
Initial Experience with 3D XPoint Main Memory
Jihang Liu

State Key Laboratory of Computer Architecture
Institute of Computing Technology, CAS

University of Chinese Academy of Sciences
liujihang@ict.ac.cn

Shimin Chen*
State Key Laboratory of Computer Architecture

Institute of Computing Technology, CAS
University of Chinese Academy of Sciences

chensm@ict.ac.cn

Abstract—3D XPoint will likely be the first commercially
available main memory NVM solution targeting mainstream
computer systems. Previous database studies on NVM memory
evaluate their proposed techniques mainly on simulated or
emulated NVM hardware. In this paper, we report our initial
experience experimenting with the real 3D XPoint main memory
hardware.

I. INTRODUCTION

A new generation of Non-Volatile Memory (NVM) tech-
nologies, including PCM [1], STT-RAM [2], and Memris-
tor [3], are expected to address the DRAM scaling problem
and become the next generation main memory technology
in future computer systems [4]–[7]. NVM has become a hot
topic in database research in recent years. However, previous
studies evaluate their proposed techniques mainly on simulated
or emulated hardware. In this paper, we report our initial
experience with real NVM main memory hardware.

3D XPoint is an NVM technology jointly developed by
Intel and Micron [8]. Intel first announced the technology
in 2015. 3D XPoint based Optane SSD products are already
available on the market. Intel expects to ship 3D XPoint based
persistent memory DIMM products (a.k.a. Apache Pass, or
AEP) in 2019. As a result, 3D XPoint will likely be the first
commercially available main memory NVM solution targeting
mainstream computer systems.

A number of companies have obtained AEP sample ma-
chines from Intel for testing purposes. We get access to an
AEP machine through a collaboration project with Alibaba.
We are interested in understanding the system architecture of
the AEP machine, and the performance characteristics of the
3D XPoint main memory.

The remainder of the paper is organized as follows. Sec-
tion II describes the interesting features of the AEP ma-
chine. Section III discusses our experimental methodology.
Section IV reports the experimental results. Finally, Section V
concludes the paper.

II. AEP MACHINE

The system architecture of the AEP machine is shown in
Figure 1. We describe its interesting features that are different
from those in existing x86-64 servers.

*Corresponding Author

Fig. 1. AEP machine.

First, there are two CPUs in the machine. From the
/proc/cpuinfo, the CPU model is listed as “Genuine In-
tel(R) CPU 0000%@”. Our guess is that the CPU is a test
model and/or not yet recognized by the Linux kernel. The
CPU supports the new clwb instruction [9]. Given a memory
address, clwb writes back to memory the associated cache
line if it is modified. clwb and sfence can be combined to
persist modified data to the NVM main memory. Compared
to the existing clflush instruction, clwb is expected to be
more efficient because it does not invalidate the associated line
from the CPU cache.

Second, the AEP machine is equipped with two 3D XPoint
main memory modules. Each module is 256GB large, and is
connected to a CPU. For a CPU, one 3D XPoint module is
local, the other module is remote. In other words, there are
NUMA effects for NVM memory accesses.

Third, the machine is running a 4.9.75 version Linux kernel.
Under the /dev directory, there are two special devices that
represent the two 3D XPoint modules. They are named as
/dev/pmemX, where X is a number.

Finally, there are two ways to exploit the 3D XPoint
modules. File systems are installed on the devices using the
fsdax mode. fsdax supports direct accesses to the NVM device
without going through the OS page cache. More interestingly,
we can use PMDK (Persistent Memory Development Kit)1 to
mmap an NVM file into the virtual address space of the run-
ning process, and then access the NVM memory using normal
load and store instructions, essentially as main memory. We
focus on the latter approach in this paper.

1http://pmem.io/pmdk/libpmem/



III. EXPERIMENTAL METHODOLOGY

In the literature, NVM is expected to have read/write per-
formance similar to but slower than DRAM. The performance
of reads and writes may be asymmetric. Persisting modified
contents to NVM is considered an expensive operation. Are
these true with 3D XPoint?

We would like to understand the performance characteristics
of 3D XPoint main memory through systematic performance
tests. We consider the following aspects in our experiments:

• Impact of write contents on performance: Various
techniques, including data comparison writes [10], have
been proposed to improve NVM write performance and
reduce write energy consumption in the literature. These
techniques exploit the fact that a portion of the bits
written are unchanged compared to the original contents.
Therefore, it is possible to compare the new contents
with the original contents and perform the NVM write
operations only for the changed bits, thereby avoiding
unnecessary overwrites. We would like to check if such
effects exist in the real 3D XPoint memory hardware.

• Total amount of data accessed: SSDs and HDDs often
employ caching in the devices to improve performance.
If the working data set fits into the in-device caches,
applications will see much better performance. In addition
to caching, SSDs often reserve additional flash space (e.g.
as much as 20% more than the reported capacity) in order
to better organize new writes for wear-leveling purposes.
While NVM is significantly different from SSDs and
HDDs, techniques in the similar vein may be exploited.
Therefore, it is necessary to observe the performance of
3D XPoint under different amount of data accessed.

• The randomness of the memory accesses: Database
operations display different memory access patterns. For
example, table scans perform sequential accesses. Hash
or B+-Tree index accesses often visit memory locations
in a random fashion. Random accesses can be either de-
pendent or independent. A typical scenario that performs
dependent random accesses is following a linked list. The
memory address of the next node on the linked list is
stored in the previous node. Therefore, the access to the
next node depends on the access to the previous node.
In contrast, retrieving a set of records given their record
IDs result in independent random accesses, which may
be served by parallel memory accesses. It is important to
study different memory access patterns.

• Whether to persist data using clwb+sfence: A store
instruction (e.g., mov) completes when it reaches the CPU
cache. After that, when and in what order modified lines
are written back to memory are controlled by the CPU
cache hardware. Unfortunately, CPU cache is volatile.
Therefore, to guarantee consistent NVM data structures
after crash recovery, special instructions (e.g., clwb and
sfence) have to be used to ensure modified contents
are written back to the NVM memory. We would like to
quantify the overhead of such special instructions.

• NUMA effect: In the AEP machine, two 3D XPoint mod-
ules are attached to two CPUs, respectively. Therefore,
we study 3D XPoint’s NUMA effect in Section IV-D. We
control the CPU affinity and memory binding for the tests.
(Please note that in the experiments of Section IV-A–
IV-C, we avoid the NUMA effect by performing only
local memory and NVM accesses.)

We run a set of memory tests. Every test run allocates
BlockNum×BlockSize memory either from DRAM or from
3D XPoint (using PMDK). Then, it initializes the allocated
memory by writing every bytes. After that, it tests a specified
memory access pattern. gettimeofday is used to measure the
elapsed time of performing all the memory accesses. Finally,
it computes the access latency and bandwidth by combining
the elapsed time, BlockNum, and BlockSize. We test the
following memory access patterns:

• Sequential read (seqread): The test sequentially reads
the BlockNum×BlockSize memory.

• Random read (randread): The memory is divided into
BlockNum blocks, each with BlockSize bytes. The
test allocates a pointer array with BlockNum entries.
It populates the array with the memory addresses of
the blocks, then randomly shuffles the array entries.
It reads the blocks by following the pointers in the
array, thereby performing independent random accesses.
We vary BlockSize in the experiments. As BlockSize
increases, the memory access patterns become closer to
the sequential access pattern.

• Dependent read (depread): The test obtains a random
permutation of the blocks using the random pointer array
as in randread. It constructs a linked list of the blocks in
the order of the random permutation. Then, the test reads
the memory blocks by following the linked list. In this
way, it performs dependent memory reads.

• Sequential / random / dependent write (seqwrite
/ randwrite / depwrite): The write tests use similar
patterns as the read tests. There is one major difference.
A write test can be specified to persist modified data. If
this feature is enabled, then a clwb is issued after the
modified contents of a cache line are fully written, and a
sfence is issued after an entire block is written. If this
feature is disabled, then writes are performed without the
special instructions.

IV. EXPERIMENTAL RESULTS

A. Impact of Write Contents on Performance
The first set of experiments check whether 3D XPoint

memory modules take advantage of the data patterns of the
modified data and the original data during the write operations.
If the write performance is dependent on the data patterns, then
we need to pay special attention to choose appropriate initial
and final values for the writes in all subsequent experiments.
If write values do not affect the write performance, then we
can use any arbitrary values.

We test three initial values in the experiments:
0xf0f0f0f0f0f0f0f0 (every byte consists of four “1”s



Fig. 3. Read performance varying the amount of data accessed.

followed by four “0”s), 0xaaaaaaaaaaaaaaaa (alternating
between “1”s and “0”s), and 0x0000000012345678 (an
arbitrary value). For every initial value, we construct eight
values to write by performing bitwise not to 1 byte, 2 bytes,
..., 8 bytes of the initial value. We choose the total amount of
data accessed to be 8GB and 32GB. Then we run seqwrite
and randwrite experiments.

Fig. 2. Varying the initial values and the write values.

Figure 2(a)-(d) show the performance of sequential writes
and random writes of 8GB and 32GB data while varying
the number of changed bytes in every 8-byte word. The Y-
axis shows the average latency for writing a 64B cache line.
From the figures, it is clear that the write performance of 3D
XPoint does not change significantly while varying write data
patterns. Therefore, we conclude that the write performance

of 3D XPoint in the sample AEP machine does not depend on
the data patterns. In the following experiments, we can choose
the initial values and write values arbitrarily.

B. Varying Total Amount of Data Accessed

In this set of experiments, we perform sequential, random,
and dependent read and write tests while varying the total
amount of data accessed. We avoid the NUMA effect by
testing only the local DRAM module and the local NVM
module. We vary the total amount of data accessed from 1GB
to 256GB. The smallest size, 1GB, is well beyond the CPU
cache size. The largest size, 256GB, is the capacity of a single
3D XPoint module in this machine. The block size in the
experiments is equal to the cache line size (i.e. 64B).

Figure 3 (a)-(f) show the bandwidth and latency for seqread,
randread, and depread on DRAM (mem) and 3D XPoint
memory. Figure 4 (a)-(f) show the bandwidth and latency
for seqwrite, randwrite, and depwrite on DRAM (mem),
3D XPoint memory, and 3D XPoint with clwb+sfence
instructions (persist). Please note that the Y-axes in the write
performance figures (Figure 4 (a)-(f)) are in the logarithmic
scale. From the figures, we have the following observations.

Performance varying data size. As the total amount of
data accessed increases from 1GB to 256GB, the DRAM
curves remain relatively flat in all figures, while the random
and dependent read and write curves of 3D XPoint change
significantly. We compute the slope of changes by dividing
the delta latency by the delta data sizes of adjacent points. We
see that the slopes become relatively small after 32GB for all
cases. Therefore, we suspect that techniques such as caching
are used inside the 3D XPoint module to improve performance.
This effect becomes insignificant when the amount of data
accessed is 32GB or larger.



Fig. 4. Write performance varying the amount of data accessed.

Read performance: 3D XPoint vs. DRAM. Compared to
DRAM, 3D XPoint is 1.3–1.6x slower for seqread, 1.2–2.3x
slower for randread, and 1.3–2.5x slower for depread. If we
consider only data sizes greater than or equal to 32GB, then
compared to DRAM, 3D XPoint is 1.5x slower for seqread,
2.1–2.3x slower for randread, and 2.3–2.5x slower for depread.

depread ensures that only a single read can be serviced at a
time. On the other hand, in randread and seqread, the CPU can
issue multiple reads in parallel. The performance of randread
and seqread also reflects the device’s capability of supporting
concurrent memory accesses. Therefore, if we consider the
latency of a memory read, 3D XPoint is 2.3–2.5x slower than
DRAM.

Write performance: 3D XPoint vs. DRAM. Compared to
DRAM, 3D XPoint is 1.2–1.9x slower for seqwrite, 1.1–2.5x
slower for randwrite, and 1.3–2.3x slower for depwrite. If
we consider only data sizes greater than or equal to 32GB,
then compared to DRAM, 3D XPoint is 1.4–1.7x slower for
seqwrite, 2.2–2.5x slower for randwrite, and 2.2–2.3x slower
for depwrite.

Write performance: persist vs. normal 3D XPoint write.
From Figure 4, we see that persist is drastically worse than
normal 3D XPoint writes for seqwrite and randwrite. This
is because normal 3D XPoint writes are cached in the CPU
cache. The actual writes to the 3D XPoint can be reordered and
performed in parallel in the background. In contrast, persist
uses clwb to enforce the writes to immediately go to the 3D
XPoint memory. sfence further ensures that the next block
of data is written after the previous writes complete. Since the
block size is 64B in this set of experiments, there will be no
concurrent cache line writes in the persist experiments.

As a result, compared to normal 3D XPoint writes, persist

is 10.7–14.2x slower for seqwrite, and 2.9–5.1x slower for
randwrite. If we consider only data sizes greater than or equal
to 32GB, then compared to normal 3D XPoint writes, persist
is 12.1–14.1x slower for seqwrite, and 3.0–3.4x slower for
randwrite. Interestingly, the largest slowdowns occur when the
data sizes are small, where the caching mechanism works best.

For depwrite, the persist curve and the 3D XPoint curve
almost overlap with each other. For depwrite, there is no
temporal or spatial locality among the writes and there is no
concurrent writes in the memory system. Therefore, the CPU
cache has limited benefits to depwrite. Consequently, depwrite
and persist have similar performance.

3D XPoint: Read vs. Write. Compared to reads, 3D XPoint
writes are up to 1.4x slower for sequential accesses, up to
2.3x slower for random accesses, and up to 1.2x slower for
dependent accesses. Overall, the asymmetric effect of NVM
reads and writes are modest: 3D XPoint writes are up to 2.3x
than reads.

C. Varying Block Size

In the previous experiments, the block size is fixed to 64B.
In this set of experiments, we vary the block size from 16B
to 4096B and run sequential, random, and dependent memory
tests. For the persist write experiments, we issue a clwb for
every line in the block, and issue a single sfence instruction
after the entire block is written.

Figure 5(a)-(f) show seqread, randread, depread, seqwrite,
randwrite, and depwrite performance while varying the block
size from 16B to 4096B. The Y-axes of Figure 5(a) and (b) are
in the linear scale, while the Y-axes of Figure 5 (c)-(f) are in
the logarithmic scale. From the figures, we have the following
observations.



Fig. 5. Read and write performance varying block size.

First, in the cases of seqread and seqwrite, the performance
of DRAM and 3D XPoint is roughly stable. In the test
program, the inner loop processes the data in a block, and the
outer loop processes every block. The test program performs
sequential memory accesses for all the data accessed. The
block size in the inner loop does not make much difference.

Second, in the cases of randread and randwrite, the band-
width of DRAM and 3D XPoint increases as the block size
grows larger. This is because the larger the block size, the less
random and the more sequential the accesses. Therefore, the
randread (randwrite) performance become closer and closer to
the seqread (seqwrite) performance.

Finally, the performance of persist writes also increases as
the block size increases. However, interestingly, in the case
of depwrite, the curve of persist and the curve of normal 3D
XPoint writes diverge when the block size is beyond 512B.
As the access pattern becomes more and more similar to the
sequential accesses, the cost of clwb shows up.

D. NUMA Effect

In this set of experiments, we study the NUMA effect of
the AEP machine. The tests use the numactl, cpubind, and
membind commands to bind the desired CPU and memory
nodes to the test program. Both DRAM and 3D XPoint have
NUMA effect. That is, remote memory accesses have longer
latency and lower bandwidth than local memory accesses.
What’s interesting is the impact of 3D XPoint vs. DRAM on
the NUMA effect.

Table I compares the performance of remote and local mem-
ory accesses for DRAM, 3D XPoint, and persist. The table lists
the latency differences (remote latency - local latency) and
the latency ratios (remote latency / local latency) for seqread,

randread, depread, seqwrite, randwrite, and depwrite. From the
table, we have the following observations:

1) As expected, the performance of remote memory access
is lower than the performance of local memory accesses
for both DRAM and 3D XPoint. The two CPUs in the
system are connected through the QPI link. A remote
memory access has to go through the QPI link between
the two CPUs and then use the memory controller on the
remote CPU to perform the memory access. This extends
the memory access latency and reduces the memory
bandwidth.

2) For seqread, seqwrite, randread and randwrite, the latency
difference of 3D XPoint is larger than that of DRAM.
However, the latency ratios are all similar. In these cases,
the CPU can issue multiple concurrent memory accesses.
The bandwidth supported by the QPI are the determinant
factor. This is a feature of the QPI. Therefore, the latency
ratios are similar for both DRAM and 3D XPoint.

3) For depread, the latency differences of DRAM and 3D
XPoint are similar, but the latency ratio of DRAM is
larger than that of 3D XPoint. In this case, there are no
concurrent memory accesses. The dominant factor is the
extra latency caused by the QPI. Therefore, the latency
differences of DRAM and 3D XPoint are similar. Latency
ratio = (local latency + difference) / local latency = 1
+ difference/local latency. Since the local latency of 3D
XPoint is larger than that of DRAM, its latency ratio is
smaller.

4) For 3D XPoint persist writes, the latency differences and
the latency ratios are all larger than those of DRAM
and 3D XPoint normal writes. Remote persist is much
more costly than local persist. clwb+sfence have greater
impact on remote accesses than on local accesses. Our



TABLE I
REMOTE VS. LOCAL DRAM AND 3D XPOINT PERFORMANCE.

remote/local DRAM remote/local 3D Xpoint remote/local persist
latency difference latency ratio latency difference latency ratio latency difference latency ratio

seqread 2.4ns 1.5 3.4ns 1.5 – –
randread 6.2ns 1.5 13.4ns 1.5 – –
depread 58.3ns 1.8 47.3ns 1.3 – –
seqwrite 2.7ns 1.5 4.2ns 1.5 112ns 2.1
randwrite 10.4ns 1.5 22.0ns 1.5 186ns 2.2
depwrite 56.3ns 1.7 145ns 1.8 147ns 1.8

guess is that in the remote case, the special instructions
need the two CPUs to cooperate, perform certain extra
operations, which lead to the additional overhead.

V. CONCLUSION

In conclusion, we summarize our main observations in the
experiments.

• The memory access performance of 3D XPoint is mod-
estly lower than that of DRAM. Compared to DRAM,
3D XPoint’s read performance can be up to 2.5x slower,
and its write performance can be up to 2.3x slower.

• The write performance of 3D XPoint is quite similar to
its read performance. Writes are at most 2.3x slower than
reads. The asymmetric effect of NVM reads and writes
are modest.

• Persisting writes to 3D XPoint incur drastic cost for
sequential and random writes. The slowdowns can be at
least 10.7x and 2.9x for sequential writes and random
writes, respectively.

• The performance of 3D XPoint degrades as an application
accesses more data. We suspect that techniques such
as caching are exploited in the 3D Xpoint modules to
improve performance. This effect is less significant when
the size of data visited is 32GB or larger for the 256GB
3D XPoint module.

• There is 3D XPoint NUMA effect in the AEP system.
Remote 3D XPoint accesses have significantly longer
latency and lower bandwidth than local 3D XPoint ac-
cesses. We would like to point out that the performance
of persisting writes to 3D XPoint changes the most
drastically among the various access patterns tested.

In the literature, previous studies often assume that NVM
writes perform much worse than DRAM writes, and also much
worse than NVM reads. This is not the case for the 3D XPoint
main memory tested in our experiments. On the other hand,
previous studies assume that the special instructions to persist
NVM writes incur significant overhead. This is confirmed
by the 3D XPoint experiments. The overhead caused by
clwb+sfence can be quite drastic for local writes, and even
more drastic for remote writes. Given these observations, it
would be interesting to re-evaluate the techniques for reducing
NVM writes in the literature.

Given the impact of data size on performance, we need to
carefully set up the experiments for NVM database studies on
3D XPoint main memory. We expect that database systems

will typically utilize large fractions of the 3D XPoint memory
space. Therefore, the data size in the experiments should be
at least (32GB/256GB) 12.5% of the 3D XPoint memory
capacity in order to model the typical database use scenarios.

Finally, we would like to note that we tested an AEP
sample machine. Since this is not yet a product on the
market, there could potentially be modifications to its designs.
The mature product may have slightly different performance
characteristics. However, we believe our initial experience with
3D XPoint main memory is still interesting. It sheds light
on the first NVM main memory technology expected to be
commercially available in the near future.

VI. ACKNOWLEDGMENTS

This work is partially supported by NSFC project
No. 61572468, by Alibaba collaboration project No.
XT622018000648, and by K.C.Wong Education Foundation.

REFERENCES

[1] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. Chen, R. M.
Shelby, M. Salinga, D. Krebs, S. Chen, H. Lung, and C. H. Lam, “Phase-
change random access memory: A scalable technology,” IBM Journal
of Research and Development, vol. 52, no. 4-5, pp. 465–480, 2008.

[2] D. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang, D. Lottis,
K. Moon, X. Luo, E. Chen, A. Ong, A. Driskill-Smith, and M. Krounbi,
“Spin-transfer torque magnetic random access memory (STT-MRAM),”
JETC, vol. 9, no. 2, pp. 13:1–13:35, 2013.

[3] J. J. Yang and R. S. Williams, “Memristive devices in computing system:
Promises and challenges,” JETC, vol. 9, no. 2, pp. 11:1–11:20, 2013.

[4] S. Chen, P. B. Gibbons, and S. Nath, “Rethinking database algorithms
for phase change memory,” in CIDR 2011, Fifth Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 9-12,
2011, Online Proceedings, 2011, pp. 21–31.

[5] S. Chen and Q. Jin, “Persistent b+-trees in non-volatile main memory,”
PVLDB, vol. 8, no. 7, pp. 786–797, 2015.

[6] J. Arulraj, A. Pavlo, and S. Dulloor, “Let’s talk about storage & recovery
methods for non-volatile memory database systems,” in Proceedings of
the 2015 ACM SIGMOD International Conference on Management of
Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, 2015, pp.
707–722.

[7] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner, “Fptree:
A hybrid SCM-DRAM persistent and concurrent b-tree for storage
class memory,” in Proceedings of the 2016 International Conference
on Management of Data, SIGMOD Conference 2016, San Francisco,
CA, USA, June 26 - July 01, 2016, 2016, pp. 371–386.

[8] D. H. Graham, “Intel optane technology products - what’s available and
what’s coming soon,” https://software.intel.com/en-us/articles/3d-xpoint-
technology-products.

[9] Intel Corp., “Intel 64 and ia-32 architectures software developer’s
manual,” Order Number: 325383-060US, 2016.

[10] B. Yang, J. Lee, J. Kim, J. Cho, S. Lee, and B. Yu, “A low power phase-
change random access memory using a data-comparison write scheme,”
in International Symposium on Circuits and Systems (ISCAS 2007), 27-
20 May 2007, New Orleans, Louisiana, USA, 2007, pp. 3014–3017.


