even more challenging to avoid bugs in parallel soft-
ware, given the many opportunities for non-intuitive interactions
between threads. Hence we would expect bug-finding tools such
as lifeguards to become increasingly valuable as more program-
mers wrestle with parallel programming. Unfortunately, the way
that lifeguards have been written to date does not extend naturally
to parallel software due to a key stumbling block: inter-thread data
dependences.

1.1 Key Challenge: Inter-Thread Data Dependences
As we will discuss in greater detail later in Section 2, lifeguards
typically operate on shadow state that they associate with every ac-
tive memory location in the program (including the heap, registers,
stack, etc.). As the monitored application executes, the lifeguard
follows along, instruction-by-instruction, performing an analogous
operation to update the corresponding shadow state. For example,
when a lifeguard that is tracking the flow of data that has been
“tainted” by external program inputs [29] encounters an instruc-
tion such as “A = B + C”, the lifeguard will look up the boolean
tainted status for locations B and C, OR these values together, and
store the result in the shadow state for A.

When monitoring a single-threaded application, it is straight-
forward to think of the lifeguard as a finite state machine that is
driven by the dynamic sequence of instructions from the monitored
application. The order of events in this input stream is important.
For single-threaded applications, it is simply the dynamic order in
which the thread executes, since this will preserve all intra-thread
data dependences in the lifeguard analysis. For parallel applications
with a shared address space, however, the potential for data depen-
dences across threads complicates the ordering.
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Figure 1. Example illustrating intra-thread (solid arrows) and
inter-thread (dashed arrows) data dependences.

How do we deal with inter-thread data dependences? One ap-
proach that might sound appealing would be to capture a single
serialized ordering that corresponded to the interleaving of events
in the application, and feed the instructions to the lifeguard in that
order. In Figure 1, for example, any topological sort of the data de-
pendences graph would suffice. Unfortunately, this approach has
two problems. First, it is impractical to capture such an ordering
on most machines: a serialized interleaving across threads is only
guaranteed to exist if the machine’s memory consistency model [1]
is sequentially consistency [12], which is not the case for the vast
majority of commercial machines. Even if a machine is sequentially
consistent, the serializable order is merely a hypothetical order: the
actual memory system processes requests out-of-order, and it sim-
ply provides the illusion of serializability. Hence reconstructing a
serialized ordering by observing the actual machine behavior not
only assumes sequential consistency but also requires non-trivial
modifications to the memory system hardware [24, 39]. (Proposals
for relaxed consistency such as TSO only capture values read [39],
not an actual ordering certain lifeguards require.) The second prob-
lem is that even if a serialized ordering could be captured, we would
not want the lifeguard to process this merged stream of instructions
sequentially for performance reasons; in order to keep up with the
parallel application, the lifeguard also needs to run in parallel.

On the other hand, if there does not exist or we do not capture
a serialized ordering and therefore have only partial information
regarding inter-thread data dependences and their implications, this
implies that multiple event orderings are possible, and the lifeguard
will need to reason about this set of possibilities. For example, if the
dashed dependence arcs in Figure 1 cannot be captured, then the
lifeguard would need to consider the possibilities that “a = a+1”
in THREAD B occurred before, after, or concurrent with “a = b”
in THREAD A. While this approach more faithfully captures the
behavior of non-sequentially-consistent machines, it unfortunately
leads to a potential state space explosion, which may cause the
lifeguard to run prohibitively slowly.

1.2 Our Approach: Tolerate Windows of
Uncertainty Through a Modified Form of Dataflow Analysis
To tolerate the lack of total ordering information across threads that
occurs in today’s machines while avoiding the state space explosion
problem, we have developed a new framework for performing life-
guard analysis that automatically reasons about bounded windows
of uncertainty using an approach inspired by interval analysis [35].
Unlike traditional dataflow analysis, which performs static analy-
sis on control flow graphs, our approach analyzes dynamic traces

of instructions on different threads. Given the finite buffering of
instructions and memory accesses in modern pipelines, we know
that instructions that executed in the distant past on other threads
must have committed by now, but the relative ordering between
an instruction on a given thread and instructions from either the
near past or near future on other threads is unknown. For exam-
ple, in Figure 1, we do not know the relative ordering of events
between these portions of the traces from the two threads (i.e. the
dashed arcs are missing) because they occur close together in time.
We model these windows of uncertainty using uncertainty epochs
across the dynamic traces from concurrently-executing threads.

Tolerating uncertainty potentially introduces error into our
dataflow analysis. However, by always behaving conservatively,
we will be able to make two guarantees. One, that we will only
have one-way error; and secondly, any mistake we do make will
be a false positive, where we falsely classify a safe event in the
analyzed program as an error. We will provably have zero false
negatives; there will never be an occasion where we miss an er-
ror in the monitored application. Our dataflow analysis efficiently
summarizes the net effects of these uncertainty epochs, requiring
significant modifications over the standard analysis.

1.3 Related Work
Several researchers have proposed adaptations of dataflow analysis
techniques (e.g., reaching definitions) to parallel architectures and
programming languages [16, 19, 20, 33]. These adaptations often
involve adapting a control flow graph to reflect explicit program-
mer annotated parallel functions and can be limited in the memory
models they support [19]; some assume no shared variables [20],
while others support only restricted classes of programs or mem-
ory models, such as deterministic or data-race-free programs, oth-
erwise requiring a sequentially consistent memory model or a copy-
in/copy-out semantics [16, 33]. Knoop et al. introduce a framework
that generalizes sequential static unidirectional bit-vector analy-
ses to work with explicitly annotated parallel regions [18]. Chugh
et al. [9] propose a framework that first generates a static non-null
analysis and later uses data race detection to kill facts that paral-
lelism no longer guarantees to be true.

Most of these proposals assume the dataflow analysis is being
conducted on a static compile-time representation of the applica-
tion. Chugh et al. [9] demonstrate the effectiveness of conservative
analysis; we will make similar determinations in our work.

There has also been work on probabilistic replay using only par-
tial orderings of instruction execution [30] and using communica-
tion graphs to find bugs [21].

Others have used epochs to partition execution into manageable
chunks. For example, in [25] the authors propose strata, a mecha-
nism ordering data accesses in the context of deterministic replay.
In [23], the authors use epochs, combined with signatures, to de-
tect data races. In the realm of garbage collection, [4] use epochs
as a way of dividing up time, without assuming that boundaries
are simultaneous across threads. In [3], epochs are combined with
a concept of local and global state that enables a thread to know
when it is safe to update global state based on an epoch counter.

Finally, concurrent with this work, Vlachos et al. [37] explored
an alternative approach to parallel monitoring that involves more
substantial hardware support for the sake of reducing the number
of false positives.

1.4 Contributions
This paper makes the following research contributions:
• We propose a model of bounded regions of uncertainty as a

framework for performing dynamic program monitoring.
• We develop a generic framework for performing forward

dataflow analysis problems, called “butterfly analysis”, with



provably zero false negatives, as illustrated by reaching defini-
tions and reaching expressions.

• We support any relaxed memory model that respects its own
intra-thread dependences and provides cache coherence.

• We apply this framework to two popular memory and security
lifeguards to show the applicability of our approach.

• We implement an initial prototype of butterfly analysis with
our adapted memory lifeguard, and conduct performance and
sensitivity analyses that demonstrate the potential benefits in
trading off a very low false positive rate for (i) reduced overhead
and (ii) the ability to run on relaxed consistency models.

2. Background
Program monitoring performs on-the-fly checking during the exe-
cution of applications, and is an important technique for improving
software reliability and security. Program monitoring tools (a.k.a.
lifeguards) can be categorized according to the granularity of appli-
cation events that they care about, from system-call-level [17, 31] to
instruction-level [27–29, 34]. Compared to the former, the latter can
obtain highly detailed dynamic information, such as memory refer-
ences, for more accurate and timely bug detection. However, such
fine-grained monitoring presents great challenges for system sup-
port. This paper focuses on instruction-level lifeguards, although
the results readily extend to coarser-grained settings as well.

Lifeguards. Although different instruction-level lifeguards per-
form different checking, they share three common characteris-
tics [8, 27]: (i) maintaining (separate) fine-grained state information
(called metadata) for every memory location in the application’s
address space; (ii) updating the metadata as a result of certain
events; and (iii) checking invariants on the metadata in response
to certain events. We describe two representative lifeguards in the
following:

ADDRCHECK [26] is a memory-checking lifeguard. By monitoring
memory allocation calls such as malloc and free, it maintains
the allocation information for each byte in the application’s ad-
dress space. Then, ADDRCHECK verifies whether every memory
reference visits an allocated region of memory by reading the cor-
responding allocation information.

TAINTCHECK [29] is a security-checking lifeguard for detecting
overwrite-based security exploits (e.g., buffer overflows or printf
format string vulnerabilities). It maintains metadata for every loca-
tion in the application’s address space, indicating whether the loca-
tion is tainted. After a system call that receives data from network
or from an untrusted disk file, the memory locations storing the
untrusted data are all marked as tainted. TAINTCHECK monitors
the inheritance of the tainted state: For every executed application
instruction, it computes a logical OR of the tainted information of
all the sources to obtain the tainted information of the destination
of the instruction. TAINTCHECK raises an error if tainted data is
used in jump target addresses (to change the control flow), format
strings, or other critical ways.

General-Purpose Lifeguard Infrastructure. Existing general-
purpose support for running lifeguards can be divided into two
types depending on whether lifeguards share the same processing
cores as the monitored application or lifeguards run on separate
cores. In the first design, lifeguard code is inserted in between
application instructions using dynamic binary instrumentation in
software [6, 22, 27] or micro-code editing in hardware [11]. Life-
guard functionality is performed as the modified application code
executes. In contrast, the second design offloads lifeguard func-
tionality to separate cores. An execution trace of the application
is captured at the core running the application through hardware,

and shipped (via the last-level on-chip cache) on-the-fly to the core
running the lifeguard for monitoring purposes [8].

We observe that lifeguards see a simple sequence of (user-level)
application events regardless of whether the lifeguard infrastruc-
ture design is same-core or separate-core; the event sequence is
consumed on-the-fly in the same-core design, while the trace buffer
maintains any portion of the event sequence that has been collected,
but not yet consumed, in the separate-core design. This observa-
tion suggests the application event sequence as the basic model for
monitoring support. Using this model, we are able to abstract away
unnecessary details of the monitoring infrastructure and provide a
general solution that may be applied to a variety of implementa-
tions.

Most previous works studied sequential application monitoring.
(A notable exception is [10], which assumes transactional memory
support.) However, in the multicore era, applications increasingly
involve parallel execution; therefore, monitoring support for multi-
threaded applications is desirable. Unfortunately, adapting existing
sequential designs to handle parallel applications is non-trivial, as
discussed in Section 1. This paper proposes a solution that does not
require extensive hardware dependence-tracking mechanisms or a
strong consistency model.

To begin, we consider a model of monitoring support with mul-
tiple event sequences: one per application thread. Each sequence
is processed by its own lifeguard thread, which may be the same
thread as the one generating the sequence. As in the separate-core
design, the lifeguard analysis may lag behind the application exe-
cution somewhat, relying on existing techniques [8] to ensure that
no real damage occurs during this (short) window.1 As discussed
in Section 1, event sequences do not contain detailed inter-thread
dependences information.

3. Challenges in Adapting Dataflow Analysis to
Dynamic Parallel Monitoring

In the absence of detailed inter-thread dependence information,
there are many possible interleavings of the event sequences life-
guards see when monitoring parallel programs.2 Our approach is to
adapt dataflow analysis, traditionally run statically at compile-time,
as a dynamic run-time tool that enables us to reason about possible
interleavings of different threads’ executed instructions.

In this section, we will motivate our design decisions, showing
how simpler constructions are either too inefficient, too imprecise,
or both. Throughout this section and through Section 4.3, we will
assume a sequentially consistent machine, for ease of exposition.
This will be relaxed in Section 4.4.

Our first attempt at modeling a lack of fine-grain interthread
dependence information was to assume no ordering information
whatsoever between threads, even at a coarse granularity. The most
natural abstraction was a control flow graph (CFG). A control flow
graph expresses relationships between basic blocks within a pro-
gram, but does not necessarily guarantee a particular ordering be-
tween blocks; it also is the data structure dataflow analysis requires.

A dynamic trace of events is similar to a program; instead of a
language, we have assembly. Unlike programs, these sequences of
events are linear and have no aliasing issues. However, we can use
directed arcs from an instruction i to an instruction j to indicate
that j is a potential immediate successor of i.

1 A lifeguard thread raising an error may interrupt the application to take
corrective action [32]. Some delay between application error and applica-
tion interrupt is unavoidable, due to the lag in interrupting all the application
threads.
2 Even on the simplest sequentially consistent machine, lifeguards do not
see a single precise ordering of all application events.



Figure 2. Two threads modify three shared memory locations,
shown (a) as traces and (b) in a CFG. Throughout this paper, solid
rectangles contain blocks of instructions, dashed hexagons contain
single instructions, and “empty” blocks contain instructions that are
not relevant to the current analysis.

Figure 3. CFG of 4 threads with 2 instructions each.

Because there is arbitrary interleaving among instructions exe-
cuted by different threads, we must make nodes out of individual
instructions rather than basic blocks. We place directed arcs in both
directions between any two instructions that could execute in paral-
lel, and a directed arc between instructions i and i + 1 in the same
thread, indicating that the trace for a thread is followed sequen-
tially. This yields a graph that at first glance resembled a control
flow graph; it seemed at first that enough of the structure would be
similar to apply dataflow analysis. However, this approach suffers
from three major problems.
Problem 1: Too many edges. Figure 2(a) shows a very simple
code example of two threads modifying three variables. Even with
only three total instructions, we still require several arcs to reflect
all the possible concurrency, shown in Figure 2(b). This may look
manageable; unfortunately, adding arcs over an entire dynamic run
leads to an explosion in arcs and the space necessary to keep this
graph in memory. Figure 3 shows how quickly the number of arcs
increases with only four threads, each executing two instructions.
For T threads with N instructions each executing concurrently,
there are O(NT ) edges due to the sequential nature of execution
within a thread and O((NT )2) edges due to potential concurrency:
each of the NT nodes has edges to all the nodes in all the other
threads.
Problem 2: Arbitrarily delayed analysis. Unlike a control flow
graph, whose size is bounded by the actual program, the dynamic
runlength of a program is unbounded and potentially infinite in size
if the program never halts. Since the halting problem is undecid-
able, analysis could not be completed until the program actually
ended, because only then would the actual graph be known. This
model of parallel computation quickly becomes intractable.
Problem 3: Conclusions based on impossible paths. The third
problem with this approach is that it can lead to conclusions based
on impossible paths. Recall the TAINTCHECK lifeguard described
in Section 2. Suppose we were interested in running the TAINT-
CHECK lifeguard on the code in Figure 2(b), where buf has been
tainted from a prior system call. Instruction 2 in Thread 1 taints
c. Instructions (1) and (i) propagate taint from the source to their
destination. According to the graph, it is valid for instruction (i)
to be the immediate successor of instruction (2), implying there is

(1) b = a

(2) c = buf[0]

(i) a = c

Figure 4. Two threads concurrently update a,b and c.

a way for a to be tainted by inheriting taint from c at instruction
(2). Likewise, it is valid for instruction (1) to be the immediate
successor of instruction (i), implying b is tainted due to a being
tainted. However, for all three memory locations to be tainted, we
must have (2) execute before (i), and (i) before (1)–contradicting
the sequential consistency assumption.

We then attempted to refine our model, taking advantage of the
finite amount of buffering available to current processors. Modern
processors can only have a constant amount of pending instruc-
tions, typically on the order of the size of their reorder and/or store
buffer, and instruction execution latency is bounded by memory
access time. Combining a bounded number of instructions in flight
and a bounded execution time per instruction, we can calculate that
after a sufficiently long period of time, two instructions in differ-
ent threads could not have executed concurrently; one must have
executed strictly before the other.

While this intuition proved useful, it did not solve all the afore-
mentioned problems. Even after modifying our CFG-like approach
to include edges only between individual instructions that are po-
tentially concurrent, we could still conclude that an instruction at
the end of the program taints the destination of the first instruc-
tion of the first thread, by zig-zagging up from the bottom of the
graph to the top. This is possible even if each instruction only has
edges to three other instructions in the other thread, as depicted in
Figure 4. Because there are still paths from the end of a thread’s
execution to its beginning, we can potentially conclude that every
address is tainted for almost the entire execution based on a single
taint occurring at the very end.

This led us to consider restricting our dataflow analysis to only
a sliding window of instructions at a time, ultimately culminating
in a framework we call Butterfly Analysis.

4. Butterfly Analysis: An Overview
In this section, we introduce a new model of parallel program
execution, which formalizes what it means for one instruction to
become globally visible strictly before another instruction, and
shows how to group instructions into meaningful sliding windows
to avoid the problems described in Section 3. Finally, we provide
a formalization that is well-suited for adapting dataflow analysis to
dynamic parallel monitoring, called Butterfly Analysis.

4.1 Mechanics
We rely on a regular signal, or heartbeat, to be reliably delivered
to all cores. For lifeguards using dynamic binary instrumentation
(DBI) to monitor programs, this could be implemented using a
token ring; it can also be implemented using a simple piece of
hardware that regularly sends a signal to all cores. We will not
assume that a heartbeat arrives simultaneously at all cores, only
requiring that all cores are guaranteed to receive the signal. We will
use this mechanism to break traces into uncertainty epochs.

We do not require instantaneous heartbeat delivery, but do as-
sume a maximum skew time for heartbeats to be delivered. By mak-



for(int i=0; i<3; i++)
{

j[i]=0;
}

mov 0, i

A: j[i] = 0
add    1, i
cmp 3, i
jle A

B: leave

add    1, i
cmp 3, i
jle A

A: j[i] = 0
add    1, i
cmp 3, i
jle A

A: j[i] = 0

.

.
mov 0, i

A: j[i] = 0

add    1, i
cmp 3, i
jle A

B: leave
.
.

(a)  Simple code example                                                                               

(b) Control flow graph (c) Butterfly blocks

Figure 5. Unlike basic blocks (which are static), butterfly blocks
contain dynamic instruction sequences, demarcated by heartbeats.

Thread 1      Thread 2     Thread 3     …… Thread T

7

Thread

Block Epoch

Figure 6. A particular block is specified by an epoch id l and
thread id t. In reality, epoch boundaries will be staggered and
blocks will be of differing sizes.

ing sure that the time between heartbeats accounts for (i) memory
latency for instructions involving reads or writes, (ii) time for all
instructions in the reorder and store buffers to become globally vis-
ible, and (iii) reception of the heartbeat including the maximum
skew in heartbeat delivery time, we can guarantee non-adjacent
epochs (i.e., epochs that do not share a heartbeat boundary) have
strict happens-before relationships.3 On the other hand, we will
consider instructions in adjacent epochs, i.e., epochs that share a
heartbeat boundary, to be potentially concurrent when they are not
in the same thread.

An epoch contains a block in each thread, where a block is a se-
ries of consecutive instructions, and each block represents approxi-
mately the same number of cycles. Note that a block in our model is

3 This guarantee is by construction. Time between epochs is always large
enough to account for the reorder buffer, store buffer, memory latency, and
skew in heartbeat delivery. Instructions more than one epoch apart were
already implicitly ordered, since the earlier instruction has committed, with
any related store draining from the store buffer, before the later instruction
is even issued. We do assume cache coherency for ordering writes to the
same address.

(a) Instructions in body interleave with instructions in wings.
Head has already executed, tail has not yet executed.

Epoch l-2

Epoch l-1

Epoch l

Epoch l+1

Epoch l+2

Thread 1 Thread 2

(b) Arcs between instructions indicate possible interleavings.

Figure 7. Potential concurrency modeled in butterfly analysis,
shown at the (a) block and (b) instruction levels.

not equivalent to a standard basic block. As an example, the code in
Figure 5(a) transforms into a few basic blocks, illustrated as a CFG
in Figure 5(b), whereas Figure 5(c) shows blocks in our model. The
epoch boundaries across threads are not precisely synchronized,
and correspond to reception of heartbeats. Our model, illustrated
in Figure 6, incorporates possible delays in receiving the heartbeat
into its design. Formally, given an epoch ID l and a thread ID t, a
block is uniquely defined by the tuple (l, t). A particular instruc-
tion can be specified by (l, t, i), where i is an offset from the start
of block (l, t).

Our model has three main assumptions. Our first assumption
will be that instructions within a thread are sequentially ordered,
continuing our sequential consistency assumption from Section 2;
we will later relax this assumption.

Our second assumption is that all instructions in epoch l execute
(their effects are globally visible) before any instructions in epoch
l + 2, implying that any instructions in epoch l executes strictly
after all instructions in epoch l − 2. Finally, instructions in block
(l, t) can interleave arbitrarily with instructions in blocks of the
form (l − 1, t′), (l, t′), and (l + 1, t′) where t′ 6= t. The final
two assumptions of this model handle the various possible delays
(in receiving a heartbeat, in memory accesses, due to the reorder
buffers, etc.). If an instantaneous heartbeat would have placed an
instantaneous instruction j in epoch l, our model will require that
instruction j instead will always be in either epoch l− 1, l or l +1.

Butterfly analysis formalizes the intuition that it may be diffi-
cult to observe orderings of nearby operations but easier to observe
orderings of far apart instructions. We now motivate the term but-
terfly, which takes as parameter a block (l, t); see Figure 7(a). We



call block (l, t) the body of the butterfly, (l − 1, t) the head of the
butterfly and (l + 1, t) the tail of the butterfly. The head always
executes before the body, which executes before the tail. For all
threads t′ 6= t, blocks (l − 1, t′), (l, t′) and (l + 1, t′) are in the
wings of block (l, t)’s butterfly.

4.2 Butterfly Framework
As described, our framework resembles a graph of parallel exe-
cution, where directed edges indicate that instruction i can be the
direct predecessor of instruction j. Figure 7(b) illustrates this from
the perspective of a block in Thread 1, epoch l.

Block (l, 1) has edges with arrows on both ends between its
instructions and instruction in epochs l− 1 through l + 1 of thread
2. There is only one arrow from epochs l−2 and one to epoch l+2,
indicating that the first instruction of (l, 1) can immediately follow
the last instruction of (l − 2, 2), and the last instruction of (l, 1)
can be followed immediately by the first instruction of (l + 2, 2).
Overall, for T threads each with N instructions and epochs of K
instructions, the graph contains O(NKT 2) edges.

For our analysis to be truly useful, we must be able to guarantee
that we never miss a true error condition (false negatives) while
keeping the number of safe events that are flagged as errors (false
positives) as close to zero as possible. While we still wish to adapt
dataflow analysis techniques, we will make the final observation
that behaving conservatively guarantees zero false negatives and
retains the flavor of dataflow analysis. In fact, we will show that
with only two passes over each block, we can reach a conclusion
about metadata state with zero false negatives.

In this model, there is only a bounded degree of arbitrary in-
terleaving: our dataflow analysis is done on subgraphs of three
contiguous epochs only. Because the analysis considers only three
epochs at a time, we introduce state, not normally necessary in
dataflow problems. We will call Strongly Ordered State (SOS)
the state resulting from events that are known to have already oc-
curred, i.e., state resulting from instructions executed at least two
epochs prior. This state is globally shared. For each block (l, t)
there is also a concept of Local Strongly Ordered State (LSOS),
which is the SOS modified to take into account that, from the per-
spective of the body block (l, t), all instructions in the head of the
butterfly have also executed.

4.3 Lifeguards As Two Pass Algorithms
We describe a two-pass algorithm for a generic lifeguard, based
on the observation that starting with the global SOS as the default
state, lifeguard checks can be influenced by local state and/or state
produced by the wings. We split our algorithm into two passes
accordingly.

In the first pass, we perform our dataflow analysis using locally
available state (i.e., ignoring the wings), and produce a summary
of lifeguard-relevant events (step 1). Next, the threads compute the
meet of all the summaries produced in the wings (step 2). In a sec-
ond pass, we repeat our dataflow analysis, this time incorporating
state from the wings, and performing necessary checks as specified
by the lifeguard writer (step 3). Finally, the threads agree on a sum-
marization of the entire epoch’s activity, and an update to the SOS
is computed (step 4).

The lifeguard writer specifies the events the dataflow analysis
will track, the meet operation, the metadata format, and the check-
ing algorithm. Examples will be given in Section 6.

4.4 Relaxed Memory Models
Our butterfly framework is well-suited to relaxed memory models.
There are relaxed assumptions on when a memory access becomes
globally visible (two epochs later). There are relaxed assumptions
on memory access interleavings within a sliding window. In fact,

the analysis accounts for different threads possibly observing dif-
ferent orderings of the same accesses, e.g., two writes A and B
such that thread 1 may observe A before B while thread 2 may
observe B before A. We make only the weak assumptions that (i)
for a given thread’s view, its own intra-thread dependences are re-
spected, and (ii) cache coherency orders writes to the same address.
As discussed in Sections 5 and 6, our analysis for what happens at
other threads is based on set operations; set union and intersection
are both commutative operations, and set difference only becomes
a problem if we change metadata before an instruction was able to
read it, which will not happen given our above weak assumptions.

While this suffices for our reaching definitions and reaching
expressions analyses in Section 5, and hence any lifeguards based
on them, for lifeguards such as TAINTCHECK, there may be more
false positives with relaxed models than when assuming sequential
consistency (as discussed in Section 6.2).

5. Butterfly Analysis: Canonical Examples
This section presents our adaptation of dataflow analysis to dy-
namic program monitoring, called butterfly analysis. Specifically,
we adapt reaching definitions and reaching expressions [2], two
simple forward dataflow analysis problems that exhibit a gener-
ate/propagate structure common to many other dataflow analysis
problems. Previous studies [8, 40, 41] have shown that this struc-
ture is a common structure for lifeguards, including lifeguards that
check for security exploits, memory bugs, and data races.

We show how reaching definitions and reaching expressions
can be formulated as generic lifeguards using butterfly analysis.
In standard dataflow analysis, there are equations for calculating
IN, OUT, GEN and KILL; our approach extends beyond these four,
as discussed below. In our setting, the lifeguard’s stored metadata
tracks definitions or expressions, respectively, that are known to
have reached epoch l. While the generic lifeguards do not define
specific checks, their IN and OUT calculations provide the infor-
mation useful for a variety of checks. (Section 6 shows how our
generic lifeguards can be instantiated as ADDRCHECK and TAINT-
CHECK lifeguards.)

The key to our efficient analysis is that we formulate the analysis
equations to fit the butterfly assumptions, as follows:

• We perform our analysis over a sliding window of 3 epochs
rather than the entire execution trace. This not only enables our
analysis to proceed as the application executes, it also bounds
the complexity of our analysis.

• We require only two passes over each epoch. The time per
pass is proportional to the complexity of the checking algorithm
provided by the lifeguard writer.

• We introduce state (SOS) that summarizes the effects of instruc-
tions in the distant past (i.e., all instructions prior to the current
sliding window). This enables using a sliding window model
without missing any errors.

• The symmetric treatment of the instructions/blocks in the wings
means we can efficiently capture the effects of all the in-
structions in the wings. To do so, we add four new prim-
itives: GEN-SIDE-IN, GEN-SIDE-OUT, KILL-SIDE-IN and
KILL-SIDE-OUT, as defined below.

In the following sections, GENl,t,i, KILLl,t,i, GENl,t and KILLl,t

refer to their sequential formulations, either over a single instruc-
tion (l, t, i) or an entire block (l, t). GEN-SIDE-OUTl,t will cal-
culate the elements (definitions or expressions) block (l, t) gen-
erated that are visible when (l, t) is in the wings of a butterfly
for block (l′, t′). Likewise, KILL-SIDE-OUTl,t calculates the el-
ements block (l, t) kills that are visible when (l, t) is in the wings
for block (l′, t′). GEN-SIDE-INl′,t′ and KILL-SIDE-INl′,t′ com-



bine the GEN-SIDE-OUT and KILL-SIDE-OUT, respectively, of all
blocks in the wings of block (l′, t′). The strongly ordered state
SOSl, parameterized by an epoch l, will contain any elements no
later than epoch l − 2 that could reach epoch l.
Processing a Level. To motivate our work, we examine Figure 8,
a reaching expressions example. First, we note that for any sliding
window of size 3, the strongly ordered states SOSl−1, SOSl and
SOSl+1, which summarize execution through epochs l − 3, l −
2, and l − 1, respectively, are available after the lifeguard has
consumed events through l−1. This can be shown by induction, as
follows. The very first butterfly uses only epochs 0 and 1, and has
SOS0 = SOS1 = ∅. After concluding all butterflies with bodies
in epoch 0, we have SOS2 as well. From then on, we inductively
have the correct SOS for each epoch in the butterfly.

Now consider Figure 8(a). The LSOS is available for block
(l, 2) because the head (not shown) is available and so is SOSl.
In our first pass we discover that block (l, 2) kills expression a-b
through a redefinition of b. The epoch’s summary need only be
generated once (in reaching expressions, the summary contains the
killed expressions), so we do not need to regenerate the summary
as the block changes position in the sliding window. After the first
butterfly, we are performing a first pass only on the blocks in the
newest epoch under consideration; the summaries for older blocks
have already been completed.

Using that information, we now examine Figure 8(b). This
shows the entire butterfly for block (l, 2). As part of step 2, sum-
maries from all blocks in the wings (computed earlier, as argued
above) are first collected and combined (represented by the circle
labeled “meet”), producing one summary for the entire wings (in
reaching expressions, this is KILL-SIDE-INl,2). (Note: The meet
function for KILL-SIDE-OUT is not the standard reaching expres-
sions intersection, but rather computed as the union. This is ex-
plained in Section 5.2.) Finally, (l, 2) repeats its analysis and per-
forms checks (step 3), noting that it is not the only block to kill
a-b.

Once the second pass is over, an epoch summary is created
(step 4, not shown). In the example, epoch l witnesses the killing of
expression a-b, as well as the generation of expression a+b. Any
ordering of instructions in epochs l−1 and l (empty blocks contain
no instructions relevant to the analysis) yields a + b defined at the
end. Hence, a+b is added to SOSl+2, and a-b is removed.

Note that there is a single writer for each of the data structures
(one of the threads can be nominated to act as master for global
objects such as the SOS), and objects are not modified after being
released for reading. Hence, synchronizing accesses to the lifeguard
metadata is unnecessary.

In Sections 5.1 and 5.2, we will formalize the well-known
problems of reaching definitions and reaching expressions [2] using
butterfly analysis.
Valid Ordering. We introduce the concept of a valid ordering Ok,
which is a total sequential ordering of all the instructions in the first
k epochs, where the ordering respects the assumptions of butterfly
analysis. A path to an instruction (block) is the prefix of a valid
ordering that ends just before the instruction (the first instruction in
the block, respectively).

We observe that the set of valid orderings is a superset of
the possible application orderings: Nearly all machines support at
least cache coherency, which creates a globally consistent total
order among conflicting accesses to the same location. Because
our analysis considers each definition event independently, our
approach has no false negatives (as argued in Section 4.4), even
for relaxed memory models.

We will not claim that we can construct an ordering for multiple
locations simultaneously. We expect to conclude that two instruc-
tion definitions dk and dj both reach the end of epoch l even if

KSO:
a-b

a-b ∈ SOSl

b=b+1
y=a+b

LSOS(l,2)

(a) 1st Pass: Compute KILL-SIDE-OUT (KSO)

a-b ∈ SOSl

LSOS (l-1,1)

KSO:
∅

a=a+1
c=a+b

LSOS (l,1)

KSO:
a-b

KSI: a-b

LSOS (l+1,1)

KSO:
∅

b=b+1
y=a+b

LSOS (l,2)

KSO:
a-b

d=a+b
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∅

LSOS (l,3)

KSO:
∅

LSOS (l+1,3)

KSO:
∅

meet

b=b+1
y=a+b

LSOS (l,2)
KSI:
a-b

(b) 2nd Pass: Aggregate KSOs from the wings,
combine into KILL-SIDE-IN (KSI)

Figure 8. Computing KILL-SIDE-OUT and KILL-SIDE-IN in
reaching expressions, from the perspective of the body, block (l, 2),
of the butterfly. Boxes with beveled edges are summaries.

the program semantics state exactly one of dk and dj will reach
that far. We use valid orderings as a conservative approximation of
what orderings a given thread could have observed.

5.1 Dynamic Parallel Reaching Definitions
Generating a definition in butterfly analysis is global; a definition
in block (l, t) is visible to any block (l′, t′) in its wings, and
vice versa. Conversely, killing a definition in butterfly analysis is
inherently local; it only kills the definition at a particular point in
that block, making no guarantee about whether the definition can
still reach by a different path or even a later redefinition in the same
block. For this reason, we conservatively set KILL-SIDE-OUTl,t =
KILL-SIDE-INl,t = ∅ in our reaching definitions analysis, and do
not rely on these primitives.

5.1.1 Generating and Killing Across An Epoch
The concept of an epoch does not exist in standard reaching defi-
nitions. We will propose extensions to generating and killing that
allow us to summarize the actions of all blocks in a particular epoch
l. These definitions will enable us to define reaching an entire epoch
l to mean that there is some valid ordering of the instructions in the



first l epochs such that running a sequential reaching definitions
analysis will conclude that dk reaches. We calculate:

GENl =
S

t GENl,t

KILLl =
S

t(KILLl,t ∩(
S

t′ 6=t KILL(l−1,l),t′ ∪NOT-GEN(l−1,l),t′))

where KILL(l−1,l),t = (KILLl−1,t − GENl,t)∪KILLl,t

and NOT-GEN(l−1,l),t = {dk|dk /∈ GENl−1,t ∧ dk /∈ GENl,t}
Intuitively, the formula for GENl states that any particular def-

inition that can reach the end of a block may reach the end of an
epoch, because there is a valid ordering such that the instructions
in block (l, t) are last. Likewise, the formula for KILLl indicates
it is harder to kill a definition dk, as at least one block (l, t) must
explicitly kill dk and all other threads must either not generate dk

or else kill dk (technically, not-generating and killing must span the
two epochs l − 1 and l, as indicated in the formulas).

We define the set GEN(Ok) to be the set of definitions that, if
we were to execute all instructions in order Ok, would be defined
at the end of Ok. The correctness of GENl and KILLl are shown by
the following lemma, whose proof is in the appendix:

Lemma 5.1. If dk ∈ GENl then there exists a valid ordering Ol

such dk ∈ GEN(Ol). If dk ∈ KILLl then under all valid orderings
Ol, dk /∈ GEN(Ol).

5.1.2 Updating State
Any definition dk ∈ SOSl was generated by an instruction that
came strictly earlier than any instruction in epoch l. We require the
following invariant for SOSl:

dk ∈ SOSl if and only if ∃Ol−2 s.t. dk ∈ GEN(Ol−2)

To achieve this, we use the following rule for updating SOS:

SOSl := GENl−2 ∪(SOSl−1 − KILLl−2) ∀l ≥ 2
SOS0 = SOS1 = ∅

Lemma 5.2. SOSl := GENl−2 ∪(SOSl−1 − KILLl−2) achieves
the invariant.

The proof is in the appendix.
Recall that the Local Strongly Ordered State for a block (l, t),

denoted LSOSl,t, represents the SOSl augmented to include in-
structions in the head that were already processed. The invariant
required for the LSOS is:

dk ∈ LSOSl,t iff ∃ valid ordering O of instructions in epochs
[0, l − 2] and block (l − 1, t) s.t. dk ∈ GEN(O)

To achieve this, we use the following LSOS update rule:

LSOSl,t = GENl−1,t ∪(SOSl − KILLl−1,t)∪
{dk|dk ∈ SOSl ∧ dk ∈ KILLl−1,t ∧ ∃t′ 6= t s.t. dk ∈ GENl−2,t′}

Let LSOSl,t,k denote the LSOS after k instructions have exe-
cuted.

LSOSl,t,k =

(
LSOSl,t if k = 0

GENl,t,k−1 ∪(LSOSl,t,k−1 − KILLl,t,k−1) ow
This is the standard OUT = GEN∪(IN − KILL) formula, with

LSOSl,t,k−1 acting as IN and LSOSl,t,k as OUT.

5.1.3 Calculating In and Out
Let INl,t,0 = INl,t represent the set of definitions that could
possibly reach the beginning of block (l, t). INl,t should be the
union of the set of valid definitions along all possible paths to
instruction (l, t, 0). Let INl,t,i be the set of definitions that reach
instruction (l, t, i). We have:

INl,t = GEN-SIDE-INl,t

S
LSOSl,t

INl,t,i = GEN-SIDE-INl,t ∪ LSOSl,t,i

Let OUTl,t,i and OUTl,t be the sets of definitions that are still de-
fined after executing instruction (l, t, i) or block (l, t), respectively:

OUTl,t,i = GENl,t,i

S
(INl,t,i − KILLl,t,i)

OUTl,t = GENl,t

S
(INl,t − KILLl,t)

Using reaching definitions as a lifeguard, we have now shown how
to compute the checks, the OUT computation.

5.1.4 Applying the Two-Pass Algorithm
We can now set our parameters for the two-pass algorithm proposed
in Section 4.3. For step 1, our local computations are GENl,t,
KILLl,t and LSOSl,t. These are used for our checking algorithm.
The summary information is GEN-SIDE-OUTl,t. For step 2, the
meet function is ∪, calculated over the GEN-SIDE-OUT from the
wings, to get GEN-SIDE-INl,t. We then use GEN-SIDE-INl,t to
perform our second pass of checks (step 3). Finally, we use GENl

and KILLl to update the SOS (step 4).

5.2 Dynamic Parallel Reaching Expressions
An expression e reaches a block (l, t) only if there is no path to
the block that kills e, i.e., no valid ordering in which e is killed
before the first instruction of the block. In such cases, there is
no need to recompute the expression. However, if any path to the
block kills e, then there is no guarantee that e is precomputed and
we must recompute it in block (l, t). With reaching definitions,
dk reaches a particular point p if in at least one valid ordering
dk reaches p; in reaching expressions, ek only reaches p if in all
valid orderings ek reaches p. This gives some intuition that KILL
in reaching expressions behaves like GEN in reaching definitions,
and likewise GEN in reaching expressions behaves like KILL in
reaching definitions.

Let GENl,t,i be the set of expressions generated by instruction
(l, t, i): GENl,t,i = {ek} if and only if instruction (l, t, i) generates
expression ek, and is empty otherwise. Similarly, let KILLl,t,i be
the set of expressions killed by instruction (l, t, i). We calculate
GENl,t and KILLl,t as usual.

Let KILL-SIDE-OUTl,t represent the set of killed expressions
a block (l, t) exposes to another block (l′, t′) anytime it is in the
wings of a butterfly with body (l′, t′). Because the body of the
butterfly can execute anywhere in relation to its wings, we must
take the union of the KILLl,t,i. Let KILL-SIDE-INl,t represent the
set of expressions visible to block (l, t) that are killed by the wings.

KILL-SIDE-OUTl,t =
S

i KILLl,t,i

KILL-SIDE-INl,t =
S

l−1≤l′≤l+1

S
t′ 6=t KILL-SIDE-OUTl′,t′

In reaching expressions, GEN-SIDE-IN = GEN-SIDE-OUT = ∅
for the same reason that KILL-SIDE-IN = KILL-SIDE-OUT = ∅
in reaching definitions; no block has enough information to know
that every path to a particular instruction has generated a particular
expression.

The properties we desire for GENl and KILLl are roughly the
opposite of those from reaching definitions.

KILLl =
S

t KILLl,t

GENl =
S

t(GENl,t ∩(
S

t′ 6=t GEN(l−1,l),t′ ∪NOT-KILL(l−1,l),t′))

where GEN(l−1,l),t = (GENl−1,t − KILLl,t)∪GENl,t

and NOT-KILL(l−1,l),t = {ek|ek /∈ KILLl−1,t ∧ ek /∈ KILLl,t}
The correctness of KILLl and GENl follows along the lines of the
proof of Lemma 5.1, with the roles of GEN and KILL reversed.

5.2.1 Updating State
The SOS has the same equation and update rule as described in
Section 5.1.2. The LSOS has a slightly different form, reflecting
the different roles GEN and KILL play. In reaching expressions,



an expression only reaches an instruction (l, t, i) if it has been
defined along all paths to the instruction. So, if ek ∈ SOSl ∧ ek /∈
KILLl−1,t, then ek ∈ LSOSl,t because ek is calculated along all
paths. However, if ek ∈ KILLl−1,t then at least one path exists
where the expression is not defined. If ek /∈ SOSl, the only way
that ek ∈ LSOSl,t is if it is defined by the head (ek ∈ GENl−1,t)
and no other thread t′ ever kills ek in epoch l − 2; otherwise,
because the head can interleave with epoch l−2, there is a possible
path where ek is killed before the body executes. This leads to:

LSOSl,t =
“

GENl−1,t −
S

t′ 6=t{ek|ek ∈ KILLl−2,t′}
”
∪

(SOSl − KILLl−1,t)

LSOSl,t,k has the same update rule as stated in Section 5.1.2.

5.2.2 Calculating In and Out
Let INl,t,i be the set of inputs that reach instruction i in thread t
and epoch l. Let INl,t,0 = INl,t represent the set of expressions
that could possibly reach the beginning of block (l, t). INl,t should
be the intersection of the set of valid expressions of all possible
paths to instruction (l, t, 0):

INl,t = LSOSl,t − KILL-SIDE-INl,t

INl,t,i = LSOSl,t,i − KILL-SIDE-INl,t

Let OUTl,t,i be the set of expressions that are still defined after
executing instruction i in thread t and epoch l, and OUTl,t represent
the set of expressions still defined after all instructions in the block
have executed. Then:

OUTl,t,i = GENl,t,i

S
(INl,t,i − KILLl,t,i)

OUTl,t = GENl,t

S
(INl,t − KILLl,t)

5.2.3 Applying the Two-Pass Algorithm
The parameters for the two-pass algorithm are similar to those in
Section 5.1.4. In step 1, we again calculate GENl,t, KILLl,t and
LSOSl,t, but now the summary information is KILL-SIDE-OUTl,t.
Step 2 uses ∪ for the meet function but calculates over all the
KILL-SIDE-OUTl′,t′ in the wings, to get KILL-SIDE-INl,t, which
is then used to perform our second pass of checks (step 3). Finally,
we use GENl and KILLl to update SOSl (step 4).

6. Implementing Lifeguards With Butterfly
Analysis

Now that we have shown how to use butterfly analysis with ba-
sic dataflow analysis problems, we extend it to two lifeguards. For
each of these lifeguards, we will show that we lose some precision
(i.e., experience some false positives) but never have any false neg-
atives; compared against any valid ordering, we will catch all errors
present in the valid ordering but potentially flag some safe events as
errors. Our main contribution will be parallel adaptations of ADDR-
CHECK and TAINTCHECK that do not need access to inter-thread
dependences and are supported on even relaxed memory models, as
long as those memory models respect intra-thread dependences and
provide cache coherence. For each lifeguard, we also show how to
update the metadata using dataflow analysis.

6.1 AddrCheck
ADDRCHECK [26], as described in Section 2, checks accesses,
allocations and deallocations as a program runs to make sure they
are safe. In the sequential version, this is straightforward; writing
to unallocated memory is an error. In butterfly analysis, one thread
can allocate memory before another writes, but if these operations
are in adjacent epochs, the operations are potentially concurrent. In
ADDRCHECK, a false positive occurs when the program behaves

a=malloc()

*a++

*b=24*a=0

b=malloc()

Thread 1 Thread 2 Thread 3

Epoch  j + 1

Epoch  j + 2

Epoch  j 

Figure 9. ADDRCHECK examples of interleavings between allo-
cations and accesses. There is a potentially concurrent access to a
by Thread 2 during its allocation by Thread 1, but the allocation of
b by Thread 3 is isolated from other threads.

safely but the lifeguard believes it has seen an invalid sequence of
malloc, free, and memory access events.

We describe ADDRCHECK as an adaptation of reaching ex-
pressions, associating allocations with GEN and deallocations with
KILL. We chose reaching expressions because we want to guaran-
tee zero false negatives; for all valid orderings, we want to know
whether an access to memory location m is an access to allocated
memory, and always detect accesses to unallocated memory re-
gions. Let GENl,t,i = {m} if and only if instruction (l, t, i) allo-
cates memory location m and otherwise ∅. Likewise, KILLl,t,i =
{m} if and only if instruction (l, t, i) deallocates memory loca-
tion m and otherwise ∅. GENl,t, KILLl,t, GENl, KILLl, SOSl and
LSOSl,t use the equations and update rules from Section 5.2.

Checking Algorithm
Our checking algorithm needs to be more sophisticated than reach-
ing expressions’ use of IN and OUT. A naive calculation would not
detect that a location had been freed twice, since set difference does
not enforce that B ⊆ A before performing A − B. Modifying the
checks is straightforward, though.

There are two basic conditions we wish to ensure. First, any
time an address is being accessed (either read or write) or deal-
located, we wish to know that the address is definitely allocated.
Secondly, any time an address is being allocated, we wish to know
that the address is definitely deallocated. Examining these two con-
ditions in detail, we find that each has two parts.

In the first case (i.e., when we wish to ensure that an address is
definitely allocated), it suffices to ensure that the address appears
allocated within our thread and that no other thread is concurrently
allocating or deallocating this address. Symmetrically, to check that
an address is definitely deallocated, it suffices if the address ap-
pears deallocated within the given thread with no other thread con-
currently allocating or deallocating the address. The general im-
plication of these two rules is that whenever the metadata states
changes from allocated to deallocated (or vice versa), any concur-
rent (i.e., in the wings) read, write, allocate or deallocate is prob-
lematic. This is analogous to a race on the metadata state.

Consider Figure 9. When thread 2 accesses a in epoch j + 1,
a does not appear allocated yet, because its allocation will not be
reflected in the SOS for another epoch. However, when thread 3
allocates b in epoch j + 1, it appears deallocated within the thread
and no other thread is accessing it. The subsequent access to b in
epoch j + 2 is also safe because it is within the same thread, even
though the allocation is not yet reflected in the SOS.

More formally, we split the checking into two parts. We first
verify that any address we accessed or deallocated appeared to be



allocated within our thread, and any address we allocated appeared
deallocated in our thread. These checks can be resolved by check-
ing that an access or deallocation (allocation) to memory location
x at instruction (l, t, i) is contained (not contained, respectively) in
the LSOSl,t,i.

Next, we want to ensure that allocations and deallocations were
isolated from any other concurrent thread. This occurs during the
second pass, using the summaries created in the first pass. For
ADDRCHECK, the summary is sl,t = (GENl,t, KILLl,t, ACCESSl,t),
where ACCESSl,t contains all addresses that block (l, t) accessed.
Combining the wing summaries yields:

Sl,t = (
[

wings

GENl′,t′ ,
[

wings

KILLl′,t′ ,
[

wings

ACCESSl′,t′).

To verify isolation, we check that the following set is empty (sl,t is
abbreviated as s, and Sl,t as S):

((s.GENl,t ∪ s.KILLl,t)
T

(S.GENl,t ∪S.KILLl,t))
S

(s.ACCESSl,t

T
(S.GENl,t ∪S.KILLl,t))

S
(S.ACCESSl,t

T
(s.GENl,t ∪ s.KILLl,t))

and otherwise flag an error.

Theorem 6.1. Any error detected by the original ADDRCHECK
on a valid execution ordering for a given machine (obeying intra-
thread dependences and supporting cache coherence) will also be
flagged by our butterfly analysis.

A proof sketch appears in the appendix. This shows that the
butterfly implementation of ADDRCHECK has zero false negatives.

6.2 TaintCheck
TAINTCHECK [29] tracks the propagation of taint through a pro-
gram’s execution; if at least one of the two sources is tainted,
then the destination is considered tainted. When extending TAINT-
CHECK to work using butterfly analysis, we extend this conser-
vative assumption as follows. If some valid ordering O causes an
address x to appear tainted at instruction (l, t, i), we conclude that
(l, t, i) taints x even if it does not taint x under any other valid
ordering. We modify reaching definitions to accommodate TAINT-
CHECK. In this setting, a false negative refers to concluding that
data is untainted when it is actually tainted, whereas a false positive
refers to believing data to be tainted when it is actually untainted.

Unfortunately, adapting TAINTCHECK to butterfly analysis is
not as simple as adapting ADDRCHECK. TAINTCHECK has an ad-
ditional method of tracking information called inheritance. Con-
sider a simple assignment a:=b+1. If we already know that b is
tainted, then a is tainted via propagation, and can be calculated us-
ing IN and OUT. If b is a shared global variable whose taint status
is unknown to the thread executing this instruction, then a inherits
the same taint status as b.

In order to efficiently compute taint status while handling inher-
itance, we will use a SSA-like scheme that assigns unique tuples
(l, t, i) instead of integers. We also define a function loc() that
given an SSA numbering (l, t, i) returns x, where x is the location
being written to by instruction (l, t, i). Our metadata are transfer
functions between SSA-numbered variables and their taint status,
with ⊥ as taint and > as untaint. The SOS will only contain ad-
dresses believed to be tainted. Then:

GENl,t,i =

8>>><>>>:
(xl,t,i ← ⊥) if (l, t, i) ≡ taint(x)

(xl,t,i ← >) if (l, t, i) ≡ untaint(x)

(xl,t,i ← {a}) if (l, t, i) ≡ x := unop(a)

(xl,t,i ← {a, b}) if (l, t, i) ≡ x := binop(a, b)

If we know that the last write to a was ⊥ in a block, we
can short-circuit the unop and binop calculations, concluding
(xl,t,i ← ⊥). This resembles propagation in reaching definitions.

Let S = {>,⊥, {a}, {a, b}|∃memory locations a, b}. In other
words, S represents the set of all possible right-hand values
in our mapping. We define the set KILLl,t,i = {(xl,t,j ←
s)|s ∈ S, j < i, and loc(l, t, j) = loc(l, t, i)}. In TAINT-
CHECK, GEN-SIDE-OUTl,t, KILL-SIDE-OUTl,t, GEN-SIDE-INl,t,
KILL-SIDE-INl,t, GENl,t and KILLl,t all function identically as
defined in Section 5.1 for reaching definitions.

Checking Algorithm
The main difference between TAINTCHECK and reaching defini-
tions is the checking algorithm. Given a function (x ← s), a loca-
tion yl,t,i is a parent of x if ∃zl′,t′,i′ ∈ s such that loc(l, t, i) =
loc(l′, t′, i′). We will say instruction (l, t, i) occurs strictly be-
fore instruction (l′, t′, i′), if one of three conditions hold. First, if
l ≤ l′ − 2. The other two cases only apply if the memory model is
sequentially consistent. If l = l′, t = t′ and i < i′, or if t = t′ and
l < l′, then (l, t, i) occurs strictly before (l′, t′, i′). We denote this
as (l, t, i) < (l′, t′, i′).

Algorithm 1 presents a function Check that takes a particular
transfer function of the form (xl,t,i ← s) and a set of transfer
functions T . Intuitively, Check resembles depth first search on a
graph. Parents are replaced with their predecessors recursively until
we run out of transfer functions or reach a termination condition,
whichever happens first.

Algorithm 1 TAINTCHECK Check Algorithm
Input: (xl,t,i ← s), T
Extracts the list of parents of xl,t,i: {y0, y1, . . . , yk} using the
loc function
for all yj a parent of xl,t,i do

Search for rules of the form (yj ← s′) ∈ T
Replaces yj with all the parents of yj in s′, subject to a
termination condition
if any parent of yj is ⊥ then

Terminate with the rule (xl,t,i ← ⊥).
else if any parent of yj is > then

Drop it from the list of parents, and continue
Postcondition: Either (xl,t,i ← s) converges to (xl,t,i ← ⊥),
or s becomes empty. If s is empty, conclude (xl,t,i ← >).

We consider two variants of Check: one for sequential consis-
tency and one for more relaxed models. Under sequential consis-
tency, it makes sense to enforce sequential execution within each
thread. To do so, we associate t counters of the form (l, t, i) with
each parent. We only allow a replacement for a parent y with
zl′,t′,i′ if (l′, t′, i′) occurs strictly before the counter at position
t′ associated with y. If so, we update the counter to reflect the
new (l′, t′, i′) value, and continue. If y is replaced with multiple
predecessors, we follow the same procedure for each predecessor.
This forces the ordering of instructions implied by the check algo-
rithm to always be in sequential order when restricted to a particular
thread t.

If we do not have sequential consistency, we must relax the
checking termination condition while still preventing false nega-
tives. The issue is that a sequence of assignments causing x to in-
herit from y can exist, but depend on an assignment occurring in the
wings; in Figure 2(b), executing (2) before (i) before (1) is legal on
some relaxed memory models [1]. By disallowing a parent to even-
tually be replaced by itself we prevent infinite loops, because there
are only a bounded number of potential parents; it will not guar-
antee that the ordering that taints memory location x is actually



valid. This resembles iteration as performed in dataflow analysis to
resolve loops.

Theorem 6.2. If Check returns (xl,t,i ← >), then there is no valid
ordering of the first l + 1 epochs such that x is ⊥ at instruction
(l, t, i). Therefore, any error detected by the original TAINTCHECK
on a valid execution ordering for a given machine (obeying intra-
thread dependences and supporting cache coherence) will also be
flagged by our butterfly analysis.

A proof sketch appears in the appendix. In other words, the
butterfly version of TAINTCHECK experiences zero false negatives.

Reducing False Positives. Suppose we are trying to resolve
(a2,2,1 ← b), and in the wings of the butterfly are transfer func-
tions (b1,3,1 ← r) and (r3,1,1 ← ⊥). Under either of the proposed
termination conditions, it is still possible to conclude instruction
(a ← ⊥). However, for (a ← ⊥) to occur, then instruction
(3, 1, 1) must execute before instruction (1, 3, 1), a direct viola-
tion of our butterfly assumptions (epoch 1 always executes before
epoch 3).

To reduce the number of false positives, the resolution of checks
takes place in two phases. In the first phase, a block (l, t) can use
any transfer function from epochs l − 1 or l to resolve a check. In
the second phase, only transfer functions from l + 1 and l can be
used to resolve a check. If in the first phase, we conclude ⊥ for a
location x, that location remains ⊥ throughout the second phase.
The correctness of this optimization is supported by the following
lemma, whose proof is in the appendix.

Lemma 6.3. If there exists a valid ordering O among 3 consecutive
epochs such that x is tainted then
(1) x is tainted via an interleaving of the first 2 epochs;
(2) x is tainted via an interleaving of the last 2 epochs; or
(3) there exist a predecessor y of x such that y is tainted in the first
two epochs and there exists a path from x to y in the last two epochs
using only transfer functions from the last two epochs.

SOS and LSOS
Instead of transfer functions the SOS and LSOS will track locations
believed to be tainted. Once again, TAINTCHECK is slightly more
complicated than reaching definitions. We can conclude that a
variable is tainted in epoch l based on an interleaving with epoch
l+1. Consider Figure 10. If we do not commit a to the SOS before
beginning a butterfly for block (j + 2, 2) we may conclude that d
is untainted, even though there is a path where d is tainted. If we
consider a to be tainted before beginning epoch j+2, though, there
is no guarantee the instruction that taints a has actually already
executed. However, considering an address to be tainted early is
merely imprecise, while considering an address to be tainted too
late violates our guarantees.

Define the function LASTCHECK(x, l, t) to be the last check
of location x resolved while checking block (l, t). This is not
the same as recomputing a check of x at the end of the block.
Rather, it is similar to computing the difference between the LSOS
at the end of the block and the LSOS at the beginning. If x was
assigned to in block (l, t), then LASTCHECK(x, l, t) will return
> or ⊥; otherwise, it returns ∅. We can extend this definition to
LASTCHECK(x, (l − 1, l), t) which will tell us whether the last
check spanning two epochs l−1 and l tainted, untainted, or merely
propagated x. In our SOS, we will track only those variables x we
believe are tainted, and will use LASTCHECK to do so. We define

GENl =
S

t{x|LASTCHECK(x, l, t) = ⊥}
KILLl =

S
t{x|LASTCHECK(x, l, t) = >∧

(∀t′ 6= t, LASTCHECK(x, (l − 1, l), t) = >∨
LASTCHECK(x, (l − 1, l), t) = ∅)}

a=b

b=buf[0]

c=ad=c

Thread 1 Thread 2 Thread 3

Epoch  j + 1

Epoch  j + 2

Epoch  j 

Figure 10. Updating the SOS is nontrivial for TAINTCHECK. By
the end of epoch j + 1, a has been tainted, but the SOS may need
to be updated before blocks in epoch j +2 begin butterfly analysis.

Table 1. Simulator and Benchmark Parameters

Simulation Parameters
Cores {4,8,16} cores
Pipeline 1 GHz, in-order scalar, 65nm
Line size 64B
L1-I 64KB, 4-way set-assoc, 1 cycle latency
L1-D 64KB, 4-way set-assoc, 2 cycle latency
L2 {2,4,8}MB, 8-way set-assoc, 4 banks, 6 cycle latency
Memory 512MB, 90 cycle latency
Log buffer 8KB

Application Suite Input Data Set
BARNES Splash-2 16384 bodies
FFT Splash-2 m = 20 (220 sized matrix)
FMM Splash-2 32768 bodies
OCEAN Splash-2 Grid size: 258× 258
BLACKSCHOLES Parsec 2.0 16384 options (simmedium)
LU Splash-2 Matrix size: 1024× 1024, b = 64

This is an almost identical formulation to reaching definitions;
the difference is that we use LASTCHECK to change our meta-
data format from transfer functions to tainted addresses. SOSl and
LSOSl,t use the update rules for reaching definitions. We claim the
following conditions hold for the SOS:

Condition 1. If there exists a valid ordering Os of the first l − 2
epochs such that x is tainted in Os then x ∈ SOSl−2.

Condition 2. If x ∈ SOSl−2, then there exists at least one thread
t such that t assigns to x and believes a valid ordering of the first
l − 2 epochs exists that taints x.

The first condition is identical to reaching definitions. The sec-
ond condition addresses imprecision due to our reliance on the
checking algorithm. Analogous conditions hold for the LSOS.

7. Evaluation of A Butterfly Analysis Prototype
To demonstrate the practicality of butterfly analysis and to identify
areas where further optimizations may be helpful, we now present
our experimental evaluation of our initial implementation of butter-
fly analysis within a parallel monitoring framework.

7.1 Experimental Setup
While the generality of butterfly analysis makes it applicable to a
wide variety of dynamic analysis frameworks (including software-
only frameworks based upon binary instrumentation [6, 22, 27]),
we chose to build upon the Log-Based Architectures (LBA) [8]
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Figure 11. Relative performance, normalized to sequential, unmonitored execution time. X-axis: number of application threads.

framework in our experiments due to its relatively low run-time
overheads. With LBA, each application thread is monitored by a
dedicated lifeguard thread running concurrently on a separate pro-
cessor on the same CMP. The LBA hardware captures a dynamic
instruction log per application thread and passes it (via the L2
cache) to the corresponding lifeguard thread. When lifeguard pro-
cessing is slower than the monitored application (as is the case in
our experiments), the monitored application stalls whenever the log
buffer is full; hence our performance results show lifeguard pro-
cessing time, which is equivalent to application execution time in-
cluding such log buffer stalls.

Because the LBA [8] hardware support is not available on ex-
isting machines, we simulated the LBA hardware functionality (in-
cluding log capture and event dispatch) on a shared-memory CMP
system using the Simics [36] full-system simulator. Although the
LBA hardware is simulated, the full software stack for butterfly
analysis is executed faithfully in our experiments. Table 1 shows
the parameters for our machine model as well as the benchmarks
that we monitored (taken from Splash-2 [38] and Parsec 2.0 [5]).

For our lifeguard, we implemented a parallel, heap-only ver-
sion of ADDRCHECK–based upon [26]—using butterfly analysis
as described in Section 6.1. The LBA logging mechanism makes
it easy to generate and communicate heartbeats: we simply insert
heartbeat markers into the log after h instructions have occurred
per thread,4 where h equals 8K or 64K instructions in our experi-
ments. We use the metadata-TLB and idempotent filtering5 acceler-
ators from LBA [8], and we filter out stack accesses.

7.2 Experimental Results
We now evaluate the performance and accuracy of our butterfly-
analysis-based ADDRCHECK lifeguard compared with the current
state-of-the-art.

Performance Analysis. Because lifeguards involve additional
processing and no direct performance benefit for the monitored ap-
plication, the performance question is how much they slow down
performance relative to unmonitored execution. Figure 11 shows
the performance impact of butterfly analysis, where the y-axis is
execution time normalized to the given application running se-
quentially on a single thread without monitoring (hence shorter

4 In practice, we issue heartbeats after hn instructions are executed by the
application, where n is the number of application threads, without enforcing
uniformity of execution across threads. In the worst case, one thread will
execute hn instructions while the rest will execute 0. We maintain the
invariant that at least h cycles have passed on each core. Butterfly analysis
does not require balanced workloads within an epoch.
5 For idempotent filtering, we flushed the filters at the end of each epoch so
that events are only filtered within (and never across) epochs.

bars are faster). We show performance with 2, 4, and 8 application
threads,6 as labeled on the x-axis. Within each set of bars, we show
three cases: (i) “Timesliced Monitoring”, the current state of the art
where all application threads are interleaved on one core, and are
monitored by a sequential lifeguard (running on a separate core);
(ii) “Parallel, Monitoring,” which is with our butterfly analysis;
and (iii) “Parallel, No Monitoring,” which is the application run-
ning in parallel without any monitoring (as a point of comparison).

As we observe in Figure 11, when monitoring only two appli-
cation threads, the performance of butterfly analysis relative to the
state-of-the-art timesliced approach is mixed: it is significantly bet-
ter for BARNES and FMM, comparable for FFT and OCEAN, and
significantly worse for BLACKSCHOLES and LU. A key advan-
tage of butterfly analysis relative to timesliced analysis, however,
is that the analysis itself can enjoy parallel speedup with additional
threads. Hence as the scale increases to eight application (and life-
guard) threads, butterfly analysis outperforms timesliced analysis
in five of six cases, and in four of those cases by a wide margin. In
the one case where timesliced outperforms butterfly analysis with
eight threads (i.e., BLACKSCHOLES), one can observe in Figure 11
that butterfly analysis is speeding up well with additional threads,
but it has not quite reached the crossover point with eight threads.

While our butterfly approach offers the advantage of exploiting
parallel threads to accelerate lifeguard analysis, the implementa-
tion of our current prototype has the disadvantage that it performs
more work per monitored instruction than the timesliced approach.
For example, in the first pass, our current implementation executes
roughly 7-10 instructions for each monitored load and store instruc-
tion simply to record it for the second pass, above and beyond per-
forming the same first-pass checks as traditional ADDRCHECK. We
believe that this overhead is not fundamental to butterfly analysis,
and that it could be significantly reduced by caching parts of our
first-pass analysis and reusing it when the same monitored code is
revisited. (We plan to explore this possibility in future work.) De-
spite the inefficiencies of our initial prototype, we observe in Fig-
ure 11 that it offers compelling performance advantages relative to
the state-of-the-art due to its ability to exploit parallelism.

Sensitivity of Performance and Accuracy To Epoch Size. A key
parameter in butterfly analysis is the epoch size, which dictates the
granularity of our concurrency analysis. We now explore how this
parameter affects lifeguard performance and accuracy.

Figure 12 shows the impact of epoch size on performance. We
show two epoch sizes (h): 8K and 64K instructions. (Note that the
epoch size in Figure 11 was h=64K.) As we see in Figure 12, in
nearly all cases (i.e., everything except the two and four thread

6 Recall that LBA uses a total of 2k cores to run an application with k
threads, since k additional cores are used to run the lifeguard threads.
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Figure 12. Performance sensitivity analysis with respect to epoch
size. Results shown for h=8K and 64K.
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Figure 13. Precision sensitivity to epoch size. Results shown for
h=8K and 64K. Y-axis: false positives as percentage of memory
accesses, shown on a logscale.

cases for OCEAN), the performance improves with a larger epoch
size. Intuitively, this makes sense because the fixed costs of analysis
per epoch—including barrier stalls after each pass—are amortized
over a larger number of instructions. To understand what happened
in OCEAN, let us first consider the impact of epoch size on accu-
racy.

While the advantage of a larger epoch size is better perfor-
mance, Figure 13 shows that the disadvantage is an increase in
the false positive rate7 of the analysis. (Recall that false negatives
are impossible with butterfly analysis.) In a number of cases (e.g.,
FFT, FMM, and LU), the false positive rate did not increase sig-
nificantly when the epoch size increased from 8K to 64K instruc-
tions, but in other cases it did increase by orders of magnitude.
In fact, the increase in the false positive rate for OCEAN helps
explain why its performance degraded with a larger epoch size:
false positives are expensive to process in ADDRCHECK, and in
OCEAN they increased enough to offset the savings in amortized
overhead. Aside from OCEAN, the false positive rates remain be-
low 0.01% of memory accesses even with the larger epoch size.
With the smaller epoch size, all programs have false positive rates
well below 0.001% of memory accesses. Overall, we observe that
the epoch size is a knob that can be tuned to trade off performance
versus accuracy (subject to a minimum size, as discussed in Sec-
tion 4.1), and that there are reasonable epoch sizes that offer both
high performance and high accuracy.

7 Recall that for ADDRCHECK, a false positive refers to the lifeguard mis-
taking a safe event (e.g., an access to allocated memory) for an unsafe event
(e.g., an access to unallocated memory).

8. Conclusion
In this paper, we have presented a new approach to performing
dynamic monitoring of parallel programs that requires little or no
hardware support: all that we require is a simple heartbeat mech-
anism, which can be implemented entirely in software. Inspired
by dataflow analysis, we have demonstrated how our new butterfly
analysis approach can be used to implement an interesting lifeguard
that outperforms the current state-of-the-art approach (i.e., times-
licing) while achieving reasonably low false-positive rates. The key
tuning knob in our framework is the epoch size, which can be ad-
justed to trade off performance versus accuracy. Finally, we believe
that butterfly analysis can be applied to a wide variety of interesting
dynamic program monitoring tools beyond the ones demonstrated
in this paper.
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Appendix
Proof of Lemma 5.1. Each statement is proved independently.
If dk ∈ GENl then there exists a valid ordering Ol such that
dk ∈ GEN(Ol).

If dk ∈ GENl, then there is some block (l, t) such that
dk ∈ GENl,t, implying there exists some index i such that
dk ∈ GENl,t,i ∧ ∀j > i, dk /∈ KILLl,t,j . Then Ol is any valid
ordering where the instructions in block (l, t) are last.

If dk ∈ KILLl then under all valid orderings Ol, dk /∈ GEN(Ol).
This follows by construction. If dk ∈ KILLl then there exists at

least one thread t such that dk ∈ KILLl,t. For all other threads
t′ 6= t it must be the case that dk was killed during epochs
l − 1 through l and not subsequently regenerated, or else that it
was simply not generated. Either way, any possible instruction that
generates dk is followed by a kill of dk within the same thread. So,
dk is not generated by epochs l or l − 1, and the KILL in block
(l, t) occurs strictly after any GEN in epochs l − 2 or earlier.

Proof of Lemma 5.2. By Induction.
Base Case. SOS0 = SOS1 = ∅. According to the invariant, we
wish to show SOS2 = GEN(O0) = GEN0.

Any definition dk ∈ SOS2 must be generated by some instruc-
tion (0, t, i) in block (0, t), implying it is in GEN(0,t) and GEN0.
We can construct a valid ordering O0 with all instructions in block
(0, t) last, so the invariant is satisfied.
Inductive hypothesis: If s ≤ l, SOSs := GENs−2 ∪(SOSs−1 −
KILLs−2) achieves the invariant.
Inductive step: Consider the SOS for epoch l + 1. It must include
everything generated by epoch l − 1, which is GENl−1. Now, we
must consider how many definitions dk ∈ SOSl ∧ dk /∈ SOSl+1,
which are precisely those definitions dk such that for all valid
orderings, epoch l − 1 kills dk. This is exactly what KILLl−1

calculates; the elements of KILLl−1 are precisely those that should
be removed from the SOSl when creating SOSl+1. This yields the
equation: SOSl+1 = GENl−1

S
(SOSl − KILLl−1).

Proof Sketch of Theorem 6.1. Observe that the original ADDR-
CHECK detects errors that occur pairwise between operations (i.e.,
allocations, accesses, and deallocations) on the same address. It is
therefore sufficient to restrict our analysis to pairs of instructions
involving the same address.

We consider any memory consistency model that respects intra-
thread dependences and supports cache coherence. Suppose there is
an execution E of the monitored program on a machine supporting
that model such that one of the pairwise error conditions is violated
for an address x, e.g., there is an access to x after it is deallocated.
Let E|x be the subsequence of E consisting of all instructions in-
volving x. By the assumptions of the butterfly analysis, there is a
valid ordering O such that O|x, the subsequence of O consisting of
all instructions involving x, is identically E|x. Because the butter-
fly analysis considers O among the many possible valid orderings,
and checks for all combinations of pairwise errors for locations, it
too will flag an error.

Proof Sketch of Theorem 6.2. We first sketch the proof for the se-
quentially consistent termination condition. Suppose there was a
valid ordering of the first l + 1 epochs such that x← ⊥ at instruc-
tion (l, t, i). That implies there exists a sequence of k + 1 trans-
fer functions f̂ such that the associated instructions in order would
taint x.

Restricting f̂ to functions from a particular thread t will produce
a subsequence, potentially empty, that is still ordered, so we will not
have violated the sequential consistency assumption. This shows f̂
is a legitimate sequence of parents to follow, so we would conclude
(x← ⊥).

The proof for the relaxed memory model termination condi-
tion proceeds similarly, instead arguing that there exists a finite
sequence of transfer functions which taints x.

Proof of Lemma 6.3. A valid ordering of 3 epochs that taints x
might taint x when restricted only to (1) the first two epochs, or (2)
restricted only to the last 2 epochs. The final case is when all three
epochs are used to taint x. In this case, there can be no interleaving
between the first and third epochs, because all instructions in the
first epoch must commit before any instructions in the third epoch
begin. As the first epoch cannot taint x directly and neither can the
third epoch (this would put us into cases 1 or 2) then it must be
the case that some predecessor of x is tainted by an interleaving
of the first epoch with some of the second epoch, and then that
there is a valid interleaving between the remaining instructions in
the second epoch with the third epoch such that x inherits from y.
This is conservatively handled by (3).


